1
|
Mukhtarova N, Babu A, Coe CL, Kling PJ. Influence of Biological Sex and Congenital Iron Deficiency on Neonatal Cytokine Responses. Nutrients 2024; 16:4203. [PMID: 39683596 DOI: 10.3390/nu16234203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Stimulated cord blood mononuclear cell (CBMC) cytokine responses were previously shown to predict the risk of childhood atopic disease. Iron deficiency (ID) at birth may also program atopic disease. Males are at a higher risk of pediatric atopic disease, but it is not known whether congenital ID impacts CBMC immune responses differentially by sex. METHODS Cord blood (CB) samples were collected from healthy term or near-term neonates after elective cesarean deliveries. A transferrin saturation ≤ 25% defined congenital ID. CBMCs were stimulated with either phytohemagglutinin (PHA) or PHA plus an iron chelator. RESULTS Of the 85 neonates, the 26 neonates with congenital ID exhibited lower plasma tumor necrosis factor-α (TNF-α), as well as higher CBMC TNF-α and IL-8 responses than iron-sufficient neonates (p = 0.017, p = 0.013, and p = 0.007, respectively). Higher CBMC TNF-α responses were seen in both males and females with congenital ID. However, females with congenital ID also had lower plasma IL-6, lower plasma TNF-α, and higher CBMC interleukin (IL)-8 responses. Additionally, iron chelation during culture influenced stimulated CBMC IFN-γ and CBMC TNF-α responses. DISCUSSION Congenital ID may influence stimulated CBMC cytokine responses, but results point to a sex-specific regulation of immune balance at birth. Because males are more prone to infantile ID and more likely to develop early childhood asthma, future studies should further investigate how fetal sex and congenital iron status impacts childhood immune responsiveness to infections and antigenic stimulation from the rearing environment.
Collapse
Affiliation(s)
- Narmin Mukhtarova
- Department of Pediatrics, University of Wisconsin Hospitals and Clinics, Madison, WI 53792, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Anthony Babu
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Christopher L Coe
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Pamela J Kling
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53792, USA
| |
Collapse
|
2
|
Das A, Suar M, Reddy K. Hormones in malaria infection: influence on disease severity, host physiology, and therapeutic opportunities. Biosci Rep 2024; 44:BSR20240482. [PMID: 39492784 PMCID: PMC11581842 DOI: 10.1042/bsr20240482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024] Open
Abstract
Human malaria, caused by Plasmodium parasites, is a fatal disease that disrupts the host's physiological balance and affects the neuroendocrine system. This review explores how malaria influences and is influenced by hormones. Malaria activates the Hypothalamus-Pituitary-Adrenal axis, leading to increased cortisol, aldosterone, and epinephrine. Cortisol, while reducing inflammation, aids parasite survival, whereas epinephrine helps manage hypoglycemia. The Hypothalamus-Pituitary-Gonad and Hypothalamus-Pituitary-Thyroid axes are also impacted, resulting in lower sex and thyroid hormone levels. Malaria disrupts the renin-angiotensin-aldosterone system (RAAS), causing higher angiotensin-II and aldosterone levels, contributing to edema, hyponatremia and hypertension. Malaria-induced anemia is exacerbated by increased hepcidin, which impairs iron absorption, reducing both iron availability for the parasite and red blood cell formation, despite elevated erythropoietin. Hypoglycemia is common due to decreased glucose production and hyperinsulinemia, although some cases show hyperglycemia due to stress hormones and inflammation. Hypocalcemia, and hypophosphatemia are associated with low Vitamin D3 and parathyroid hormone but high calcitonin. Hormones such as DHEA, melatonin, PTH, Vitamin D3, hepcidin, progesterone, and erythropoietin protects against malaria. Furthermore, synthetic analogs, receptor agonists and antagonists or mimics of hormones like DHEA, melatonin, serotonin, PTH, vitamin D3, estrogen, progesterone, angiotensin, and somatostatin are being explored as potential antimalarial treatments or adjunct therapies. Additionally, hormones like leptin and PCT are being studied as probable markers of malaria infection.
Collapse
Affiliation(s)
- Aleena Das
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
- Technology Business Incubator, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
| | - K Sony Reddy
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
| |
Collapse
|
3
|
Liao Q, Tang P, Pan D, Song Y, Lei L, Liang J, Liu B, Lin M, Huang H, Mo M, Huang C, Wei M, Liu S, Huang D, Qiu X. Association of serum per- and polyfluoroalkyl substances and gestational anemia during different trimesters in Zhuang ethnic pregnancy women of Guangxi, China. CHEMOSPHERE 2022; 309:136798. [PMID: 36220436 DOI: 10.1016/j.chemosphere.2022.136798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Gestational anemia is a complication of pregnancy, and a low level of hemoglobin (Hb) has been linked to adverse pregnancy outcomes. Previous studies reported that PFASs were more strongly associated with Hb than red blood cells, indicating that Hb is more susceptible to the effect of PFASs. However, the evidences regarding the effects of per- and polyfluoroalkyl substances (PFASs) on gestational anemia are currently limited. Therefore, it is important to explore the effects of PFASs on anemia in Chinese pregnant women. METHODS A total of 821 pregnant women were recruited between June 2015 and April 2019 in the Guangxi Zhuang Birth Cohort. The concentrations of PFASs were assessed in maternal serum before 12 gestational weeks. To determine both individual and combined associations of PFASs exposure with anemia in the three stages of pregnancy, binary logistic regression, Bayesian kernel machine regression (BKMR), and weighted quantile sum (WQS) regression models were employed. RESULTS In single-pollutant analysis, maternal exposure to perfluorododecanoic acid (PFDoA) and perfluoroheptanoic acid (PFHpA) were associated with anemia in the first trimester, exposure to PFHpA and perfluorobutanesulfonic acid (PFBS) were associated with anemia in the second trimester, and exposure to perfluorodecanoic acid (PFDA) and perfluorononanoic acid (PFNA) were associated with anemia in the third trimester. Notably, perfluoroundecanoic acid (PFUnA) had a nonlinear association with anemia in the third trimester. In multiple-pollutant analysis, a positive association of PFDoA with anemia in the first trimester and a negative association of PFBS with anemia in the second trimester were confirmed by BKMR. Exposure to PFASs mixture was not associated with anemia in all three trimesters. In WQS, there was a significantly negative association between the PFAS mixture and anemia in the second trimester. CONCLUSION Maternal exposure to PFASs is associated with gestational anemia in different trimesters.
Collapse
Affiliation(s)
- Qian Liao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Peng Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dongxiang Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yanye Song
- The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, Guangxi, China
| | - Lei Lei
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Bihu Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Mengrui Lin
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Huishen Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Meile Mo
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chengtuo Huang
- Department of Physical Examination, Guangxi Tiandong Hospital of Traditional Chinese Medicine, Tiandong, 531500, Guangxi, China
| | - Ming Wei
- Department of Obstetrics and Gynecology, Child Hygiene, Maternal and Child Health Care Hospital of Tianyang District, Baise City, 542899, Guangxi, China
| | - Shun Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
4
|
Lu XH, Zhang J, Xiong Q. Suppressive effect erythropoietin on oxidative stress by targeting AMPK/Nox4/ROS pathway in renal ischemia reperfusion injury. Transpl Immunol 2022; 72:101537. [PMID: 35031454 DOI: 10.1016/j.trim.2022.101537] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/09/2022] [Accepted: 01/09/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To explore the effect of erythropoietin (EPO) on the AMP-activated protein kinase (AMPK)/nicotinamide adenine dinucleotide phosphatase oxidase 4 (NOX4) signaling pathway during renal ischemia reperfusion injury (RIRI) in rats. METHODS A rat model of RIRI was established by clamping the left renal pedicle and removing the right kidney. The rats in the sham group did not have their left renal pedicle clamped. Rats with a model of RIRI were randomly divided into RIRI alone (control), erythropoietin treatment (EPO/RIRI), and Compound C treatment (CPC/RIRI) groups. Hematoxylin-eosin (H&E) staining was used to examine pathological kidney damage. Serum creatinine and urea nitrogen levels were measured to evaluate renal function. Western blotting was performed to detect the expression levels of phosphorylated p-AMPK and total AMPK protein in the kidneys. RT-PCR was used to evaluate the mRNA levels of Nox4 and p22 in the kidneys. Oxidative stress-related indices (ROS, CAT, GSH, SOD, and MDA) were also measured. RESULTS EPO treatment improved kidney function by preventing kidney damage induced by the RIRI model. Preventing ischemia/reperfusion injury in the RIRI model was correlated with an increased p-AMPK/AMPK ratio and elevated activity of CAT, GSH, and SOD, which ameliorated the expression of NOX4, p22, ROS, and MDA. Moreover, treatment with CPC (an AMPK inhibitor) reduced the effects of EPO in the RIRI model. CONCLUSION EPO treatment protected rats against RIRI in the RIRI model by alleviating oxidative stress by triggering the AMPK/NOX4/ROS pathway.
Collapse
Affiliation(s)
- Xiang-Heng Lu
- Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Jiong Zhang
- Department of Nephrology, University of Electronic Science and Technology, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Disease, Chengdu 610072, China
| | - Qin Xiong
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|