1
|
Ianni M, Corraliza-Gomez M, Costa-Coelho T, Ferreira-Manso M, Inteiro-Oliveira S, Alemãn-Serrano N, Sebastião AM, Garcia G, Diógenes MJ, Brites D. Spatiotemporal Dysregulation of Neuron-Glia Related Genes and Pro-/Anti-Inflammatory miRNAs in the 5xFAD Mouse Model of Alzheimer's Disease. Int J Mol Sci 2024; 25:9475. [PMID: 39273422 PMCID: PMC11394861 DOI: 10.3390/ijms25179475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Alzheimer's disease (AD), the leading cause of dementia, is a multifactorial disease influenced by aging, genetics, and environmental factors. miRNAs are crucial regulators of gene expression and play significant roles in AD onset and progression. This exploratory study analyzed the expression levels of 28 genes and 5 miRNAs (miR-124-3p, miR-125b-5p, miR-21-5p, miR-146a-5p, and miR-155-5p) related to AD pathology and neuroimmune responses using RT-qPCR. Analyses were conducted in the prefrontal cortex (PFC) and the hippocampus (HPC) of the 5xFAD mouse AD model at 6 and 9 months old. Data highlighted upregulated genes encoding for glial fibrillary acidic protein (Gfap), triggering receptor expressed on myeloid cells (Trem2) and cystatin F (Cst7), in the 5xFAD mice at both regions and ages highlighting their roles as critical disease players and potential biomarkers. Overexpression of genes encoding for CCAAT enhancer-binding protein alpha (Cebpa) and myelin proteolipid protein (Plp) in the PFC, as well as for BCL2 apoptosis regulator (Bcl2) and purinergic receptor P2Y12 (P2yr12) in the HPC, together with upregulated microRNA(miR)-146a-5p in the PFC, prevailed in 9-month-old animals. miR-155 positively correlated with miR-146a and miR-21 in the PFC, and miR-125b positively correlated with miR-155, miR-21, while miR-146a in the HPC. Correlations between genes and miRNAs were dynamic, varying by genotype, region, and age, suggesting an intricate, disease-modulated interaction between miRNAs and target pathways. These findings contribute to our understanding of miRNAs as therapeutic targets for AD, given their multifaceted effects on neurons and glial cells.
Collapse
Affiliation(s)
- Marta Ianni
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127 Trieste, Italy
| | - Miriam Corraliza-Gomez
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cadiz (INIBICA), 11003 Cadiz, Spain
| | - Tiago Costa-Coelho
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Mafalda Ferreira-Manso
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Sara Inteiro-Oliveira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Nuno Alemãn-Serrano
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- ULS Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Centro Académico de Medicina de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Gonçalo Garcia
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Maria José Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Dora Brites
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
| |
Collapse
|
2
|
Ibragimova M, Kussainova A, Aripova A, Bersimbaev R, Bulgakova O. The Molecular Mechanisms in Senescent Cells Induced by Natural Aging and Ionizing Radiation. Cells 2024; 13:550. [PMID: 38534394 PMCID: PMC10969416 DOI: 10.3390/cells13060550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
This review discusses the relationship between cellular senescence and radiation exposure. Given the wide range of ionizing radiation sources encountered by people in professional and medical spheres, as well as the influence of natural background radiation, the question of the effect of radiation on biological processes, particularly on aging processes, remains highly relevant. The parallel relationship between natural and radiation-induced cellular senescence reveals the common aspects underlying these processes. Based on recent scientific data, the key points of the effects of ionizing radiation on cellular processes associated with aging, such as genome instability, mitochondrial dysfunction, altered expression of miRNAs, epigenetic profile, and manifestation of the senescence-associated secretory phenotype (SASP), are discussed. Unraveling the molecular mechanisms of cellular senescence can make a valuable contribution to the understanding of the molecular genetic basis of age-associated diseases in the context of environmental exposure.
Collapse
Affiliation(s)
- Milana Ibragimova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
| | - Assiya Kussainova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy
| | - Akmaral Aripova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
| | - Rakhmetkazhi Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
| | - Olga Bulgakova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
| |
Collapse
|
3
|
Zhang K, Wang L, Qi F, Meng T. Hypotensive Levels on Endoscopic Sinus Surgery Visibility: A Randomized Non-Inferiority Trial. Laryngoscope 2024; 134:569-576. [PMID: 37449719 DOI: 10.1002/lary.30867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/02/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE Optimization of endoscopic sinus surgery (ESS) conditions is a common focus of interest for otolaryngologists and anesthesiologists. Relying on hypotension alone to achieve a bloodless field may not without risks. We sought to determine whether ESS is feasible in the context of moderate hypotension. METHODS This randomized non-inferiority trial enrolled 96 adult patients who were to undergo ESS. The patients were divided into two groups: Controlled hypotension group (n = 48, MAP reduction to 55-65 mmHg, minimum of 60% of baseline blood pressure) or Individualized hypotension group (n = 48, MAP reduction to 75-80% of baseline blood pressure). All participants were placed in 10° reverse Trendelenburg position during ESS, and cottonoid patties dammed with epinephrine was recommended to clear the operative field of bleeding. The two groups were compared according to Boezaart grading scale (BS) score, estimated blood loss, blood loss rate, arterial lactate level and postoperative recovery. RESULTS Both levels of intraoperative hypotension (62.2 ± 2.3 mmHg vs. 74.0 ± 2.8 mmHg) provided acceptable surgical conditions with no difference in mean BS scores [2.00 (1.88-2.33) vs. 2.00 (1.85-2.45), p = 0.926]. The 95% CI for median value differences in mean BS scores is lower than the preset non-inferiority margin. There were no differences in blood loss rate and estimated blood loss between two groups (p > 0.05) Postoperative arterial lactate and Ramsay sedation scores were significantly different between the two groups (p < 0.05). CONCLUSIONS In ESS, both levels of intraoperative hypotension, combined with position adjustment and low-concentration adrenaline to constrict nasal mucosal blood vessels, provided acceptable surgical conditions. LEVEL OF EVIDENCE 2 Laryngoscope, 134:569-576, 2024.
Collapse
Affiliation(s)
- Kangda Zhang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Lichun Wang
- Department of Pain Management, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Feng Qi
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Tao Meng
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| |
Collapse
|
4
|
Xie D, Bai Z, Zhou G, Li K, Ding J, Zhang H, Jiang J. Chemerin and IL-17 are potential predictors and Chemerin silencing alleviates inflammatory response and bone remodeling in chronic rhinosinusitis. Chem Biol Drug Des 2023; 102:1478-1488. [PMID: 37712455 DOI: 10.1111/cbdd.14339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/25/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023]
Abstract
Chronic rhinosinusitis (CRS) is an inflammatory disease of paranasal sinuses. This study is formulated to explore the roles of pro-inflammatory factors Chemerin and interleukin-17 (IL-17) in CRS. Patients suffering from CRS without/with nasal polyps (CRSsNP/CRSwNP), along with volunteers, were recruited. CRS rabbit models were constructed by Staphylococcus aureus infection and rabbits were injected with lentiviral vectors of short hairpin RNA-targeting Chemerin (shChemerin), followed by micro-computed tomography (CT) scan. Levels of Chemerin and IL-17 were determined, and histopathological lesions were observed in subjects and CRS rabbits. Correlations between Chemerin/IL-17 level and Lund-Mackay/Lund-Kennedy scores of subjects and the predictive value of Chemerin or IL-17 for CRS were analyzed. In CRS patients and rabbits, inflammatory degrees and the level of Chemerin/IL-17 were increased in pathological tissues or plasma, while Chemerin silencing alleviated CRS symptoms of CRS rabbits. Chemerin and IL-17 were mainly located in the immune cells of pathological tissues and presented the positive correlation with Lund-Mackay/Lund-Kennedy score of CRS patients. Also, they showed high predictive value for CRS. Micro-CT scan uncovered that CRS rabbits had increased bone remodeling, which was alleviated by Chemerin silencing. Collectively, Chemerin and IL-17 are potential predictors and Chemerin silencing alleviates inflammatory response and bone remodeling in chronic rhinosinusitis.
Collapse
Affiliation(s)
- Daoyu Xie
- Department of Otolaryngology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zhixiang Bai
- Department of Otolaryngology, The First People's Hospital of Lin'an District, Hangzhou, China
| | - Guowen Zhou
- Department of Otolaryngology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Kaijie Li
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, China
| | - Jinv Ding
- Department of Otolaryngology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Haiqin Zhang
- Department of Otolaryngology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jianhua Jiang
- Department of Otolaryngology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
5
|
Liu R, Liu S, Wu S, Xia M, Liu W, Wang L, Dong M, Niu W. Milk-Derived Small Extracellular Vesicles Promote Osteogenic Differentiation and Inhibit Inflammation via microRNA-21. Int J Mol Sci 2023; 24:13873. [PMID: 37762176 PMCID: PMC10531249 DOI: 10.3390/ijms241813873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic apical periodontitis (CAP) is a disease with characteristics of inflammation and bone loss. In this study, our objective was to examine the function of small extracellular vesicles (sEVs) obtained from milk in encouraging osteogenic differentiation and inhibiting inflammation by miR-21 in CAP. The expression of miR-21 was detected using qRT-PCR in human CAP samples. The impact of miR-21 on the process of osteogenic differentiation was investigated using CCK-8, qRT-PCR, immunofluorescence staining, and Western blot analysis. The evaluation of RAW 264.7 cell polarization and the assessment of inflammatory factor expression were conducted through qRT-PCR. The influence of sEVs on MC3T3-E1 cells and RAW 264.7 cells was examined, with a particular emphasis on the involvement of miR-21. In human CAP samples, a decrease in miR-21 expression was observed. MiR-21 increased the expression of osteogenesis-related genes and M2 polarization genes while decreasing the expression of M1 polarization genes and inflammatory cytokines. Treatment with milk-derived sEVs also promoted osteogenesis and M2 polarization while inhibiting M1 polarization and inflammation. Conversely, the addition of miR-21 inhibitors resulted in opposite effects. Our results indicated that sEVs derived from milk had a positive effect on bone formation and activation of anti-inflammatory (M2) macrophages and simultaneously reduced inflammation by regulating miR-21 in CAP.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming Dong
- School of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Weidong Niu
- School of Stomatology, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
6
|
Brar T, Marks L, Lal D. Insights into the epigenetics of chronic rhinosinusitis with and without nasal polyps: a systematic review. FRONTIERS IN ALLERGY 2023; 4:1165271. [PMID: 37284022 PMCID: PMC10240395 DOI: 10.3389/falgy.2023.1165271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/03/2023] [Indexed: 06/08/2023] Open
Abstract
Background Epigenetics facilitates insights on the impact of host environment on the genesis of chronic rhinosinusitis (CRS) through modulations of host gene expression and activity. Epigenetic mechanisms such as DNA methylation cause reversible but heritable changes in gene expression over generations of progeny, without altering the DNA base-pair sequences. These studies offer a critical understanding of the environment-induced changes that result in host predisposition to disease and may help in developing novel biomarkers and therapeutics. The goal of this systematic review is to summarize the current evidence on epigenetics of CRS with a focus on chronic rhinosinusitis with nasal polyps (CRSwNP) and highlight gaps that merit further research. Methods A systematic review of the English language literature was performed to identify investigations related to epigenetic studies in subjects with CRS. Results The review identified 65 studies. These have focused on DNA methylation and non-coding RNAs, with only a few on histone deacetylation, alternative polyadenylation, and chromatin accessibility. Studies include those investigating in vivo and in vitro changes or both. Studies also include animal models of CRS. Almost all have been conducted in Asia. The genome-wide studies of DNA methylation found differences in global methylation between CRSwNP and controls, while others specifically found significant differences in methylation of the CpG sites of the thymic stromal lymphopoietin (TSLP), IL-8, and PLAT. In addition, DNA methyltransferase inhibitors and histone deacetylase inhibitors were studied as potential therapeutic agents. Majority of the studies investigating non-coding RNAs focused on micro-RNAs (miRNA) and found differences in global expression of miRNA levels. These studies also revealed some previously known as well as novel targets and pathways such as tumor necrosis factor alpha, TGF beta-1, IL-10, EGR2, aryl hydrocarbon receptor, PI3K/AKT pathway, mucin secretion, and vascular permeability. Overall, the studies have found a dysregulation in pathways/genes involving inflammation, immune regulation, tissue remodeling, structural proteins, mucin secretion, arachidonic acid metabolism, and transcription. Conclusions Epigenetic studies in CRS subjects suggest that there is likely a major impact of the environment. However, these are association studies and do not directly imply pathogenesis. Longitudinal studies in geographically and racially diverse population cohorts are necessary to quantify genetic vs. environmental risks for CRSwNP and CRS without nasal polyps and assess heritability risk, as well as develop novel biomarkers and therapeutic agents.
Collapse
Affiliation(s)
- Tripti Brar
- Division of Rhinology, Department of Otolaryngology, Mayo Clinic in Arizona, Phoenix, AZ, United States
| | - Lisa Marks
- Division of Education, Department of Library Services, Mayo Clinic, Phoenix, AZ, United States
| | - Devyani Lal
- Division of Rhinology, Department of Otolaryngology, Mayo Clinic in Arizona, Phoenix, AZ, United States
| |
Collapse
|
7
|
Liu Y, Xu K, Yao Y, Liu Z. Current research into A20 mediation of allergic respiratory diseases and its potential usefulness as a therapeutic target. Front Immunol 2023; 14:1166928. [PMID: 37056760 PMCID: PMC10086152 DOI: 10.3389/fimmu.2023.1166928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Allergic airway diseases are characterized by excessive and prolonged type 2 immune responses to inhaled allergens. Nuclear factor κB (NF-κB) is a master regulator of the immune and inflammatory response, which has been implicated to play a prominent role in the pathogenesis of allergic airway diseases. The potent anti-inflammatory protein A20, termed tumor necrosis factor-α-inducible protein 3 (TNFAIP3), exerts its effects by inhibiting NF-κB signaling. The ubiquitin editing abilities of A20 have attracted much attention, resulting in its identification as a susceptibility gene in various autoimmune and inflammatory disorders. According to the results of genome-wide association studies, several TNFAIP3 gene locus nucleotide polymorphisms have been correlated to allergic airway diseases. In addition, A20 has been found to play a pivotal role in immune regulation in childhood asthma, particularly in the protection against environmentally mediated allergic diseases. The protective effects of A20 against allergy were observed in conditional A20-knockout mice in which A20 was depleted in the lung epithelial cells, dendritic cells, or mast cells. Furthermore, A20 administration significantly decreased inflammatory responses in mouse models of allergic airway diseases. Here, we review emerging findings elucidating the cellular and molecular mechanisms by which A20 regulates inflammatory signaling in allergic airway diseases, as well as discuss its potential as a therapeutic target.
Collapse
Affiliation(s)
- Yan Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Xu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zheng Liu, ; Yin Yao, ; Kai Xu,
| | - Yin Yao
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zheng Liu, ; Yin Yao, ; Kai Xu,
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zheng Liu, ; Yin Yao, ; Kai Xu,
| |
Collapse
|
8
|
MicroRNAs: Potential Biomarkers of Disease Severity in Chronic Rhinosinusitis with Nasal Polyps. Medicina (B Aires) 2023; 59:medicina59030550. [PMID: 36984551 PMCID: PMC10051206 DOI: 10.3390/medicina59030550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Background and Objectives: Chronic rhinosinusitis with nasal polyps (CRwNP) has multiple clinical presentations, and predictors of successful treatment are correlated to different parameters. Differentially expressed microRNAs in nasal polyps emerge as possible facilitators of precise endotyping in this disease. We aimed to evaluate the correlation between the clinical parameters of CRSwNP and two different microRNAs. Materials and Methods: The expression of miR-125b and miR-203a-3p in nasal polyps (n = 86) and normal nasal mucosa (n = 20) was determined through microarray analysis. Preoperative workup included CT scan, nasal endoscopy, blood tests, symptoms and depression questionnaires. Results: MiR-125b showed significant overexpression in NP compared to the normal nasal mucosa. miR-125b expression levels were positively and significantly correlated with blood eosinophilia (p = 0.018) and nasal endoscopy score (p = 0.021). Although high CT scores were related to miR-125b overexpression, the correlation did not reach statistical significance. miR-203a-3p was underexpressed in nasal polyps and was significantly underexpressed in CRSwNP patients with environmental allergies. Conclusions: Both miR-125b and miR-203a-3p are potential biomarkers in CRSwNP. miR-125b also correlates with the clinical picture, while miR-203a-3p could help identify an associated allergy.
Collapse
|
9
|
Zhipu N, Zitao H, Jichao S, Cuida M. Research advances in roles of microRNAs in nasal polyp. Front Genet 2022; 13:1043888. [PMID: 36506304 PMCID: PMC9732428 DOI: 10.3389/fgene.2022.1043888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
MicroRNAs (miRNAs), a subset of endogenous RNAs highly conservative with short chains, play key regulatory role in the biological relevant events of the cells. Exosomes are extracellular vesicles like the plasma membrane components being able to deliver information molecules such as miRNA between cells and to regulate the fate of the target cells. The progression of chronic rhinosinusitis with nasal polyps (CRSwNP) is closely associated with significant alterations of miRNA levels in both cells and exosomes. RNA-binding proteins (RBPs) have been acknowledged to play important roles in intracellular miRNA transport to exosomes, and specific membrane proteins such as caveolin-1 critically involved in HNRNPA1 -mediated transport of miRNA to exosomes. Aberrant alteration in endogenous miRNA levels significantly contributes to the process of airway remodeling in the nasal tissue and to the occurrence and progression of inflammatory responses in CRSwNP. Exogenous miRNAs delivered via exosomes has also been shown to play an important role in activating macrophages or in regulating vascular permeability in the CRSwNP.This paper highlights the mechanism of RBP-mediated delivery of miRNAs to exosomes and the important contribution of endogenous miRNAs to the development of CRSwNP in response to inflammation and airway remodeling. Finally, we discuss the future research directions for regulation of the miRNAs to CRSwNP.Delivery of exogenous miRNAs by exosomes alters the endogenous miRNAs content in nasal mucosal epithelial cells or in associated inflammatory cells in the CRSwNP, and altered endogenous miRNAs affects the inflammatory response and airway remodeling, which then regulates the occurrence and progression of CRSwNP.RBPs and associated membrane proteins such as caveolin-1 may play a crucial role in the entry of exogenous miRNA into exosomes.
Collapse
Affiliation(s)
- Niu Zhipu
- Clinical Medicine, China-Japan Union Hospital of Jilin University Norman Bethune Third School of Jilin University, Changchun, China
| | - Huo Zitao
- Clinical Medicine, China-Japan Union Hospital of Jilin University Norman Bethune Third School of Jilin University, Changchun, China
| | - Sha Jichao
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University Norman Bethune Third School of Jilin University, Changchun, China,*Correspondence: Sha Jichao, ; Meng Cuida,
| | - Meng Cuida
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University Norman Bethune Third School of Jilin University, Changchun, China,*Correspondence: Sha Jichao, ; Meng Cuida,
| |
Collapse
|
10
|
Wang J, Song R, Lan R, Hao M, Liu G, Liu M, Sun S, Chen C, Che H. Peanut allergen induces more serious allergic reactions than other allergens involving MAPK signaling pathways. Food Funct 2022; 13:8818-8828. [PMID: 35920097 DOI: 10.1039/d2fo00777k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is no universally accepted uniform research to classify the severity of allergic reactions triggered by different food allergens. We established a food allergy model based on repeated intragastric administrations of proteins from peanut, egg, milk, or soybean mixed with cholera toxin followed by oral food challenges with a high dose of the sensitizing proteins. Increased specific IgE, specific IgG1, allergic symptom scores, histamine, murine mast cell proteases-1, vascular leakage, Th2 cytokines, and mast cell infiltration in the lungs and intestine were found in the allergic groups via enzyme-linked immunosorbent assay, hematoxylin-eosin, and toluidine blue staining. Each sensitized group showed a decrease in body temperature and Th1 cytokines after oral food challenge. The increased levels of Th2 cytokines, IL-25, IL-33, and TSLP, and related asthma genes ARG1, DCN, LTB4R1 and NFKBIA as well as the activation of MAPK signaling pathways were also revealed by quantitative real-time PCR and western blotting. In terms of the severity of food allergies, peanut allergy was the most serious followed by egg and milk, and soybean allergy was the least severe. Compared to other allergic groups, asthma genes were regulated through the MAPK signaling pathways to produce related Th2 cytokines in peanut allergy; consequently, mice in the peanut group exhibited more severe allergic reactions. Comparison of the severity of food allergies is required for the development of milder prevention for severe food allergies.
Collapse
Affiliation(s)
- Junjuan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.
| | - Ruolin Song
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.
| | - Ruoxi Lan
- Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Mengzhen Hao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.
| | - Guirong Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.
| | - Manman Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.
| | - Shanfeng Sun
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.
| | - Cheng Chen
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.
| | - Huilian Che
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.
| |
Collapse
|
11
|
The Role of Small Extracellular Vesicles and MicroRNAs in the Diagnosis and Treatment of Allergic Rhinitis and Nasal Polyps. Mediators Inflamm 2022; 2022:4428617. [PMID: 35757106 PMCID: PMC9225904 DOI: 10.1155/2022/4428617] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 12/29/2022] Open
Abstract
Allergic rhinitis and nasal polyps are common otorhinolaryngological diseases. Small extracellular vesicles and microRNAs have recently become major research topics of interest due to their key regulatory roles in cancer, inflammation, and various diseases. Although very detailed and in-depth studies on the pathogenesis and pathophysiology of allergic rhinitis and nasal polyps have been conducted, few studies have assessed the regulatory effects of exosomes and microRNAs on allergic rhinitis and nasal polyps. This paper reviews the studies on small extracellular vesicles and microRNAs in allergic rhinitis and nasal polyps conducted in recent years and focuses on the regulation of small extracellular vesicles and microRNAs in allergic rhinitis and nasal polyps with the aim of providing insights for the future diagnosis and treatment of allergic rhinitis and nasal polyps.
Collapse
|
12
|
Sun Q, Liu Z, Xu X, Yang Y, Han X, Wang C, Song F, Mou Y, Li Y, Song X. Identification of a circRNA/miRNA/mRNA ceRNA Network as a Cell Cycle-Related Regulator for Chronic Sinusitis with Nasal Polyps. J Inflamm Res 2022; 15:2601-2615. [PMID: 35494315 PMCID: PMC9045834 DOI: 10.2147/jir.s358387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To explore the mechanisms by which circRNA/miRNA/mRNA competitive endogenous RNAs (ceRNA) networks regulate CRSwNP. Methods The expression profiles of circRNAs, miRNAs, and mRNAs from patients with CRSwNP and control subjects were acquired from the Gene Expression Omnibus database. The circRNA/miRNA/mRNA ceRNA network was constructed based on the predicted circRNA–miRNA interactions and miRNA–mRNA interactions. Hub-mRNAs were screened by protein–protein interaction network analysis and Cytoscape molecular complex detection. The expression of factors in tissue and in hsa_circ_0031594 siRNA transfection cells was verified by RT-qPCR and the association between them was revealed by Spearman correlation analysis. Receiver operating characteristic curve analysis was performed with the pROC R package. Results The differential expression of 5423 circRNAs, 415 miRNAs, and 3673 mRNAs was identified in CRSwNP subjects compared to control subjects. Among these, 9 circRNAs, 39 miRNAs, and 78 mRNAs were screened to construct a ceRNA network. Ultimately, a subnetwork including circRNA hsa_circ_0031594, hsa-miR-1260b, hsa-miR-6507-5p, NCAPG2, RACGAP1, CHEK1 and PRC1 was screened out. RT-qPCR validated that the expression of hsa_circ_0031594, NCAPG2, PRC1 was significantly increased, and hsa-miR-1260b and hsa-miR-6507-5p were expressed significantly less in patients with CRSwNP than in control subjects. In addition, the AUCs of hsa_circ_0031594, hsa-miR-1260b, hsa-miR-6507-5p, NCAPG2, and PRC1 to discriminate CRSwNP patients were 0.995, 0.842, 0.862, 0.765, and 0.816. Spearman correlation showed that the expression of hsa_circ_0031594 was negatively correlated with hsa-miR-1260b and hsa-miR-6507-5p, and positively correlated with NCAPG2 and PRC1. In human nasal epithelial cell (HNEpC) line, knocking down hsa_circ_0031594 could increase the expression of hsa-miR-1260b and hsa-miR-6507-5p, and reduce the expression of NCAPG2 and PRC1. Conclusion CeRNA networks including hsa_circ_0031594, hsa-miR-1260b, and NCAPG2, and hsa_circ_0031594, hsa-miR-6507-5p, and PRC1 may be key regulators for CRSwNP occurrence, and may be potential targets for the pathogenesis and treatment development of CRSwNP.
Collapse
Affiliation(s)
- Qi Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Zhen Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Xiangya Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
| | - Yujuan Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Xiao Han
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Cai Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- School of Clinical Medicine, Weifang Medical University, Weifang, People’s Republic of China
| | - Fei Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Department of Binzhou Medical University, Clinical Medical College Second, Binzhou Medical University, Yantai, People’s Republic of China
| | - Yakui Mou
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Yumei Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Correspondence: Xicheng Song; Yumei Li, Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, People’s Republic of China, Tel +860535-6691999, Fax +860535-6240341, Email ;
| |
Collapse
|
13
|
Cheng J, Luo XQ, Chen FS. Quercetin attenuates lipopolysaccharide-mediated inflammatory injury in human nasal epithelial cells via regulating miR-21/DMBT1/NF-κB axis. Immunopharmacol Immunotoxicol 2021; 44:7-16. [PMID: 34927513 DOI: 10.1080/08923973.2021.1988963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Quercetin (Qu) belongs to a flavonoid polyphenolic compound present in fruits and vegetables which has been confirmed to exert anti-inflammatory properties. Our study aimed to explore the impacts of quercetin on lipopolysaccharide (LPS)-induced inflammatory injury and signal transduction of miR-21/DMBT1/NF-κB axis in human nasal epithelial cells (HNEpC). METHODS HNEpCs were cultured and treated with 1 μg/mL of LPS and a gradient concentration (10, 100, and 200 μM) of quercetin for 24 h. Cell viability, apoptosis, and cytokines were detected to assess the inflammatory injury in LPS-exposed HNEpCs. The expressions of miR-21, DMBT1, and NF-κB mRNA were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The levels of DMBT1 and NF-κB protein were measured by western blotting. RESULTS LPS treatment reduced cell viability, promoted cell apoptosis and inflammatory response, down-regulated miR-21 expression and up-regulated DMBT1, and NF-κB in HNEpC cells. Quercetin exerted the opposite effects to attenuate LPS-induced inflammatory injury in HNEpC cells at a concentration-dependent way. Additionally, miR-21 directly targeted DMBT1 to reduce its expression and further inducing cell viability via inhibiting cell apoptosis and inflammatory response. MiR-21 inhibition or DMBT1 over-expression weakened the protective effects of quercetin against LPS-induced inflammatory injury in HNEpC cells. CONCLUSIONS Quercetin could protect HNEpC cells against LPS-induced inflammatory injury via inducing miR-21/DMBT1/NF-κB axis. Therefore, quercetin could be utilized as a potential compound to treat for allergic rhinitis.
Collapse
Affiliation(s)
- Ji Cheng
- Department of Otolaryngology Head and Neck Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, PR China
| | - Xian-Qing Luo
- Department of Otolaryngology Head and Neck Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, PR China
| | - Fa-Sheng Chen
- Department of Otolaryngology Head and Neck Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, PR China
| |
Collapse
|