1
|
Macura B, Kiecka A, Szczepanik M. Intestinal permeability disturbances: causes, diseases and therapy. Clin Exp Med 2024; 24:232. [PMID: 39340718 PMCID: PMC11438725 DOI: 10.1007/s10238-024-01496-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Nowadays, a pathological increase in the permeability of the intestinal barrier (the so-called leaky gut) is increasingly being diagnosed. This condition can be caused by various factors, mainly from the external environment. Damage to the intestinal barrier entails a number of adverse phenomena: dysbiosis, translocation of microorganisms deep into the intestinal tissue, immune response, development of chronic inflammation. These phenomena can ultimately lead to a vicious cycle that promotes the development of inflammation and further damage to the barrier. Activated immune cells in mucosal tissues with broken barriers can migrate to other organs and negatively affect their functioning. Damaged intestinal barrier can facilitate the development of local diseases such as irritable bowel disease, inflammatory bowel disease or celiac disease, but also the development of systemic inflammatory diseases such as rheumatoid arthritis, ankylosing spondylitis, hepatitis, and lupus erythematosus, neurodegenerative or psychiatric conditions, or metabolic diseases such as diabetes or obesity. However, it must be emphasized that the causal links between a leaky gut barrier and the onset of certain diseases often remain unclear and require in-depth research. In light of recent research, it becomes crucial to prevent damage to the intestinal barrier, as well as to develop therapies for the barrier when it is damaged. This paper presents the current state of knowledge on the causes, health consequences and attempts to treat excessive permeability of the intestinal barrier.
Collapse
Affiliation(s)
- Barbara Macura
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, 31-034, Kraków, Poland.
| | - Aneta Kiecka
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, 31-034, Kraków, Poland
| | - Marian Szczepanik
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, 31-034, Kraków, Poland
| |
Collapse
|
2
|
Shah MM, Layhadi JA, Hourcade DE, Fulton WT, Tan TJ, Dunham D, Chang I, Vel MS, Fernandes A, Lee AS, Liu J, Arunachalam PS, Galli SJ, Boyd SD, Pulendran B, Davis MM, O’Hara R, Park H, Mitchell LM, Akk A, Patterson A, Jerath MR, Monroy JM, Ren Z, Kendall PL, Durham SR, Fedina A, Gibbs BF, Agache I, Chinthrajah S, Sindher SB, Heider A, Akdis CA, Shamji MH, Pham CT, Nadeau KC. Elucidating allergic reaction mechanisms in response to SARS-CoV-2 mRNA vaccination in adults. Allergy 2024; 79:2502-2523. [PMID: 39033312 PMCID: PMC11368657 DOI: 10.1111/all.16231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/31/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND During the COVID-19 pandemic, novel nanoparticle-based mRNA vaccines were developed. A small number of individuals developed allergic reactions to these vaccines although the mechanisms remain undefined. METHODS To understand COVID-19 vaccine-mediated allergic reactions, we enrolled 19 participants who developed allergic events within 2 h of vaccination and 13 controls, nonreactors. Using standard hemolysis assays, we demonstrated that sera from allergic participants induced stronger complement activation compared to nonallergic subjects following ex vivo vaccine exposure. RESULTS Vaccine-mediated complement activation correlated with anti-polyethelyne glycol (PEG) IgG (but not IgM) levels while anti-PEG IgE was undetectable in all subjects. Depletion of total IgG suppressed complement activation in select individuals. To investigate the effects of vaccine excipients on basophil function, we employed a validated indirect basophil activation test that stratified the allergic populations into high and low responders. Complement C3a and C5a receptor blockade in this system suppressed basophil response, providing strong evidence for complement involvement in vaccine-mediated basophil activation. Single-cell multiome analysis revealed differential expression of genes encoding the cytokine response and Toll-like receptor (TLR) pathways within the monocyte compartment. Differential chromatin accessibility for IL-13 and IL-1B genes was found in allergic and nonallergic participants, suggesting that in vivo, epigenetic modulation of mononuclear phagocyte immunophenotypes determines their subsequent functional responsiveness, contributing to the overall physiologic manifestation of vaccine reactions. CONCLUSION These findings provide insights into the mechanisms underlying allergic reactions to COVID-19 mRNA vaccines, which may be used for future vaccine strategies in individuals with prior history of allergies or reactions and reduce vaccine hesitancy.
Collapse
Affiliation(s)
- Mihir M. Shah
- Sean N. Parker Center for Allergy & Asthma Research;
Stanford, CA, USA
- These authors contributed equally to this work
| | - Janice A. Layhadi
- Immunomodulation and Tolerance Group, Allergy and Clinical
Immunology, Department of National Heart and Lung Institute, Imperial College
London; London, United Kingdom
- These authors contributed equally to this work
| | - Dennis E. Hourcade
- Department of Medicine, Division of Rheumatology,
Washington University School of Medicine; St. Louis, MO, USA
- These authors contributed equally to this work
| | - William T. Fulton
- Immunomodulation and Tolerance Group, Allergy and Clinical
Immunology, Department of National Heart and Lung Institute, Imperial College
London; London, United Kingdom
| | - Tiak Ju Tan
- Immunomodulation and Tolerance Group, Allergy and Clinical
Immunology, Department of National Heart and Lung Institute, Imperial College
London; London, United Kingdom
| | - Diane Dunham
- Sean N. Parker Center for Allergy & Asthma Research;
Stanford, CA, USA
| | - Iris Chang
- Sean N. Parker Center for Allergy & Asthma Research;
Stanford, CA, USA
| | - Monica S. Vel
- Sean N. Parker Center for Allergy & Asthma Research;
Stanford, CA, USA
| | - Andrea Fernandes
- Sean N. Parker Center for Allergy & Asthma Research;
Stanford, CA, USA
| | - Alexandra S. Lee
- Sean N. Parker Center for Allergy & Asthma Research;
Stanford, CA, USA
| | - James Liu
- Stanford Health Library; Stanford, CA, USA
| | - Prabhu S. Arunachalam
- Institute for Immunity, Transplantation and Infection,
Stanford University; Stanford, CA, USA
| | - Stephen J. Galli
- Sean N. Parker Center for Allergy & Asthma Research;
Stanford, CA, USA
- Department of Pathology, Stanford University School of
Medicine; Stanford, California, USA
- Department of Microbiology and Immunology, Stanford
University School of Medicine; Stanford, California, USA
| | - Scott D. Boyd
- Sean N. Parker Center for Allergy & Asthma Research;
Stanford, CA, USA
- Department of Pathology, Stanford University School of
Medicine; Stanford, California, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection,
Stanford University; Stanford, CA, USA
- Department of Pathology, Stanford University School of
Medicine; Stanford, California, USA
- Department of Microbiology and Immunology, Stanford
University School of Medicine; Stanford, California, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation and Infection,
Stanford University; Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford
University School of Medicine; Stanford, California, USA
| | - Ruth O’Hara
- Department of Veteran’s Administration and
Dean’s Office, Stanford University; Stanford, CA, USA
| | - Helen Park
- Veterans Affairs Palo Alto Health Care System; Palo Alto,
CA, USA
| | - Lynne M. Mitchell
- Department of Medicine, Division of Rheumatology,
Washington University School of Medicine; St. Louis, MO, USA
| | - Antonina Akk
- Department of Medicine, Division of Rheumatology,
Washington University School of Medicine; St. Louis, MO, USA
| | - Alexander Patterson
- Department of Medicine, Division of Allergy and
Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Maya R. Jerath
- Department of Medicine, Division of Allergy and
Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Jennifer M. Monroy
- Department of Medicine, Division of Allergy and
Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Zhen Ren
- Department of Medicine, Division of Allergy and
Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Peggy L. Kendall
- Department of Medicine, Division of Allergy and
Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Stephen R. Durham
- Immunomodulation and Tolerance Group, Allergy and Clinical
Immunology, Department of National Heart and Lung Institute, Imperial College
London; London, United Kingdom
| | - Aleksandra Fedina
- Immunomodulation and Tolerance Group, Allergy and Clinical
Immunology, Department of National Heart and Lung Institute, Imperial College
London; London, United Kingdom
| | - Bernhard F Gibbs
- Department of Human Medicine, School of Medicine and
Health Sciences, Carl von Ossietzky University of Oldenburg; Oldenburg,
Germany
- Canterbury Christ Church University, UK
| | - Ioana Agache
- Faculty of Medicine, Transilvania University; Brasov,
Romania
| | | | | | - Anja Heider
- Swiss Institute of Allergy and Asthma Research (SIAF),
University of Zurich; Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF),
University of Zurich; Davos, Switzerland
| | - Mohamed H. Shamji
- Immunomodulation and Tolerance Group, Allergy and Clinical
Immunology, Department of National Heart and Lung Institute, Imperial College
London; London, United Kingdom
- These authors contributed equally to this work
| | - Christine T.N. Pham
- Department of Medicine, Division of Rheumatology,
Washington University School of Medicine; St. Louis, MO, USA
- These authors contributed equally to this work
| | - Kari C. Nadeau
- Harvard T.H. Chan School of Public Health, Harvard
University; Cambridge, Massachusetts
- These authors contributed equally to this work
| |
Collapse
|
3
|
Merra G, Gualtieri P, La Placa G, Frank G, Della Morte D, De Lorenzo A, Di Renzo L. The Relationship between Exposome and Microbiome. Microorganisms 2024; 12:1386. [PMID: 39065154 PMCID: PMC11278511 DOI: 10.3390/microorganisms12071386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Currently, exposome studies include a raft of different monitoring tools, including remote sensors, smartphones, omics analyses, distributed lag models, etc. The similarity in structure between the exposome and the microbiota plus their functions led us to pose three pertinent questions from this viewpoint, looking at the actual relationship between the exposome and the microbiota. In terms of the exposome, a bistable equilibrium between health and disease depends on constantly dealing with an ever-changing totality of exposures that together shape an individual from conception to death. Regarding scientific knowledge, the exposome is still lagging in certain areas, like the importance of microorganisms in the equation. The human microbiome is defined as an aggregate assemblage of gut commensals that are hosted by our surfaces related to the external environment. Commensals' resistance to a variety of environmental exposures, such as antibiotic administration, confirms that a layer of these organisms is protected within the host. The exposome is a conceptual framework defined as the environmental component of the science-inspired systems ideology that shifts from a specificity-based medical approach to reasoning in terms of complexity. A parallel concept in population health research and precision public health is the human flourishing index, which aims to account for the numerous environmental factors that affect individual and population well-being beyond ambient pollution.
Collapse
Affiliation(s)
- Giuseppe Merra
- Department of Biomedicine and Prevention, Section of Clinical Nutrition and Nutrigenomics, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Paola Gualtieri
- Department of Biomedicine and Prevention, Section of Clinical Nutrition and Nutrigenomics, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Giada La Placa
- Ph.D. School of Applied Medical-Surgical-Sciences, Univeristy of Rome Tor Vergata, 00133 Rome, Italy (G.F.)
| | - Giulia Frank
- Ph.D. School of Applied Medical-Surgical-Sciences, Univeristy of Rome Tor Vergata, 00133 Rome, Italy (G.F.)
| | - David Della Morte
- Department of Biomedicine and Prevention, Section of Clinical Nutrition and Nutrigenomics, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Antonino De Lorenzo
- Department of Biomedicine and Prevention, Section of Clinical Nutrition and Nutrigenomics, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Laura Di Renzo
- Department of Biomedicine and Prevention, Section of Clinical Nutrition and Nutrigenomics, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
4
|
Paciência I, Sharma N, Hugg TT, Rantala AK, Heibati B, Al-Delaimy WK, Jaakkola MS, Jaakkola JJ. The Role of Biodiversity in the Development of Asthma and Allergic Sensitization: A State-of-the-Science Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:66001. [PMID: 38935403 PMCID: PMC11218706 DOI: 10.1289/ehp13948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Changes in land use and climate change have been reported to reduce biodiversity of both the environment and human microbiota. These reductions in biodiversity may lead to inadequate and unbalanced stimulation of immunoregulatory circuits and, ultimately, to clinical diseases, such as asthma and allergies. OBJECTIVE We summarized available empirical evidence on the role of inner (gut, skin, and airways) and outer (air, soil, natural waters, plants, and animals) layers of biodiversity in the development of asthma, wheezing, and allergic sensitization. METHODS We conducted a systematic search in SciVerse Scopus, PubMed MEDLINE, and Web of Science up to 5 March 2024 to identify relevant human studies assessing the relationships between inner and outer layers of biodiversity and the risk of asthma, wheezing, or allergic sensitization. The protocol was registered in PROSPERO (CRD42022381725). RESULTS A total of 2,419 studies were screened and, after exclusions and a full-text review of 447 studies, 82 studies were included in the comprehensive, final review. Twenty-nine studies reported a protective effect of outer layer biodiversity in the development of asthma, wheezing, or allergic sensitization. There were also 16 studies suggesting an effect of outer layer biodiversity on increasing asthma, wheezing, or allergic sensitization. However, there was no clear evidence on the role of inner layer biodiversity in the development of asthma, wheezing, and allergic sensitization (13 studies reported a protective effect and 15 reported evidence of an increased risk). CONCLUSIONS Based on the reviewed literature, a future systematic review could focus more specifically on outer layer biodiversity and asthma. It is unlikely that association with inner layer biodiversity would have enough evidence for systematic review. Based on this comprehensive review, there is a need for population-based longitudinal studies to identify critical periods of exposure in the life course into adulthood and to better understand mechanisms linking environmental exposures and changes in microbiome composition, diversity, and/or function to development of asthma and allergic sensitization. https://doi.org/10.1289/EHP13948.
Collapse
Affiliation(s)
- Inês Paciência
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Needhi Sharma
- University of California, San Diego, San Diego, California, USA
| | - Timo T. Hugg
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Aino K. Rantala
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Behzad Heibati
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | - Maritta S. Jaakkola
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Jouni J.K. Jaakkola
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Finnish Meteorological Institute, Helsinki, Finland
| |
Collapse
|
5
|
Bakhshani A, Parande Shirvan S, Sadr S, Maleki M, Haghparast A, Borji H. Evaluating the Toxocara cati extract as a therapeutic agent for allergic airway inflammation. Immun Inflamm Dis 2024; 12:e1307. [PMID: 38860753 PMCID: PMC11165684 DOI: 10.1002/iid3.1307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/29/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND The hygiene hypothesis suggests that early life exposure to helminth infections can reduce hypersensitivity in the immune system. OBJECTIVE The present study aims to evaluate the effects of Toxocara cati (T. cati) somatic products on allergic airway inflammation. METHODS Between 2018 and 2020, T. cati adult worms were collected from stray cats in Mashhad, Iran (31 out of 186 cats), and their somatic extract was collected. Thirty BALB/c mice were equally divided into three groups, including the OVA group (sensitized and challenged with ovalbumin), the somatic administered group (received somatic extract along with ovalbumin sensitization), and the PBS group (sensitized and challenged with phosphate buffer saline). Bronchoalveolar lavage (BAL) fluid was collected to assess the number of cells, and lung homogenates were prepared for cytokine analysis. Histopathological analysis of the lungs was performed, and inflammatory cells and mucus were detected. Cytokine levels (IL-4, IL-5, IL-10) were measured using enzyme-linked immunosorbent assay (ELISA), and ovalbumin-specific immunoglobulin E (IgE) levels were determined using a capture ELISA. RESULTS The somatic group significantly decreased regarding the lung pathological changes, including peribronchiolitis, perivasculitis, and eosinophil influx, compared to the group treated with ovalbumin alone. These changes were accompanied by a decrease in proinflammatory cytokines IL-4 and IL-5 and an increase in the anti-inflammatory cytokine IL-10, indicating a shift toward a more balanced immune response. The number of inflammatory cells in the BAL fluid was also significantly reduced in the somatic group, indicating a decrease in inflammation. CONCLUSION These preclinical findings suggest that in experimental models, T. cati somatic extract exhibits promising potential as a therapeutic agent for mitigating allergic airway inflammation. Its observed effects on immune response modulation and reduction of inflammatory cell infiltration warrant further investigation in clinical studies to assess its efficacy and safety in human patients.
Collapse
Affiliation(s)
- Amin Bakhshani
- Department of Pathobiology, Faculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| | - Sima Parande Shirvan
- Department of Pathobiology, Faculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| | - Soheil Sadr
- Department of Pathobiology, Faculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| | - Mohsen Maleki
- Department of Pathobiology, Faculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| | - Alireza Haghparast
- Department of Pathobiology, Faculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| |
Collapse
|
6
|
Lu HF, Zhou YC, Yang LT, Zhou Q, Wang XJ, Qiu SQ, Cheng BH, Zeng XH. Involvement and repair of epithelial barrier dysfunction in allergic diseases. Front Immunol 2024; 15:1348272. [PMID: 38361946 PMCID: PMC10867171 DOI: 10.3389/fimmu.2024.1348272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
The epithelial barrier serves as a critical defense mechanism separating the human body from the external environment, fulfilling both physical and immune functions. This barrier plays a pivotal role in shielding the body from environmental risk factors such as allergens, pathogens, and pollutants. However, since the 19th century, the escalating threats posed by environmental pollution, global warming, heightened usage of industrial chemical products, and alterations in biodiversity have contributed to a noteworthy surge in allergic disease incidences. Notably, allergic diseases frequently exhibit dysfunction in the epithelial barrier. The proposed epithelial barrier hypothesis introduces a novel avenue for the prevention and treatment of allergic diseases. Despite increased attention to the role of barrier dysfunction in allergic disease development, numerous questions persist regarding the mechanisms underlying the disruption of normal barrier function. Consequently, this review aims to provide a comprehensive overview of the epithelial barrier's role in allergic diseases, encompassing influencing factors, assessment techniques, and repair methodologies. By doing so, it seeks to present innovative strategies for the prevention and treatment of allergic diseases.
Collapse
Affiliation(s)
- Hui-Fei Lu
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Institute of Otolaryngology Shenzhen, Shenzhen, China
| | - Yi-Chi Zhou
- Department of Gastroenterology, Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen, China
| | - Li-Tao Yang
- Clinical Laboratory Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen, China
| | - Qian Zhou
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Xi-Jia Wang
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Institute of Otolaryngology Shenzhen, Shenzhen, China
| | - Shu-Qi Qiu
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Institute of Otolaryngology Shenzhen, Shenzhen, China
| | - Bao-Hui Cheng
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Institute of Otolaryngology Shenzhen, Shenzhen, China
| | - Xian-Hai Zeng
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Institute of Otolaryngology Shenzhen, Shenzhen, China
| |
Collapse
|
7
|
Bácsi A, Ágics B, Pázmándi K, Kocsis B, Sándor V, Bertók L, Bruckner G, Sipka S. Radiation-Detoxified Form of Endotoxin Effectively Activates Th 1 Responses and Attenuates Ragweed-Induced Th 2-Type Airway Inflammation in Mice. Int J Mol Sci 2024; 25:1581. [PMID: 38338861 PMCID: PMC10855154 DOI: 10.3390/ijms25031581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Urbanization with reduced microbial exposure is associated with an increased burden of asthma and atopic symptoms. Conversely, environmental exposure to endotoxins in childhood can protect against the development of allergies. Our study aimed to investigate whether the renaturation of the indoor environment with aerosolized radiation-detoxified lipopolysaccharide (RD-LPS) has a preventative effect against the development of ragweed-induced Th2-type airway inflammation. To explore this, cages of six-week-old BALB/c mice were treated daily with aerosolized native LPS (N-LPS) or RD-LPS. After a 10-week treatment period, mice were sensitized and challenged with ragweed pollen extract, and inflammatory cell infiltration into the airways was observed. As dendritic cells (DCs) play a crucial role in the polarization of T-cell responses, in our in vitro experiments, the effects of N-LPS and RD-LPS were compared on human monocyte-derived DCs (moDCs). Mice in RD-LPS-rich milieu developed significantly less allergic airway inflammation than mice in N-LPS-rich or common environments. The results of our in vitro experiments demonstrate that RD-LPS-exposed moDCs have a higher Th1-polarizing capacity than moDCs exposed to N-LPS. Consequently, we suppose that the aerosolized, non-toxic RD-LPS applied in early life for the renaturation of urban indoors may be suitable for the prevention of Th2-mediated allergies in childhood.
Collapse
Affiliation(s)
- Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.B.); (B.Á.); (K.P.)
| | - Beatrix Ágics
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.B.); (B.Á.); (K.P.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.B.); (B.Á.); (K.P.)
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Pécs, H-7624 Pécs, Hungary;
| | - Viktor Sándor
- Institute of Bioanalysis, Medical School and Szentágothai Research Center, University of Pécs, H-7624 Pécs, Hungary;
| | - Lóránd Bertók
- National Research Directorate for Radiobiology and Radiohygiene, National Public Health Center, H-1221 Budapest, Hungary
| | - Geza Bruckner
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY 40536, USA;
| | - Sándor Sipka
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
8
|
Mijač S, Banić I, Genc AM, Lipej M, Turkalj M. The Effects of Environmental Exposure on Epigenetic Modifications in Allergic Diseases. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:110. [PMID: 38256371 PMCID: PMC10820670 DOI: 10.3390/medicina60010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Allergic diseases are one of the most common chronic conditions and their prevalence is on the rise. Environmental exposure, primarily prenatal and early life influences, affect the risk for the development and specific phenotypes of allergic diseases via epigenetic mechanisms. Exposure to pollutants, microorganisms and parasites, tobacco smoke and certain aspects of diet are known to drive epigenetic changes that are essential for immune regulation (e.g., the shift toward T helper 2-Th2 cell polarization and decrease in regulatory T-cell (Treg) differentiation). DNA methylation and histone modifications can modify immune programming related to either pro-allergic interleukin 4 (IL-4), interleukin 13 (IL-13) or counter-regulatory interferon γ (IFN-γ) production. Differential expression of small non-coding RNAs has also been linked to the risk for allergic diseases and associated with air pollution. Certain exposures and associated epigenetic mechanisms play a role in the susceptibility to allergic conditions and specific clinical manifestations of the disease, while others are thought to have a protective role against the development of allergic diseases, such as maternal and early postnatal microbial diversity, maternal helminth infections and dietary supplementation with polyunsaturated fatty acids and vitamin D. Epigenetic mechanisms are also known to be involved in mediating the response to common treatment in allergic diseases, for example, changes in histone acetylation of proinflammatory genes and in the expression of certain microRNAs are associated with the response to inhaled corticosteroids in asthma. Gaining better insight into the epigenetic regulation of allergic diseases may ultimately lead to significant improvements in the management of these conditions, earlier and more precise diagnostics, optimization of current treatment regimes, and the implementation of novel therapeutic options and prevention strategies in the near future.
Collapse
Affiliation(s)
- Sandra Mijač
- Department of Medical Research, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia; (S.M.); (A.-M.G.)
| | - Ivana Banić
- Department of Medical Research, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia; (S.M.); (A.-M.G.)
- Department of Innovative Diagnostics, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia
| | - Ana-Marija Genc
- Department of Medical Research, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia; (S.M.); (A.-M.G.)
| | - Marcel Lipej
- IT Department, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia;
| | - Mirjana Turkalj
- Department of Pediatric Allergy and Pulmonology, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia;
- Faculty of Medicine, J.J. Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
- Faculty of Medicine, Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| |
Collapse
|
9
|
Senaratna CV, Perera PK, Arulkumaran S, Abeysekara N, Piyumanthi P, Hamilton GS, Nixon GM, Rajakaruna RS, Dharmage SC. Association of helminth infestation with childhood asthma: a nested case-control study. Int J Infect Dis 2023; 128:272-277. [PMID: 36632894 DOI: 10.1016/j.ijid.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES The association between helminthiasis and asthma remains inconclusive but can only be investigated in counties where helminthiasis is transitioning from a high to low burden. We investigated this association using data from a childhood respiratory cohort in Sri Lanka. METHODS A case-control study was nested within a population-based cohort of children aged 6-14 years in Sri Lanka. The stool samples of 190 children with asthma and 190 children without asthma were analyzed to assess the burden of helminth infestation. Logistic regression models were fitted to investigate the association of gastrointestinal helminth species with asthma. RESULTS Helminthiasis in children with and without asthma was 23.3% (n = 44) and 15.3% (n = 23), respectively. Those with asthma were more likely to have helminthiasis (odds ratio 3.7; 95% confidence interval 1.7, 7.7; P = 0.001), particularly with Trichiuris trichura (odds ratio 4.5; 95% confidence interval 1.6, 12.3; P = 0.004). Helminth eggs per gram of feces were not associated with asthma (P >0.05). CONCLUSION Our findings demonstrate a positive association between T. trichura infestation and asthma and point to the need to fully characterize this association to understand the likely immunological mechanism that drives it. This association highlights an important public health intervention in countries where these infestations are still prevalent, affecting 24% of the population worldwide.
Collapse
Affiliation(s)
- Chamara V Senaratna
- Allergy and Lung Health Unit (ALHU), Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia; Non-Communicable Disease Research Centre, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| | - Piyumali K Perera
- Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | | | - Nirupama Abeysekara
- Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka; School of Veterinary Science, University of Queensland, Gatton, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Pramodya Piyumanthi
- Non-Communicable Disease Research Centre, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Garun S Hamilton
- School of Clinical Sciences, Monash University, Clayton, Australia; Monash Lung, Sleep, Allergy and Immunology, Monash Health, Clayton, Australia
| | - Gillian M Nixon
- Department of Paediatrics, Monash University, Clayton, Australia
| | - Rupika S Rajakaruna
- Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit (ALHU), Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
10
|
da Luz Moreira A, de Campos Lobato LF, de Lima Moreira JP, Luiz RR, Elia C, Fiocchi C, de Souza HSP. Geosocial Features and Loss of Biodiversity Underlie Variable Rates of Inflammatory Bowel Disease in a Large Developing Country: A Population-Based Study. Inflamm Bowel Dis 2022; 28:1696-1708. [PMID: 35089325 DOI: 10.1093/ibd/izab346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND The epidemiology of inflammatory bowel disease (IBD) in developing countries may uncover etiopathogenic factors. We investigated IBD prevalence in Brazil by investigating its geographic, spatial, and temporal distribution, and attempted to identify factors associated with its recent increase. METHODS A drug prescription database was queried longitudinally to identify patients and verify population distribution and density, race, urbanicity, sanitation, and Human Development Index. Prevalence was calculated using the number of IBD patients and the population estimated during the same decade. Data were matched to indices using linear regression analyses. RESULTS We identified 162 894 IBD patients, 59% with ulcerative colitis (UC) and 41% with Crohn's disease (CD). The overall prevalence of IBD was 80 per 100 000, with 46 per 100 000 for UC and 36 per 100 000 for CD. Estimated rates adjusted to total population showed that IBD more than triplicated from 2008 to 2017. The distribution of IBD demonstrated a South-to-North gradient that generally followed population apportionment. However, marked regional differences and disease clusters were identified that did not fit with conventionally accepted IBD epidemiological associations, revealing that the rise of IBD was variable. In some areas, loss of biodiversity was associated with high IBD prevalence. CONCLUSIONS When distribution is considered in the context of IBD prevalence, marked regional differences become evident. Despite a background of Westernization, hotspots of IBD are recognized that are not explained by population density, urbanicity, sanitation, or other indices but apparently are explained by biodiversity loss. Thus, the rise of IBD in developing countries is not uniform, but rather is one that varies depending on yet unexplored factors like geoecological conditions.
Collapse
Affiliation(s)
- Andre da Luz Moreira
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil.,Inflammatory Bowel Disease Center, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA
| | | | | | - Ronir Raggio Luiz
- Institute of Collective Health Studies, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celeste Elia
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Claudio Fiocchi
- Department of Immunity & Inflammation, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Heitor Siffert Pereira de Souza
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil.,Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Probiotics in Children with Asthma. CHILDREN 2022; 9:children9070978. [PMID: 35883962 PMCID: PMC9316460 DOI: 10.3390/children9070978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/11/2022]
Abstract
A type-2 immune response usually sustains wheezing and asthma in children. In addition, dysbiosis of digestive and respiratory tracts is detectable in patients with wheezing and asthma. Probiotics may rebalance immune response, repair dysbiosis, and mitigate airway inflammation. As a result, probiotics may prevent asthma and wheezing relapse. There is evidence that some probiotic strains may improve asthma outcomes in children. In this context, the PROPAM study provided evidence that two specific strains significantly prevented asthma exacerbations and wheezing episodes. Therefore, oral probiotics could be used as add-on asthma therapy in managing children with asthma, but the choice should be based on documented evidence.
Collapse
|
12
|
Celebi Sozener Z, Ozdel Ozturk B, Cerci P, Turk M, Gorgulu Akin B, Akdis M, Altiner S, Ozbey U, Ogulur I, Mitamura Y, Yilmaz I, Nadeau K, Ozdemir C, Mungan D, Akdis CA. Epithelial barrier hypothesis: Effect of the external exposome on the microbiome and epithelial barriers in allergic disease. Allergy 2022; 77:1418-1449. [PMID: 35108405 PMCID: PMC9306534 DOI: 10.1111/all.15240] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 12/11/2022]
Abstract
Environmental exposure plays a major role in the development of allergic diseases. The exposome can be classified into internal (e.g., aging, hormones, and metabolic processes), specific external (e.g., chemical pollutants or lifestyle factors), and general external (e.g., broader socioeconomic and psychological contexts) domains, all of which are interrelated. All the factors we are exposed to, from the moment of conception to death, are part of the external exposome. Several hundreds of thousands of new chemicals have been introduced in modern life without our having a full understanding of their toxic health effects and ways to mitigate these effects. Climate change, air pollution, microplastics, tobacco smoke, changes and loss of biodiversity, alterations in dietary habits, and the microbiome due to modernization, urbanization, and globalization constitute our surrounding environment and external exposome. Some of these factors disrupt the epithelial barriers of the skin and mucosal surfaces, and these disruptions have been linked in the last few decades to the increasing prevalence and severity of allergic and inflammatory diseases such as atopic dermatitis, food allergy, allergic rhinitis, chronic rhinosinusitis, eosinophilic esophagitis, and asthma. The epithelial barrier hypothesis provides a mechanistic explanation of how these factors can explain the rapid increase in allergic and autoimmune diseases. In this review, we discuss factors affecting the planet's health in the context of the 'epithelial barrier hypothesis,' including climate change, pollution, changes and loss of biodiversity, and emphasize the changes in the external exposome in the last few decades and their effects on allergic diseases. In addition, the roles of increased dietary fatty acid consumption and environmental substances (detergents, airborne pollen, ozone, microplastics, nanoparticles, and tobacco) affecting epithelial barriers are discussed. Considering the emerging data from recent studies, we suggest stringent governmental regulations, global policy adjustments, patient education, and the establishment of individualized control measures to mitigate environmental threats and decrease allergic disease.
Collapse
Affiliation(s)
| | - Betul Ozdel Ozturk
- School of MedicineDepartment of Chest DiseasesDivision of Immunology and Allergic DiseasesAnkara UniversityAnkaraTurkey
| | - Pamir Cerci
- Clinic of Immunology and Allergic DiseasesEskisehir City HospitalEskisehirTurkey
| | - Murat Turk
- Clinic of Immunology and Allergic DiseasesKayseri City HospitalKayseriTurkey
| | - Begum Gorgulu Akin
- Clinic of Immunology and Allergic DiseasesAnkara City HospitalAnkaraTurkey
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| | - Seda Altiner
- Clinic of Internal Medicine Division of Immunology and Allergic DiseasesKahramanmaras Necip Fazil City HospitalKahramanmarasTurkey
| | - Umus Ozbey
- Department of Nutrition and DietAnkara UniversityAnkaraTurkey
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| | - Insu Yilmaz
- Department of Chest DiseasesDivision of Immunology and Allergic DiseasesErciyes UniversityKayseriTurkey
| | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University School of MedicineDivision of Pulmonary and Critical Care MedicineDepartment of MedicineStanford UniversityStanfordCaliforniaUSA
| | - Cevdet Ozdemir
- Institute of Child HealthDepartment of Pediatric Basic SciencesIstanbul UniversityIstanbulTurkey
- Istanbul Faculty of MedicineDepartment of PediatricsDivision of Pediatric Allergy and ImmunologyIstanbul UniversityIstanbulTurkey
| | - Dilsad Mungan
- School of MedicineDepartment of Chest DiseasesDivision of Immunology and Allergic DiseasesAnkara UniversityAnkaraTurkey
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| |
Collapse
|
13
|
Epigenetic Changes Induced by Maternal Factors during Fetal Life: Implication for Type 1 Diabetes. Genes (Basel) 2021; 12:genes12060887. [PMID: 34201206 PMCID: PMC8227197 DOI: 10.3390/genes12060887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Organ-specific autoimmune diseases, such as type 1 diabetes, are believed to result from T-cell-mediated damage of the target tissue. The immune-mediated tissue injury, in turn, is known to depend on complex interactions between genetic and environmental factors. Nevertheless, the mechanisms whereby environmental factors contribute to the pathogenesis of autoimmune diseases remain elusive and represent a major untapped target to develop novel strategies for disease prevention. Given the impact of the early environment on the developing immune system, epigenetic changes induced by maternal factors during fetal life have been linked to a likelihood of developing an autoimmune disease later in life. In humans, DNA methylation is the epigenetic mechanism most extensively investigated. This review provides an overview of the critical role of DNA methylation changes induced by prenatal maternal conditions contributing to the increased risk of immune-mediated diseases on the offspring, with a particular focus on T1D. A deeper understanding of epigenetic alterations induced by environmental stressors during fetal life may be pivotal for developing targeted prevention strategies of type 1 diabetes by modifying the maternal environment.
Collapse
|
14
|
Ren X, Wang R, Yu XT, Cai B, Guo F. Regulation of histone H3 lysine 9 methylation in inflammation. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1931477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Xin Ren
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Rong Wang
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Xiao-ting Yu
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Bo Cai
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Fei Guo
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|