1
|
Carruthers VB. Apicomplexan Pore-Forming Toxins. Annu Rev Microbiol 2024; 78:277-291. [PMID: 39088861 DOI: 10.1146/annurev-micro-041222-025939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Pore-forming toxins (PFTs) are released by one cell to directly inflict damage on another cell. Hosts use PFTs, including members of the membrane attack complex/perforin protein family, to fight infections and cancer, while bacteria and parasites deploy PFTs to promote infection. Apicomplexan parasites secrete perforin-like proteins as PFTs to egress from infected cells and traverse tissue barriers. Other protozoa, along with helminth parasites, utilize saposin-like PFTs prospectively for nutrient acquisition during infection. This review discusses seminal and more recent advances in understanding how parasite PFTs promote infection and describes how they are regulated and fulfill their roles without causing parasite self-harm. Although exciting progress has been made in defining mechanisms of pore formation by PFTs, many open questions remain to be addressed to gain additional key insights into these remarkable determinants of parasitic infections.
Collapse
Affiliation(s)
- Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA;
| |
Collapse
|
2
|
Chen Y, Yuan Z, Sun L. The evolutionary diversification and antimicrobial potential of MPEG1 in Metazoa. Comput Struct Biotechnol J 2023; 21:5818-5828. [PMID: 38213882 PMCID: PMC10781884 DOI: 10.1016/j.csbj.2023.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 01/13/2024] Open
Abstract
Macrophage-expressed gene 1 (MPEG1) is an ancient immune effector known to exist in Cnidaria, Mollusca, Actinopterygii, and Mammalia. In this study, we examined the evolution and antibacterial potential of MPEG1 across Metazoa. By unbiased data-mining, MPEG1 orthologs were found in 11 of 34 screened phyla. In invertebrates, MPEG1 is present in the major phyla and exhibits intensive duplication. In vertebrates, class-based clades were formed by the major, generic MPEG1 (gMPEG1) in each class. However, there is a minority of unique MPEG1 (uMPEG1) from 71 species of 4 classes that clustered into a separate clade detached from all major class-based clades. gMPEG1 and uMPEG1 exhibit strong genomic collinearity and are surrounded by high-density transposons. gMPEG1 and uMPEG1 transcript expressions were most abundant in immune organs, but differed markedly in tissue specificity. Systematic analysis identified an antimicrobial peptide (AMP)-like segment in the C-terminal (CT) tail of MPEG1. Peptides based on the AMP-like regions of 35 representative MPEG1 were synthesized. Bactericidal activities were displayed by all peptides. Together these results suggest transposon-propelled evolutionary diversification of MPEG1 in Metazoa that has likely led to functional specialisation. This study also reveals a possible antimicrobial mechanism mediated directly and solely by the CT tail of MPEG1.
Collapse
Affiliation(s)
- Yuan Chen
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihao Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Cheng Y, Chen W, Xu J, Liu H, Chen T, Hu J. Genetic analysis of potential biomarkers and therapeutic targets in age-related hearing loss. Hear Res 2023; 439:108894. [PMID: 37844444 DOI: 10.1016/j.heares.2023.108894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/06/2023] [Accepted: 09/27/2023] [Indexed: 10/18/2023]
Abstract
Age-related hearing loss (ARHL) or presbycusis is the phenomenon of hearing loss due to the aging of auditory organs with age. It seriously affects the cognitive function and quality of life of the elderly. This study is based on comprehensive bioinformatic and machine learning methods to identify the critical genes of ARHL and explore its therapy targets and pathological mechanisms. The ARHL and normal samples were from GSE49543 datasets of the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was applied to obtain significant modules. The Limma R-package was used to identify differentially expressed genes (DEGs). The 15 common genes of the practical module and DEGs were screened. Functional enrichment analysis suggested that these genes were mainly associated with inflammation, immune response, and infection. Cytoscape software created the protein-protein interaction (PPI) layouts and cytoHubba, support vector machine-recursive feature elimination (SVM-RFE), and random forests (RF) algorithms screened hub genes. After validating the hub gene expressions in GSE6045 and GSE154833 datasets, Clec4n, Mpeg1, and Fcgr3 are highly expressed in ARHL and have higher diagnostic efficacy for ARHL, so they were identified as hub genes. In conclusion, Clec4n, Mpeg1, and Fcgr3 play essential roles in developing ARHL, and they might become vital targets in ARHL diagnosis and anti-inflammatory therapy.
Collapse
Affiliation(s)
- Yajing Cheng
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wenjin Chen
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jia Xu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hang Liu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ting Chen
- Department of Neurology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jun Hu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
4
|
Palam LR, Ramdas B, Pickerell K, Pasupuleti SK, Kanumuri R, Cesarano A, Szymanski M, Selman B, Dave UP, Sandusky G, Perna F, Paczesny S, Kapur R. Loss of Dnmt3a impairs hematopoietic homeostasis and myeloid cell skewing via the PI3Kinase pathway. JCI Insight 2023; 8:e163864. [PMID: 36976647 PMCID: PMC10243813 DOI: 10.1172/jci.insight.163864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Loss-of-function mutations in the DNA methyltransferase 3A (DNMT3A) are seen in a large number of patients with acute myeloid leukemia (AML) with normal cytogenetics and are frequently associated with poor prognosis. DNMT3A mutations are an early preleukemic event, which - when combined with other genetic lesions - result in full-blown leukemia. Here, we show that loss of Dnmt3a in hematopoietic stem and progenitor cells (HSC/Ps) results in myeloproliferation, which is associated with hyperactivation of the phosphatidylinositol 3-kinase (PI3K) pathway. PI3Kα/β or the PI3Kα/δ inhibitor treatment partially corrects myeloproliferation, although the partial rescue is more efficient in response to the PI3Kα/β inhibitor treatment. In vivo RNA-Seq analysis on drug-treated Dnmt3a-/- HSC/Ps showed a reduction in the expression of genes associated with chemokines, inflammation, cell attachment, and extracellular matrix compared with controls. Remarkably, drug-treated leukemic mice showed a reversal in the enhanced fetal liver HSC-like gene signature observed in vehicle-treated Dnmt3a-/- LSK cells as well as a reduction in the expression of genes involved in regulating actin cytoskeleton-based functions, including the RHO/RAC GTPases. In a human PDX model bearing DNMT3A mutant AML, PI3Kα/β inhibitor treatment prolonged their survival and rescued the leukemic burden. Our results identify a potentially new target for treating DNMT3A mutation-driven myeloid malignancies.
Collapse
Affiliation(s)
| | - Baskar Ramdas
- Department of Pediatrics, Herman B Wells Center for Pediatric Research
| | - Katelyn Pickerell
- Department of Pediatrics, Herman B Wells Center for Pediatric Research
| | | | - Rahul Kanumuri
- Department of Pediatrics, Herman B Wells Center for Pediatric Research
| | | | | | - Bryce Selman
- Department of Pathology and Laboratory Medicine, and
| | - Utpal P. Dave
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, Charlestown, South Carolina, USA
| | - Reuben Kapur
- Department of Pediatrics, Herman B Wells Center for Pediatric Research
| |
Collapse
|
5
|
Yu X, Ni T, Munson G, Zhang P, Gilbert RJC. Cryo-EM structures of perforin-2 in isolation and assembled on a membrane suggest a mechanism for pore formation. EMBO J 2022; 41:e111857. [PMID: 36245269 PMCID: PMC9713709 DOI: 10.15252/embj.2022111857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/29/2022] [Accepted: 09/09/2022] [Indexed: 01/15/2023] Open
Abstract
Perforin-2 (PFN2, MPEG1) is a key pore-forming protein in mammalian innate immunity restricting intracellular bacteria proliferation. It forms a membrane-bound pre-pore complex that converts to a pore-forming structure upon acidification; but its mechanism of conformational transition has been debated. Here we used cryo-electron microscopy, tomography and subtomogram averaging to determine structures of PFN2 in pre-pore and pore conformations in isolation and bound to liposomes. In isolation and upon acidification, the pre-assembled complete pre-pore rings convert to pores in both flat ring and twisted conformations. On membranes, in situ assembled PFN2 pre-pores display various degrees of completeness; whereas PFN2 pores are mainly incomplete arc structures that follow the same subunit packing arrangements as found in isolation. Both assemblies on membranes use their P2 β-hairpin for binding to the lipid membrane surface. Overall, these structural snapshots suggest a molecular mechanism for PFN2 pre-pore to pore transition on a targeted membrane, potentially using the twisted pore as an intermediate or alternative state to the flat conformation, with the capacity to cause bilayer distortion during membrane insertion.
Collapse
Affiliation(s)
- Xiulian Yu
- Division of Structural Biology, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Calleva Research Centre for Evolution and Human Sciences, Magdalen CollegeUniversity of OxfordOxfordUK
| | - Tao Ni
- Division of Structural Biology, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Present address:
School of Biomedical Sciences, LKS Faculty of MedicineThe University of Hong KongPokfulamHong Kong SARChina
| | - George Munson
- Department of Microbiology and ImmunologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Diamond Light SourceHarwell Science and Innovation CampusDidcotUK
- Chinese Academy of Medical Sciences Oxford InstituteUniversity of OxfordOxfordUK
| | - Robert J C Gilbert
- Division of Structural Biology, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Calleva Research Centre for Evolution and Human Sciences, Magdalen CollegeUniversity of OxfordOxfordUK
| |
Collapse
|
6
|
Spicer JA, Huttunen KM, Jose J, Dimitrov I, Akhlaghi H, Sutton VR, Voskoboinik I, Trapani J. Small Molecule Inhibitors of Lymphocyte Perforin as Focused Immunosuppressants for Infection and Autoimmunity. J Med Chem 2022; 65:14305-14325. [PMID: 36263926 DOI: 10.1021/acs.jmedchem.2c01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
New drugs that precisely target the immune mechanisms critical for cytotoxic T lymphocyte (CTL) and natural killer (NK) cell driven pathologies are desperately needed. In this perspective, we explore the cytolytic protein perforin as a target for therapeutic intervention. Perforin plays an indispensable role in CTL/NK killing and controls a range of immune pathologies, while being encoded by a single copy gene with no redundancy of function. An immunosuppressant targeting this protein would provide the first-ever therapy focused specifically on one of the principal cell death pathways contributing to allotransplant rejection and underpinning multiple autoimmune and postinfectious diseases. No drugs that selectively block perforin-dependent cell death are currently in clinical use, so this perspective will review published novel small molecule inhibitors, concluding with in vivo proof-of-concept experiments performed in mouse models of perforin-mediated immune pathologies that provide a potential pathway toward a clinically useful therapeutic agent.
Collapse
Affiliation(s)
- Julie A Spicer
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, A New Zealand Centre for Research Excellence, Auckland 1142, New Zealand
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jiney Jose
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, A New Zealand Centre for Research Excellence, Auckland 1142, New Zealand
| | - Ivo Dimitrov
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, A New Zealand Centre for Research Excellence, Auckland 1142, New Zealand
| | - Hedieh Akhlaghi
- Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Vivien R Sutton
- Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ilia Voskoboinik
- Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Joseph Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
7
|
Wu Y, Nie C, Luo R, Qi F, Bai X, Chen H, Niu J, Chen C, Zhang W. Effects of Multispecies Probiotic on Intestinal Microbiota and Mucosal Barrier Function of Neonatal Calves Infected With E. coli K99. Front Microbiol 2022; 12:813245. [PMID: 35154038 PMCID: PMC8826468 DOI: 10.3389/fmicb.2021.813245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
Altered gut microbiota are implicated in inflammatory neonatal calf diarrhea caused by E. coli K99. Beneficial probiotics are used to modulate gut microbiota. However, factors that mediate host-microbe interactions remain unclear. We evaluated the effects of a combination of multispecies probiotics (MSP) on growth, intestinal epithelial development, intestinal immune function and microbiota of neonatal calves infected with E. coli K99. Twelve newborn calves were randomly assigned as follows: C (control, without MSP); D (E. coli O78:K99 + gentamycin); and P (E. coli O78:K99 + supplemental MSP). All groups were studied for 21 d. MSP supplementation significantly (i) changed fungal Chao1 and Shannon indices of the intestine compared with group D; (ii) reduced the relative abundance of Bacteroides and Actinobacteria, while increasing Bifidobacteria, Ascomycetes, and Saccharomyces, compared with groups C and D; (iii) improved duodenal and jejunal mucosal SIgA and total Short Chain Fatty Acids (SCFA) concentrations compared with group D; (iv) increased relative ZO-1 and occludin mRNA expression in jejunal mucosa compared with group D; and (v) enhanced intestinal energy metabolism and defense mechanisms of calves by reducing HSP90 expression in E. coli K99, thereby alleviating the inflammatory response and promoting recovery of mucosal function. Our research may provide direct theoretical support for future applications of MSP in ruminant production.
Collapse
Affiliation(s)
- Yanyan Wu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Cunxi Nie
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Ruiqing Luo
- Xinjiang Tianshan Junken Animal Husbandry Co., Ltd., Shihezi, China
| | - Fenghua Qi
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xue Bai
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Hongli Chen
- Xinjiang Tianshan Junken Animal Husbandry Co., Ltd., Shihezi, China
| | - Junli Niu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Chen Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
8
|
The Early Immune Response of Lymphoid and Myeloid Head-Kidney Cells of Rainbow Trout (Oncorhynchus mykiss) Stimulated with Aeromonas salmonicida. FISHES 2022. [DOI: 10.3390/fishes7010012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The teleost head kidney is a highly relevant immune organ, and myeloid cells play a major role in this organ’s innate and adaptive immune responses. Because of their complexity, the early phases of the innate immune reaction of fish against bacteria are still poorly understood. In this study, naïve rainbow trout were stimulated with inactivated A. salmonicida and sampled at 12 h, 24 h and 7 d poststimulation. Cells from the head kidney were magnetically sorted with a monoclonal antibody mAB21 to obtain one (MAb21-positive) fraction enriched with myeloid cells and one (MAb21-negative) fraction enriched with lymphocytes and thrombocytes. The gene expression pattern of the resulting cell subpopulations was analysed using a panel of 43 immune-related genes. The results show an overall downregulation of the complement pathway and cytokine production at the considered time points. Some of the selected genes may be considered as parameters for diagnosing bacterial furunculosis of rainbow trout.
Collapse
|
9
|
Daskalov A, Glass NL. Gasdermin and Gasdermin-Like Pore-Forming Proteins in Invertebrates, Fungi and Bacteria. J Mol Biol 2021; 434:167273. [PMID: 34599942 DOI: 10.1016/j.jmb.2021.167273] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
The gasdermin family of pore-forming proteins (PFPs) has recently emerged as key molecular players controlling immune-related cell death in mammals. Characterized mammalian gasdermins are activated through proteolytic cleavage by caspases or serine proteases, which remove an inhibitory carboxy-terminal domain, allowing the pore-formation process. Processed gasdermins form transmembrane pores permeabilizing the plasma membrane, which often results in lytic and inflammatory cell death. While the gasdermin-dependent cell death (pyroptosis) has been predominantly characterized in mammals, it now has become clear that gasdermins also control cell death in early vertebrates (teleost fish) and invertebrate animals such as corals (Cnidaria). Moreover, gasdermins and gasdermin-like proteins have been identified and characterized in taxa outside of animals, notably Fungi and Bacteria. Fungal and bacterial gasdermins share many features with mammalian gasdermins including their mode of activation through proteolysis. It has been shown that in some cases the proteolytic activation is executed by evolutionarily related proteases acting downstream of proteins resembling immune receptors controlling pyroptosis in mammals. Overall, these findings establish gasdermins and gasdermin-regulated cell death as an extremely ancient mechanism of cellular suicide and build towards an understanding of the evolution of regulated cell death in the context of immunology. Here, we review the broader gasdermin family, focusing on recent discoveries in invertebrates, fungi and bacteria.
Collapse
Affiliation(s)
- Asen Daskalov
- Institut de Biochimie et Génétique Cellulaires, University of Bordeaux, France.
| | - N Louise Glass
- The Plant and Microbial Biology Department, The University of California, Berkeley, CA 94720-3102, United States
| |
Collapse
|