1
|
Yan L, Li J, Yang Y, Zhang X, Zhang C. Old drug, new use: Recent advances for G-CSF. Cytokine 2024; 184:156759. [PMID: 39293182 DOI: 10.1016/j.cyto.2024.156759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Granulocyte colony-stimulating factor (G-CSF), also known as colony-stimulating factor 3 (CSF3), is a proinflammatory cytokine that primarily stimulates the survival, proliferation, differentiation and function of neutrophil granulocyte progenitor cells and mature neutrophils. Over the past years, G-CSF has mainly been used to cure patients with neutropenia and as a part of chemotherapy to induct the remission for refractory/relapse leukemia. Recent studies showed that C-CSF can been used as condition regimens and as a part of preventive methods after allogeneic transplantation to improve the survival of patients and also has immunoregulation, and has promote or inhibit the proliferation of solid tumors. Therefore, in this review, we firstly describe the structure for G-CSF. Then its functions and mechanism were reviewed including the neutrophil mobilization, differentiation, migration, and inhibiting apoptosis of neutrophils, and its immunoregulation. Finally, the clinical applications were further discussed.
Collapse
Affiliation(s)
- Lun Yan
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China
| | - Jing Li
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China
| | - Yang Yang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China.
| | - Cheng Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China.
| |
Collapse
|
2
|
Fang D, Liu Y, Dou D, Su B. The unique immune evasion mechanisms of the mpox virus and their implication for developing new vaccines and immunotherapies. Virol Sin 2024; 39:709-718. [PMID: 39181538 DOI: 10.1016/j.virs.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024] Open
Abstract
Mpox is an infectious and contagious zoonotic disease caused by the mpox virus (MPXV), which belongs to the genus Orthopoxvirus. Since 2022, MPXV has posed a significant threat to global public health. The emergence of thousands of cases across the Western Hemisphere prompted the World Health Organization to declare an emergency. The extensive coevolutionary history of poxviruses with humans has enabled these viruses to develop sophisticated mechanisms to counter the human immune system. Specifically, MPXV employs unique immune evasion strategies against a wide range of immunological elements, presenting a considerable challenge for treatment, especially following the discontinuation of routine smallpox vaccination among the general population. In this review, we start by discussing the entry of the mpox virus and the onset of early infection, followed by an introduction to the mechanisms by which the mpox virus can evade the innate and adaptive immune responses. Two caspase-1 inhibitory proteins and a PKR escape-related protein have been identified as phylogenomic hubs involved in modulating the immune environment during the MPXV infection. With respect to adaptive immunity, mpox viruses exhibit unique and exceptional T-cell inhibition capabilities, thereby comprehensively remodeling the host immune environment. The viral envelope also poses challenges for the neutralizing effects of antibodies and the complement system. The unique immune evasion mechanisms employed by MPXV make novel multi-epitope and nucleic acid-based vaccines highly promising research directions worth investigating. Finally, we briefly discuss the impact of MPXV infection on immunosuppressed patients and the current status of MPXV vaccine development. This review may provide valuable information for the development of new immunological treatments for mpox.
Collapse
Affiliation(s)
- Dong Fang
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, 100085, China
| | - Yan Liu
- Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Dou Dou
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, 100085, China
| | - Bin Su
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, 100085, China; Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China; Central Laboratory, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
3
|
Yang F, Ren Q, Zu Y, Gui R, Li Z, Wang J, Zhang Y, Yu F, Fang B, Fu Y, Wang Y, Liu Y, Zhang L, Zuo W, Li Y, Lin Q, Zhao H, Wang P, Zhang B, Huang Z, Song Y, Zhou J. Multiple small-dose infusions of G-CSF-mobilized haploidentical lymphocytes after autologous haematopoietic stem cell transplantation for acute myeloid leukaemia. Br J Haematol 2024; 205:645-652. [PMID: 38972835 DOI: 10.1111/bjh.19597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 06/06/2024] [Indexed: 07/09/2024]
Abstract
This retrospective study analysed 106 acute myeloid leukaemia (AML) patients undergoing autologous haematopoietic stem cell transplantation (ASCT) to assess the impact of multiple small-dose infusions of granulocyte-colony-stimulating factor (G-CSF)-mobilized haploidentical lymphocytes as post-ASCT maintenance therapy. Among them, 50 patients received lymphocyte maintenance therapy, 21 received alternative maintenance therapy, and 35 received no maintenance therapy. Patients receiving lymphocyte maintenance therapy demonstrated significantly higher overall survival (OS) and disease-free survival (DFS) compared to those without maintenance therapy, with 4-year OS and DFS rates notably elevated. While there were no significant differences in recurrence rates among the three groups, lymphocyte maintenance therapy showcased particular benefits for intermediate-risk AML patients, yielding significantly higher OS and DFS rates and lower relapse rates compared to alternative maintenance therapy and no maintenance therapy. The study suggests that multiple small-dose infusions of G-CSF-mobilized haploidentical lymphocytes may offer promising outcomes for AML patients after ASCT, particularly for those classified as intermediate-risk. These findings underscore the potential efficacy of lymphocyte maintenance therapy in reducing disease relapse and improving long-term prognosis in this patient population.
Collapse
Affiliation(s)
- Fei Yang
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- Department of Oncology, Anyang People's Hospital, Anyang, China
| | - Quan Ren
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yingling Zu
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Ruirui Gui
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Zhen Li
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Juan Wang
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yanli Zhang
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Fengkuan Yu
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Baijun Fang
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yuewen Fu
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yongliang Wang
- Department of Oncology, Anyang People's Hospital, Anyang, China
| | - Yanyan Liu
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Lina Zhang
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Wenli Zuo
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yufu Li
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Quande Lin
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Huifang Zhao
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Ping Wang
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Binglei Zhang
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Zhenghua Huang
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yongping Song
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian Zhou
- Department of Haematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
4
|
Yu X, Wang L, Niu Z, Zhu L. Controversial role of γδ T cells in colorectal cancer. Am J Cancer Res 2024; 14:1482-1500. [PMID: 38726287 PMCID: PMC11076236 DOI: 10.62347/hwmb1163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/29/2024] [Indexed: 05/12/2024] Open
Abstract
Colorectal cancer (CRC) is the third most frequent type of cancer, and the second leading cause of cancer-related deaths worldwide. Current treatments for patients with CRC do not substantially improve the survival and quality of life of patients with advanced CRC, thus necessitating the development of new treatment strategies. The emergence of immunotherapy has revitalized the field, showing great potential in advanced CRC treatment. Owing to the ability of tumor cells to evade the immune system through major histocompatibility complex shedding and heterogeneous and low antigen spreading, only a few patients respond to immunotherapy. γδ T cells have heterogeneous structures and functions, and their key roles in immune regulation, tumor immunosurveillance, and specific primary immune responses have increasingly been recognized. γδ T cells recognize and kill CRC cells efficiently, thus inhibiting tumor progress through various mechanisms. However, γδ T cells can potentially promote tumor development and metastasis. Thus, given this dual role in prognosis, these cells can act as either a "friend" or "foe" of CRC. In this review, we explore the characteristics of γδ T cells and their functions in CRC, highlighting their application in immunotherapy.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, Cancer Center and Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan UniversityChengdu, Sichuan, The People’s Republic of China
- Department of Gastrointestinal Surgery, Chengdu Second People’s HospitalNo. 10 Qinyun Nan Street, Chengdu, Sichuan, The People’s Republic of China
| | - Leibo Wang
- Department of Surgery, Beijing Jishuitan Hospital Guizhou HospitalGuiyang, Guizhou, The People’s Republic of China
| | - Zhongxi Niu
- Department of Thoracic Surgery, The Third Medical Center of PLA General HospitalBeijing, The People’s Republic of China
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center and Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan UniversityChengdu, Sichuan, The People’s Republic of China
| |
Collapse
|
5
|
Hu Y, Hu Q, Li Y, Lu L, Xiang Z, Yin Z, Kabelitz D, Wu Y. γδ T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduct Target Ther 2023; 8:434. [PMID: 37989744 PMCID: PMC10663641 DOI: 10.1038/s41392-023-01653-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 11/23/2023] Open
Abstract
The intricacy of diseases, shaped by intrinsic processes like immune system exhaustion and hyperactivation, highlights the potential of immune renormalization as a promising strategy in disease treatment. In recent years, our primary focus has centered on γδ T cell-based immunotherapy, particularly pioneering the use of allogeneic Vδ2+ γδ T cells for treating late-stage solid tumors and tuberculosis patients. However, we recognize untapped potential and optimization opportunities to fully harness γδ T cell effector functions in immunotherapy. This review aims to thoroughly examine γδ T cell immunology and its role in diseases. Initially, we elucidate functional differences between γδ T cells and their αβ T cell counterparts. We also provide an overview of major milestones in γδ T cell research since their discovery in 1984. Furthermore, we delve into the intricate biological processes governing their origin, development, fate decisions, and T cell receptor (TCR) rearrangement within the thymus. By examining the mechanisms underlying the anti-tumor functions of distinct γδ T cell subtypes based on γδTCR structure or cytokine release, we emphasize the importance of accurate subtyping in understanding γδ T cell function. We also explore the microenvironment-dependent functions of γδ T cell subsets, particularly in infectious diseases, autoimmune conditions, hematological malignancies, and solid tumors. Finally, we propose future strategies for utilizing allogeneic γδ T cells in tumor immunotherapy. Through this comprehensive review, we aim to provide readers with a holistic understanding of the molecular fundamentals and translational research frontiers of γδ T cells, ultimately contributing to further advancements in harnessing the therapeutic potential of γδ T cells.
Collapse
Affiliation(s)
- Yi Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qinglin Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Zheng Xiang
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany.
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
6
|
Lin F, Sun H, Chen Y, Zhang YY, Liu J, He Y, Zheng FM, Xu ZL, Wang FR, Kong J, Wang ZD, Wan YY, Mo XD, Wang Y, Cheng YF, Zhang XH, Huang XJ, Xu LP. [Impact of SARS-CoV-2 infection on graft composition and early transplant outcomes following allogeneic hematopoietic stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:890-899. [PMID: 38185517 PMCID: PMC10753252 DOI: 10.3760/cma.j.issn.0253-2727.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Indexed: 01/09/2024]
Abstract
Objective: To assess the feasibility of using donors with novel coronavirus disease 2019 (COVID-19) for allogeneic hematopoietic stem cell transplantation (allo-HSCT) when there are no other available donors and allo-HSCT cannot be delayed or discontinued. Methods: Seventy-one patients with malignant hematological diseases undergoing allo-HSCT between December 8, 2022, and January 10, 2023, were included. Of these, 16 received grafts from donors with mild COVID-19 (D-COVID(+) group) and 55 received grafts from donors without COVID-19 (D-COVID(-) group). The graft compositions were compared between the two groups. Engraftment, acute graft-versus-host disease (aGVHD), overall survival (OS), and relapse were also evaluated. Results: There were no serious side effects or adverse events in the D-COVID(+) group. The mononuclear cell dose and CD34(+) cell dose were comparable between the two groups, and no additional apheresis was required. There were no significant differences in the lymphocyte, monocyte, and T-cell subset doses between the two groups. The median natural killer cell dose in the D-COVID(+) group was significantly higher than that in the D-COVID(-) group (0.69×10(8)/kg vs. 0.53×10(8)/kg, P=0.031). The median follow-up time was 72 (33-104) days. All patients achieved primary engraftment. The 60-day platelet engraftment rates in the D-COVID(+) and D-COVID(-) groups were 100% and (96.4±0.2) %, respectively (P=0.568). There were no significant differences in neutrophil (P=0.309) and platelet (P=0.544) engraftment times. The cumulative incidence of grade 2-4 aGVHD was (37.5±1.6) % vs. (16.4±0.3) % (P=0.062), and of grade 3-4 aGVHD was 25.0% ±1.3% vs. 9.1% ±0.2% (P=0.095) in the D-COVID(+) and D-COVID(-) groups, respectively. The probabilities of 60-day OS were 100% and 98.1% ±1.8% (P=0.522) in the D-COVID(+) and D-COVID(-) groups, respectively. There was no relapse of primary disease during the study period. Conclusion: When allo-HSCT cannot be delayed or discontinued and no other donor is available, a donor with mild COVID-19 should be considered if tolerable. Larger sample sizes and longer follow-up periods are required to validate these results.
Collapse
Affiliation(s)
- F Lin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation for the Treatment of Hematological Diseases, Beijing 100044, China
| | - H Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation for the Treatment of Hematological Diseases, Beijing 100044, China
| | - Y Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation for the Treatment of Hematological Diseases, Beijing 100044, China
| | - Y Y Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation for the Treatment of Hematological Diseases, Beijing 100044, China
| | - J Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation for the Treatment of Hematological Diseases, Beijing 100044, China
| | - Y He
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation for the Treatment of Hematological Diseases, Beijing 100044, China
| | - F M Zheng
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation for the Treatment of Hematological Diseases, Beijing 100044, China
| | - Z L Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation for the Treatment of Hematological Diseases, Beijing 100044, China
| | - F R Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation for the Treatment of Hematological Diseases, Beijing 100044, China
| | - J Kong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation for the Treatment of Hematological Diseases, Beijing 100044, China
| | - Z D Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation for the Treatment of Hematological Diseases, Beijing 100044, China
| | - Y Y Wan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation for the Treatment of Hematological Diseases, Beijing 100044, China
| | - X D Mo
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation for the Treatment of Hematological Diseases, Beijing 100044, China
| | - Y Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation for the Treatment of Hematological Diseases, Beijing 100044, China
| | - Y F Cheng
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation for the Treatment of Hematological Diseases, Beijing 100044, China
| | - X H Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation for the Treatment of Hematological Diseases, Beijing 100044, China
| | - X J Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation for the Treatment of Hematological Diseases, Beijing 100044, China
| | - L P Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation for the Treatment of Hematological Diseases, Beijing 100044, China
| |
Collapse
|
7
|
Hou MH, Lee CY, Ho CY, Yu TY, Hung GY, Huang FL, Chiou TJ, Liu CY, Yen HJ. Donor lymphocyte infusion for prophylaxis and treatment of relapse in pediatric hematologic malignancies after allogeneic hematopoietic stem cell transplant. J Chin Med Assoc 2023; 86:991-1000. [PMID: 37697465 DOI: 10.1097/jcma.0000000000000992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Donor lymphocyte infusion (DLI) is effective for managing patients with hematologic malignancies after allogeneic hematopoietic stem cell transplant (HSCT). However, few studies have explored its optimal use in pediatric populations. Herein, we report our single-center experiences of DLI and factors for predicting its outcomes. METHODS This retrospective study included pediatric patients who had received DLI (between June 1998 and December 2022) after allogeneic HSCT. Data regarding patient characteristics, preemptive DLI disease status, and DLI characteristics were collected. The primary outcomes were overall survival (OS), event-free survival (EFS), and graft-vs-host-disease (GVHD) development. RESULTS The study cohort comprised 17 patients with acute leukemia, 3 with chronic leukemia, and 3 with lymphoma. Prophylactic, preemptive, and therapeutic DLI were used in seven, seven, and nine patients, respectively. Patients' median age and DLI dose were 9 years and 4.6 × 10 7 CD3 + cells/kg, respectively. The 5-year OS, EFS, and nonrelapse mortality were 43.5%, 38.3%, and 13.3%, respectively. Approximately 39% of the patients developed grade III or IV acute GVHD, whereas moderate/severe chronic GVHD (cGVHD) occurred in 30% of the evaluable patients. Patients' disease status before HSCT ( p = 0.009) and DLI ( p = 0.018) were the key factors influencing EFS. The implementation of a dose escalation schedule was associated with a marginal reduction in the risk of moderate/severe cGVHD ( p = 0.051). A DLI dose of ≥5 × 10 7 CD3 + cells/kg was significantly associated with a high moderate to severe cGVHD risk ( p = 0.002) and reduced OS ( p = 0.089). CONCLUSION Patients' disease status before HSCT and DLI may help predict EFS. The use of DLI as a prophylactic and preemptive modality leads to a favorable 5-year EFS. To safely deliver DLI in children, clinicians must maintain vigilant monitoring and prepare patients in advance when escalating the dose to ≥5 × 10 7 CD3 + cells/kg.
Collapse
Affiliation(s)
- Ming-Hsin Hou
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chih-Ying Lee
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, ROC
| | - Cheng-Yin Ho
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Ting-Yen Yu
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City, Taiwan, ROC
| | - Giun-Yi Hung
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, ROC
| | - Fang-Liang Huang
- Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| | - Tzeon-Jye Chiou
- Cancer Center, Taipei Municipal Wanfang Hospital, Taipei Medical University, Taipei, Taiwan, ROC
- Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chun-Yu Liu
- Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Hsiu-Ju Yen
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, ROC
| |
Collapse
|
8
|
Kirkham AM, Bailey AJM, Masurekar A, Shorr R, Bredeson C, Sabloff M, Allan DS. Can GCSF-stimulated donor lymphocyte infusions improve outcomes for relapsed disease following allogeneic hematopoietic cell transplantation? A systematic review and meta-analysis. Leuk Lymphoma 2022; 63:3276-3287. [PMID: 36098248 DOI: 10.1080/10428194.2022.2118530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Donor lymphocyte infusions (DLI) can produce graft-versus tumor effects to treat relapse after allogeneic hematopoietic cell transplantation, however, durable responses remain uncommon. A systematic review and meta-analysis are needed to clarify whether DLI collected after stimulation with granulocyte colony-stimulating factor (GCSF; G-DLI) can improve clinical outcomes. Sixteen studies (4 controlled) involving 585 patients were identified in a systematic search up to 17 September 2020. A meta-analysis demonstrated no significant difference in the risk of all-cause mortality (RR: 0.94, 95% CI 0.52-1.68, p = 0.82; n = 3 studies) or relapse-related mortality (RR: 0.72, 0.44-1.18, p = 0.19; n = 3 studies) between G-DLI and conventional DLI (C-DLI) groups. G-DLI products had similar mean CD3+ cells compared to C-DLI products, but median CD34+ cells/kg were increased. No improvement in disease progression, complete response rates, or risk of developing GVHD was observed with G-DLI, however, greater non-relapse mortality was observed compared to C-DLI. Alternative approaches to enhancing graft-versus-tumor effects are needed.
Collapse
Affiliation(s)
- Aidan M Kirkham
- Clinical Epidemiology & Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Canada.,Faculty of Medicine, Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Canada
| | - Adrian J M Bailey
- Clinical Epidemiology & Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Ashish Masurekar
- Clinical Epidemiology & Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Canada.,Transplant and Cellular Therapy Division, The Ottawa Hospital, Ottawa, Canada.,Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Risa Shorr
- Medical Information and Learning Services Division, The Ottawa Hospital, Ottawa, Canada
| | - Christopher Bredeson
- Clinical Epidemiology & Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Transplant and Cellular Therapy Division, The Ottawa Hospital, Ottawa, Canada.,Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Mitchell Sabloff
- Clinical Epidemiology & Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Department of Medicine, The Ottawa Hospital, Ottawa, Canada.,Leukemia Program, The Ottawa Hospital, Ottawa, Canada
| | - David S Allan
- Clinical Epidemiology & Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Canada.,Faculty of Medicine, Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Transplant and Cellular Therapy Division, The Ottawa Hospital, Ottawa, Canada.,Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| |
Collapse
|
9
|
Gaballa A, Arruda LCM, Uhlin M. Gamma delta T-cell reconstitution after allogeneic HCT: A platform for cell therapy. Front Immunol 2022; 13:971709. [PMID: 36105821 PMCID: PMC9465162 DOI: 10.3389/fimmu.2022.971709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Allogeneic Hematopoietic stem cell transplantation (allo-HCT) is a curative platform for several hematological diseases. Despite its therapeutic benefits, the profound immunodeficiency associated with the transplant procedure remains a major challenge that renders patients vulnerable to several complications. Today, It is well established that a rapid and efficient immune reconstitution, particularly of the T cell compartment is pivotal to both a short-term and a long-term favorable outcome. T cells expressing a TCR heterodimer comprised of gamma (γ) and delta (δ) chains have received particular attention in allo-HCT setting, as a large body of evidence has indicated that γδ T cells can exert favorable potent anti-tumor effects without inducing severe graft versus host disease (GVHD). However, despite their potential role in allo-HCT, studies investigating their detailed reconstitution in patients after allo-HCT are scarce. In this review we aim to shed lights on the current literature and understanding of γδ T cell reconstitution kinetics as well as the different transplant-related factors that may influence γδ reconstitution in allo-HCT. Furthermore, we will present data from available reports supporting a role of γδ cells and their subsets in patient outcome. Finally, we discuss the current and future strategies to develop γδ cell-based therapies to exploit the full immunotherapeutic potential of γδ cells in HCT setting.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Chemistry, National Liver Institute, Menoufia University, Menoufia, Egypt
| | - Lucas C. M. Arruda
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Michael Uhlin
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
10
|
Gao MG, Zhao XS. Mining the multifunction of mucosal-associated invariant T cells in hematological malignancies and transplantation immunity: A promising hexagon soldier in immunomodulatory. Front Immunol 2022; 13:931764. [PMID: 36052080 PMCID: PMC9427077 DOI: 10.3389/fimmu.2022.931764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/25/2022] [Indexed: 12/05/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are evolutionarily conserved innate-like T cells capable of recognizing bacterial and fungal ligands derived from vitamin B biosynthesis. Under different stimulation conditions, MAIT cells can display different immune effector phenotypes, exerting immune regulation and anti-/protumor responses. Based on basic biological characteristics, including the enrichment of mucosal tissue, the secretion of mucosal repair protective factors (interleukin-17, etc.), and the activation of riboflavin metabolites by intestinal flora, MAIT cells may play an important role in the immune regulation effect of mucosal lesions or inflammation. At the same time, activated MAIT cells secrete granzyme B, perforin, interferon γ, and other toxic cytokines, which can mediate anti-tumor effects. In addition, since a variety of hematological malignancies express the targets of MAIT cell-specific effector molecules, MAIT cells are also a potentially attractive target for cell therapy or immunotherapy for hematological malignancies. In this review, we will provide an overview of MAIT research related to blood system diseases and discuss the possible immunomodulatory or anti-tumor roles that unique biological characteristics or effector phenotypes may play in hematological diseases.
Collapse
Affiliation(s)
- Meng-Ge Gao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Su Zhao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- *Correspondence: Xiao-Su Zhao,
| |
Collapse
|
11
|
Perturbed NK Cell Homeostasis Associated with Disease Severity in Chronic Neutropenia. Blood 2021; 139:704-716. [PMID: 34699594 DOI: 10.1182/blood.2021013233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/24/2021] [Indexed: 11/20/2022] Open
Abstract
Neutrophils have been suggested to play a critical role in terminal differentiation of NK cells. Whether this is a direct effect or a consequence of global immune changes with effects on NK cell homeostasis remains unknown. Here, we used high-resolution flow- and mass cytometry to examine NK cell repertoires in 64 patients with neutropenia and 27 healthy age- and gender-matched donors. A subgroup of patients with chronic neutropenia showed severely disrupted NK cell homeostasis manifested as increased frequencies of CD56bright NK cells and a lack of mature CD56dim NK cells. These immature NK cell repertoires were characterized by expression of proliferation/exhaustion markers Ki-67, Tim-3 and TIGIT and displayed blunted tumor target cell responses. Systems-level immune mapping revealed that the changes in immunophenotypes were confined to NK cells, leaving T cell differentiation intact. RNA sequencing of NK cells from these patients showed upregulation of a network of genes, including TNFSF9, CENPF, MKI67 and TOP2A, associated with apoptosis and the cell cycle, different from conventional CD56bright signatures. Profiling of 249 plasma proteins showed a coordinated enrichment of pathways related to apoptosis and cell turnover, which correlated with immature NK cell repertoires. Notably, most of these patients exhibited severe-grade neutropenia, suggesting that the profoundly altered NK cell homeostasis was connected to the severity of their underlying etiology. Hence, although our data suggests that neutrophils are dispensable for NK cell development and differentiation, some patients displayed a specific gap in the NK repertoire, associated with poor cytotoxic function and more severe disease manifestations.
Collapse
|