1
|
Herreros-Cabello A, Del Moral-Salmoral J, Morato E, Marina A, Barrocal B, Fresno M, Gironès N. Quantitative Proteomic Analysis of Macrophages Infected with Trypanosoma cruzi Reveals Different Responses Dependent on the SLAMF1 Receptor and the Parasite Strain. Int J Mol Sci 2024; 25:7493. [PMID: 39000601 PMCID: PMC11242706 DOI: 10.3390/ijms25137493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Chagas disease is caused by the intracellular protozoan parasite Trypanosoma cruzi. This disease affects mainly rural areas in Central and South America, where the insect vector is endemic. However, this disease has become a world health problem since migration has spread it to other continents. It is a complex disease with many reservoirs and vectors and high genetic variability. One of the host proteins involved in the pathogenesis is SLAMF1. This immune receptor acts during the infection of macrophages controlling parasite replication and thus affecting survival in mice but in a parasite strain-dependent manner. Therefore, we studied the role of SLAMF1 by quantitative proteomics in a macrophage in vitro infection and the different responses between Y and VFRA strains of Trypanosoma cruzi. We detected different significant up- or downregulated proteins involved in immune regulation processes, which are SLAMF1 and/or strain-dependent. Furthermore, independently of SLAMF1, this parasite induces different responses in macrophages to counteract the infection and kill the parasite, such as type I and II IFN responses, NLRP3 inflammasome activation, IL-18 production, TLR7 and TLR9 activation specifically with the Y strain, and IL-11 signaling specifically with the VFRA strain. These results have opened new research fields to elucidate the concrete role of SLAMF1 and discover new potential therapeutic approaches for Chagas disease.
Collapse
Affiliation(s)
- Alfonso Herreros-Cabello
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
| | - Javier Del Moral-Salmoral
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
| | - Esperanza Morato
- Unidad de Proteómica, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| | - Anabel Marina
- Unidad de Proteómica, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
- Unidad de Técnicas Bioanalíticas (BAT), Instituto de Investigación de Ciencias de la Alimentación (CIAL), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
| | - Beatriz Barrocal
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
| | - Manuel Fresno
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, Universidad Autónoma de Madrid (IUBM-UAM), 28049 Madrid, Spain
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, 28006 Madrid, Spain
| | - Núria Gironès
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, Universidad Autónoma de Madrid (IUBM-UAM), 28049 Madrid, Spain
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, 28006 Madrid, Spain
| |
Collapse
|
2
|
Durães-Oliveira J, Palma-Marques J, Moreno C, Rodrigues A, Monteiro M, Alexandre-Pires G, da Fonseca IP, Santos-Gomes G. Chagas Disease: A Silent Threat for Dogs and Humans. Int J Mol Sci 2024; 25:3840. [PMID: 38612650 PMCID: PMC11011309 DOI: 10.3390/ijms25073840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Chagas disease (CD) is a vector-borne Neglected Zoonotic Disease (NZD) caused by a flagellate protozoan, Trypanosoma cruzi, that affects various mammalian species across America, including humans and domestic animals. However, due to an increase in population movements and new routes of transmission, T. cruzi infection is presently considered a worldwide health concern, no longer restricted to endemic countries. Dogs play a major role in the domestic cycle by acting very efficiently as reservoirs and allowing the perpetuation of parasite transmission in endemic areas. Despite the significant progress made in recent years, still there is no vaccine against human and animal disease, there are few drugs available for the treatment of human CD, and there is no standard protocol for the treatment of canine CD. In this review, we highlight human and canine Chagas Disease in its different dimensions and interconnections. Dogs, which are considered to be the most important peridomestic reservoir and sentinel for the transmission of T. cruzi infection in a community, develop CD that is clinically similar to human CD. Therefore, an integrative approach, based on the One Health concept, bringing together the advances in genomics, immunology, and epidemiology can lead to the effective development of vaccines, new treatments, and innovative control strategies to tackle CD.
Collapse
Affiliation(s)
- João Durães-Oliveira
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| | - Joana Palma-Marques
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| | - Cláudia Moreno
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| | - Armanda Rodrigues
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| | - Marta Monteiro
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
- Centre for Interdisciplinary Research in Animal Health, CIISA, Faculty of Veterinary Medicine, FMV, University of Lisbon, ULisboa, 1649-004 Lisbon, Portugal; (G.A.-P.); (I.P.d.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Graça Alexandre-Pires
- Centre for Interdisciplinary Research in Animal Health, CIISA, Faculty of Veterinary Medicine, FMV, University of Lisbon, ULisboa, 1649-004 Lisbon, Portugal; (G.A.-P.); (I.P.d.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Isabel Pereira da Fonseca
- Centre for Interdisciplinary Research in Animal Health, CIISA, Faculty of Veterinary Medicine, FMV, University of Lisbon, ULisboa, 1649-004 Lisbon, Portugal; (G.A.-P.); (I.P.d.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Gabriela Santos-Gomes
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| |
Collapse
|
3
|
Ferreira AZL, de Araújo CN, Cardoso ICC, de Souza Mangabeira KS, Rocha AP, Charneau S, Santana JM, Motta FN, Bastos IMD. Metacyclogenesis as the Starting Point of Chagas Disease. Int J Mol Sci 2023; 25:117. [PMID: 38203289 PMCID: PMC10778605 DOI: 10.3390/ijms25010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 01/12/2024] Open
Abstract
Chagas disease is a neglected infectious disease caused by the protozoan Trypanosoma cruzi, primarily transmitted by triatomine vectors, and it threatens approximately seventy-five million people worldwide. This parasite undergoes a complex life cycle, transitioning between hosts and shifting from extracellular to intracellular stages. To ensure its survival in these diverse environments, T. cruzi undergoes extreme morphological and molecular changes. The metacyclic trypomastigote (MT) form, which arises from the metacyclogenesis (MTG) process in the triatomine hindgut, serves as a crucial link between the insect and human hosts and can be considered the starting point of Chagas disease. This review provides an overview of the current knowledge regarding the parasite's life cycle, molecular pathways, and mechanisms involved in metabolic and morphological adaptations during MTG, enabling the MT to evade the immune system and successfully infect human cells.
Collapse
Affiliation(s)
| | - Carla Nunes de Araújo
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
- Faculty of Ceilândia, University of Brasilia, Brasilia 70910-900, Brazil
| | - Isabela Cunha Costa Cardoso
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | | | - Amanda Pereira Rocha
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Sébastien Charneau
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Jaime Martins Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Flávia Nader Motta
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
- Faculty of Ceilândia, University of Brasilia, Brasilia 70910-900, Brazil
| | | |
Collapse
|
4
|
Wu J, Cao J, Fan Y, Li C, Hu X. Comprehensive analysis of miRNA-mRNA regulatory network and potential drugs in chronic chagasic cardiomyopathy across human and mouse. BMC Med Genomics 2021; 14:283. [PMID: 34844599 PMCID: PMC8628461 DOI: 10.1186/s12920-021-01134-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
Background Chronic chagasic cardiomyopathy (CCC) is the leading cause of heart failure in Latin America and often causes severe inflammation and fibrosis in the heart. Studies on myocardial function and its molecular mechanisms in patients with Chronic chagasic cardiomyopathy are very limited. In order to understand the development and progression of Chronic chagasic cardiomyopathy and find targets for its diagnosis and treatment, the field needs to better understand the exact molecular mechanisms involved in these processes. Methods The mRNA microarray datasets GSE84796 (human) and GSE24088 (mouse) were obtained from the Gene Expression Omnibus (GEO) database. Homologous genes between the two species were identified using the online database mining tool Biomart, followed by differential expression analysis, gene enrichment analysis and protein–protein interaction (PPI) network construction. Cytohubba plug-in of Cytoscape software was used to identify Hub gene, and miRNet was used to construct the corresponding miRNA–mRNA regulatory network. miRNA-related databases: miRDB, Targetscan and miRWalk were used to further evaluate miRNAs in the miRNA–mRNA network. Furthermore, Comparative Toxicogenomics Database (CTD) and L1000 Platform were used to identify hub gene-related drugs. Results A total of 86 homologous genes were significantly differentially expressed in the two datasets, including 73 genes with high expression and 13 genes with low expression. These differentially expressed genes were mainly enriched in the terms of innate immune response, signal transduction, protein binding, Natural killer cell mediated cytotoxicity, Tuberculosis, Chemokine signaling pathway, Chagas disease and PI3K−Akt signaling pathway. The top 10 hub genes LAPTM5, LCP1, HCLS1, CORO1A, CD48, TYROBP, RAC2, ARHGDIB, FERMT3 and NCF4 were identified from the PPI network. A total of 122 miRNAs were identified to target these hub genes and 30 of them regulated two or more hub genes at the same time. miRDB, Targetscan and miRWalk were further analyzed and screened out hsa-miR-34c-5p, hsa-miR-34a-5p and hsa-miR-16-5p as miRNAs regulating these hub genes. Finally, Progesterone, Flutamide, Nimesulide, Methotrexate and Temozolomide were identified to target these hub genes and might be targeted therapies for Chronic chagasic cardiomyopathy. Conclusions In this study, the potential genes associated with Chronic chagasic cardiomyopathy are identified and a miRNA–mRNA regulatory network is constructed. This study explores the molecular mechanisms of Chronic chagasic cardiomyopathy and provides important clues for finding new therapeutic targets. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-021-01134-3.
Collapse
Affiliation(s)
- Jiahe Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Jianlei Cao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China. .,Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China.
| | - Yongzhen Fan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Chenze Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Xiaorong Hu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China. .,Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Zou Y, Zhang J, Zhang L, Yan X. Interferon-induced protein 16 expression in colorectal cancer and its correlation with proliferation and immune signature markers. Oncol Lett 2021; 22:687. [PMID: 34434286 PMCID: PMC8335744 DOI: 10.3892/ol.2021.12948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
Interferon-induced protein 16 (IFI16) is important for innate immune recognition of foreign/damaged DNA. Abnormal IFI16 expression is closely related to the occurrence of multiple malignant tumours, but its expression pattern in colorectal cancer (CRC) remains unclear. The present study aimed to investigated IFI16 expression and association with cell proliferation in CRC tissues and adjacent normal tissues. A multiplex immunofluorescence panel of antibodies against IFI16, Ki-67 and phosphorylated (p)-ERK1/2 was applied to assess a tissue microarray (TMA). The TMA included 77 CRC samples and 74 normal adjacent tissue samples which were collected from The First People's Hospital of Yunnan Province (Kunming, China) (3 paracancerous tissues were lost because of repeated cutting). Immunohistochemistry was used to detect CD8+ tumour-infiltrating lymphocyte (TIL) abundance and programmed death-ligand 1 (PD-L1) expression in cancer tissues. The present study demonstrated that IFI16 localized to the nucleus of CRC cells. Although IFI16 was weakly expressed in normal mucosal epithelial cells, absent to strong expression was detectable in different patients with CRC. Typically, IFI16 was not co-localized with Ki-67 within CRC cells. The multiplex immunofluorescence data demonstrated that the proportion of IFI16-/Ki-67+ cells from CRC tissues was 57.13%; however, that of IFI16+/Ki-67+ cells was 1.50%. The IFI16-/Ki-67+ phenotype was significantly positively associated with the tumor-node-metastasis stage and was marginally significantly correlated with lymph node metastasis. p-ERK1/2 protein was primarily localized to the cytoplasm and cell membrane of CRC cells and sometimes to the nucleus. Although, IFI16 demonstrated a strong correlation with p-ERK1/2, IFI16 did not co-localize with p-ERK1/2 and the proportion of IFI16 and p-ERK1/2 double-negative CRC cells was 84.95%. IFI16 expression displayed no significant association with CD8+ TILs or PD-L1. However, a strong positive correlation between CD8+ TILs and PD-L1 was observed. High CD8+ TIL infiltration in CRC tissue was associated with lower lymph node metastasis and tumor-node-metastasis stage. In summary, the results of the present study provided a novel insight for the role of IFI16 in CRC occurrence via the regulation of cancer cell proliferation.
Collapse
Affiliation(s)
- Yunlian Zou
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Jinping Zhang
- Institute of Medical Sciences, Yunnan Blood Disease Clinical Medical Center, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Lichen Zhang
- Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Xinmin Yan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|