1
|
Gerdol M, Greco S, Marino R, Locascio A, Plateroti M, Sirakov M. Conserved Signaling Pathways in the Ciona robusta Gut. Int J Mol Sci 2024; 25:7846. [PMID: 39063090 PMCID: PMC11277035 DOI: 10.3390/ijms25147846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/04/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
The urochordate Ciona robusta exhibits numerous functional and morphogenetic traits that are shared with vertebrate models. While prior investigations have identified several analogies between the gastrointestinal tract (i.e., gut) of Ciona and mice, the molecular mechanisms responsible for these similarities remain poorly understood. This study seeks to address this knowledge gap by investigating the transcriptional landscape of the adult stage gut. Through comparative genomics analyses, we identified several evolutionarily conserved components of signaling pathways of pivotal importance for gut development (such as WNT, Notch, and TGFβ-BMP) and further evaluated their expression in three distinct sections of the gastrointestinal tract by RNA-seq. Despite the presence of lineage-specific gene gains, losses, and often unclear orthology relationships, the investigated pathways were characterized by well-conserved molecular machinery, with most components being expressed at significant levels throughout the entire intestinal tract of C. robusta. We also showed significant differences in the transcriptional landscape of the stomach and intestinal tract, which were much less pronounced between the proximal and distal portions of the intestine. This study confirms that C. robusta is a reliable model system for comparative studies, supporting the use of ascidians as a model to study gut physiology.
Collapse
Affiliation(s)
- Marco Gerdol
- Department of Life Sciences, Università degli Studi di Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy; (M.G.); (S.G.)
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (R.M.); (A.L.)
| | - Samuele Greco
- Department of Life Sciences, Università degli Studi di Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy; (M.G.); (S.G.)
| | - Rita Marino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (R.M.); (A.L.)
| | - Annamaria Locascio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (R.M.); (A.L.)
| | - Michelina Plateroti
- Institute of Genetics and Molecular and Cellular Biology, CNRS UMR7104–INSERM U1258–Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Maria Sirakov
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (R.M.); (A.L.)
| |
Collapse
|
2
|
Dishaw LJ, Litman GW, Liberti A. Tethering of soluble immune effectors to mucin and chitin reflects a convergent and dynamic role in gut immunity. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230078. [PMID: 38497268 PMCID: PMC10945408 DOI: 10.1098/rstb.2023.0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/04/2023] [Indexed: 03/19/2024] Open
Abstract
The immune system employs soluble effectors to shape luminal spaces. Antibodies are soluble molecules that effect immunological responses, including neutralization, opsonization, antibody-dependent cytotoxicity and complement activation. These molecules are comprised of immunoglobulin (Ig) domains. The N-terminal Ig domains recognize antigen, and the C-terminal domains facilitate their elimination through phagocytosis (opsonization). A less-recognized function mediated by the C-terminal Ig domains of the IgG class of antibodies (Fc region) involves the formation of multiple low-affinity bonds with the mucus matrix. This association anchors the antibody molecule to the matrix to entrap potential pathogens. Even though invertebrates are not known to have antibodies, protochordates have a class of secreted molecules containing Ig domains that can bind bacteria and potentially serve a similar purpose. The VCBPs (V region-containing chitin-binding proteins) possess a C-terminal chitin-binding domain that helps tether them to chitin-rich mucus gels, mimicking the IgG-mediated Fc trapping of microbes in mucus. The broad functional similarity of these structurally divergent, Ig-containing, secreted effectors makes a case for a unique form of convergent evolution within chordates. This opinion essay highlights emerging evidence that divergent secreted immune effectors with Ig-like domains evolved to manage immune recognition at mucosal surfaces in strikingly similar ways. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- L. J. Dishaw
- Morsani College of Medicine, Department of Pediatrics, University of South Florida, Children's Research Institute, St. Petersburg, FL 33701, USA
| | - G. W. Litman
- Morsani College of Medicine, Department of Pediatrics, University of South Florida, Children's Research Institute, St. Petersburg, FL 33701, USA
| | - A. Liberti
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, 80122 Naples, Italy
| |
Collapse
|
3
|
Matsubara S, Iguchi R, Ogasawara M, Nakamura H, Kataoka TR, Shiraishi A, Osugi T, Kawada T, Satake H. A Novel Hemocyte-Derived Peptide and Its Possible Roles in Immune Response of Ciona intestinalis Type A. Int J Mol Sci 2024; 25:1979. [PMID: 38396656 PMCID: PMC10888236 DOI: 10.3390/ijms25041979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
A wide variety of bioactive peptides have been identified in the central nervous system and several peripheral tissues in the ascidian Ciona intestinalis type A (Ciona robusta). However, hemocyte endocrine peptides have yet to be explored. Here, we report a novel 14-amino-acid peptide, CiEMa, that is predominant in the granular hemocytes and unilocular refractile granulocytes of Ciona. RNA-seq and qRT-PCR revealed the high CiEma expression in the adult pharynx and stomach. Immunohistochemistry further revealed the highly concentrated CiEMa in the hemolymph of the pharynx and epithelial cells of the stomach, suggesting biological roles in the immune response. Notably, bacterial lipopolysaccharide stimulation of isolated hemocytes for 1-4 h resulted in 1.9- to 2.4-fold increased CiEMa secretion. Furthermore, CiEMa-stimulated pharynx exhibited mRNA upregulation of the growth factor (Fgf3/7/10/22), vanadium binding proteins (CiVanabin1 and CiVanabin3), and forkhead and homeobox transcription factors (Foxl2, Hox3, and Dbx) but not antimicrobial peptides (CrPap-a and CrMam-a) or immune-related genes (Tgfbtun3, Tnfa, and Il17-2). Collectively, these results suggest that CiEMa plays roles in signal transduction involving tissue development or repair in the immune response, rather than in the direct regulation of immune response genes. The present study identified a novel Ciona hemocyte peptide, CiEMa, which paves the way for research on the biological roles of hemocyte peptides in chordates.
Collapse
Affiliation(s)
- Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun 619-0284, Kyoto, Japan (H.S.)
| | - Rin Iguchi
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku 263-8522, Chiba, Japan
| | - Michio Ogasawara
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku 263-8522, Chiba, Japan
| | - Hiroya Nakamura
- Department of Pathology, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun 028-3695, Iwate, Japan (T.R.K.)
| | - Tatsuki R. Kataoka
- Department of Pathology, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun 028-3695, Iwate, Japan (T.R.K.)
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun 619-0284, Kyoto, Japan (H.S.)
| | - Tomohiro Osugi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun 619-0284, Kyoto, Japan (H.S.)
| | - Tsuyoshi Kawada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun 619-0284, Kyoto, Japan (H.S.)
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun 619-0284, Kyoto, Japan (H.S.)
| |
Collapse
|
4
|
Annona G, Liberti A, Pollastro C, Spagnuolo A, Sordino P, De Luca P. Reaping the benefits of liquid handlers for high-throughput gene expression profiling in a marine model invertebrate. BMC Biotechnol 2024; 24:4. [PMID: 38243234 PMCID: PMC10799371 DOI: 10.1186/s12896-024-00831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Modern high-throughput technologies enable the processing of a large number of samples simultaneously, while also providing rapid and accurate procedures. In recent years, automated liquid handling workstations have emerged as an established technology for reproducible sample preparation. They offer flexibility, making them suitable for an expanding range of applications. Commonly, such approaches are well-developed for experimental procedures primarily designed for cell-line processing and xenobiotics testing. Conversely, little attention is focused on the application of automated liquid handlers in the analysis of whole organisms, which often involves time-consuming laboratory procedures. RESULTS Here, we present a fully automated workflow for all steps, from RNA extraction to real-time PCR processing, for gene expression quantification in the ascidian marine model Ciona robusta. For procedure validation, we compared the results obtained with the liquid handler with those of the classical manual procedure. The outcome revealed comparable results, demonstrating a remarkable time saving particularly in the initial steps of sample processing. CONCLUSIONS This work expands the possible application fields of this technology to whole-body organisms, mitigating issues that can arise from manual procedures. By minimizing errors, avoiding cross-contamination, decreasing hands-on time and streamlining the procedure, it could be employed for large-scale screening investigations.
Collapse
Affiliation(s)
- Giovanni Annona
- Research Infrastructures for Marine Biological Resources (RIMAR), Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - Assunta Liberti
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - Carla Pollastro
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
- TIGEM - Telethon Institute of Genetics and Medicine, 80078, Naples, Italy
| | - Antonietta Spagnuolo
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paolo Sordino
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Messina, Italy
| | - Pasquale De Luca
- Research Infrastructures for Marine Biological Resources (RIMAR), Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
5
|
Galià-Camps C, Baños E, Pascual M, Carreras C, Turon X. Multidimensional variability of the microbiome of an invasive ascidian species. iScience 2023; 26:107812. [PMID: 37744040 PMCID: PMC10514470 DOI: 10.1016/j.isci.2023.107812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Animals, including invasive species, are complex entities consisting of a host and its associated symbionts (holobiont). The interaction between the holobiont components is crucial for the host's survival. However, our understanding of how microbiomes of invasive species change across different tissues, localities, and ontogenetic stages, is limited. In the introduced ascidian Styela plicata, we found that its microbiome is highly distinct and specialized among compartments (tunic, gill, and gut). Smaller but significant differences were also found across harbors, suggesting local adaptation, and between juveniles and adults. Furthermore, we found a correlation between the microbiome and environmental trace element concentrations, especially in adults. Functional analyses showed that adult microbiomes possess specific metabolic pathways that may enhance fitness during the introduction process. These findings highlight the importance of integrated approaches in studying the interplay between animals and microbiomes, as a first step toward understanding how it can affect the species' invasive success.
Collapse
Affiliation(s)
- Carles Galià-Camps
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
| | - Elena Baños
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain
- Department of Marine Ecology, Centre d’Estudis Avançats de Blanes (CEAB-CSIC), Accés Cala Sant Francesc 14, 17300 Blanes, Catalonia, Spain
| | - Marta Pascual
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
| | - Carlos Carreras
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
| | - Xavier Turon
- Department of Marine Ecology, Centre d’Estudis Avançats de Blanes (CEAB-CSIC), Accés Cala Sant Francesc 14, 17300 Blanes, Catalonia, Spain
| |
Collapse
|
6
|
Liberti A, Pollastro C, Pinto G, Illiano A, Marino R, Amoresano A, Spagnuolo A, Sordino P. Transcriptional and proteomic analysis of the innate immune response to microbial stimuli in a model invertebrate chordate. Front Immunol 2023; 14:1217077. [PMID: 37600818 PMCID: PMC10433773 DOI: 10.3389/fimmu.2023.1217077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
Inflammatory response triggered by innate immunity can act to protect against microorganisms that behave as pathogens, with the aim to restore the homeostatic state between host and beneficial microbes. As a filter-feeder organism, the ascidian Ciona robusta is continuously exposed to external microbes that may be harmful under some conditions. In this work, we used transcriptional and proteomic approaches to investigate the inflammatory response induced by stimuli of bacterial (lipopolysaccharide -LPS- and diacylated lipopeptide - Pam2CSK4) and fungal (zymosan) origin, in Ciona juveniles at stage 4 of metamorphosis. We focused on receptors, co-interactors, transcription factors and cytokines belonging to the TLR and Dectin-1 pathways and on immune factors identified by homology approach (i.e. immunoglobulin (Ig) or C-type lectin domain containing molecules). While LPS did not induce a significant response in juvenile ascidians, Pam2CSK4 and zymosan exposure triggered the activation of specific inflammatory mechanisms. In particular, Pam2CSK4-induced inflammation was characterized by modulation of TLR and Dectin-1 pathway molecules, including receptors, transcription factors, and cytokines, while immune response to zymosan primarily involved C-type lectin receptors, co-interactors, Ig-containing molecules, and cytokines. A targeted proteomic analysis enabled to confirm transcriptional data, also highlighting a temporal delay between transcriptional induction and protein level changes. Finally, a protein-protein interaction network of Ciona immune molecules was rendered to provide a wide visualization and analysis platform of innate immunity. The in vivo inflammatory model described here reveals interconnections of innate immune pathways in specific responses to selected microbial stimuli. It also represents the starting point for studying ontogeny and regulation of inflammatory disorders in different physiological conditions.
Collapse
Affiliation(s)
- Assunta Liberti
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Carla Pollastro
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi-Consorzio Interuniversitario, Rome, Italy
| | - Anna Illiano
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi-Consorzio Interuniversitario, Rome, Italy
| | - Rita Marino
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi-Consorzio Interuniversitario, Rome, Italy
| | - Antonietta Spagnuolo
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paolo Sordino
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Messina, Italy
| |
Collapse
|
7
|
Stentz R, Cheema J, Philo M, Carding SR. A Possible Aquatic Origin of the Thiaminase TenA of the Human Gut Symbiont Bacteroides thetaiotaomicron. J Mol Evol 2023; 91:482-491. [PMID: 37022443 PMCID: PMC10277260 DOI: 10.1007/s00239-023-10101-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/14/2023] [Indexed: 04/07/2023]
Abstract
TenA thiamin-degrading enzymes are commonly found in prokaryotes, plants, fungi and algae and are involved in the thiamin salvage pathway. The gut symbiont Bacteroides thetaiotaomicron (Bt) produces a TenA protein (BtTenA) which is packaged into its extracellular vesicles. An alignment of BtTenA protein sequence with proteins from different databases using the basic local alignment search tool (BLAST) and the generation of a phylogenetic tree revealed that BtTenA is related to TenA-like proteins not only found in a small number of intestinal bacterial species but also in some aquatic bacteria, aquatic invertebrates, and freshwater fish. This is, to our knowledge, the first report describing the presence of TenA-encoding genes in the genome of members of the animal kingdom. By searching metagenomic databases of diverse host-associated microbial communities, we found that BtTenA homologues were mostly represented in biofilms present on the surface of macroalgae found in Australian coral reefs. We also confirmed the ability of a recombinant BtTenA to degrade thiamin. Our study shows that BttenA-like genes which encode a novel sub-class of TenA proteins are sparingly distributed across two kingdoms of life, a feature of accessory genes known for their ability to spread between species through horizontal gene transfer.
Collapse
Affiliation(s)
- Régis Stentz
- Quadram Institute Bioscience, Gut Microbes and Health Research Programme, Norwich, UK.
| | - Jitender Cheema
- Computational and Systems Biology, John Innes Centre, Norwich, UK
| | - Mark Philo
- Core Science Resources, Quadram Institute Bioscience, Norwich, UK
| | - Simon R Carding
- Quadram Institute Bioscience, Gut Microbes and Health Research Programme, Norwich, UK
- Norwich Medical School, University East Anglia, Norwich, UK
| |
Collapse
|
8
|
Anjum M, Laitila A, Ouwehand AC, Forssten SD. Current Perspectives on Gastrointestinal Models to Assess Probiotic-Pathogen Interactions. Front Microbiol 2022; 13:831455. [PMID: 35173703 PMCID: PMC8841803 DOI: 10.3389/fmicb.2022.831455] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
There are different models available that mimic the human intestinal epithelium and are thus available for studying probiotic and pathogen interactions in the gastrointestinal tract. Although, in vivo models make it possible to study the overall effects of a probiotic on a living subject, they cannot always be conducted and there is a general commitment to reduce the use of animal models. Hence, in vitro methods provide a more rapid tool for studying the interaction between probiotics and pathogens; as well as being ethically superior, faster, and less expensive. The in vitro models are represented by less complex traditional models, standard 2D models compromised of culture plates as well as Transwell inserts, and newer 3D models like organoids, enteroids, as well as organ-on-a-chip. The optimal model selected depends on the research question. Properly designed in vitro and/or in vivo studies are needed to examine the mechanism(s) of action of probiotics on pathogens to obtain physiologically relevant results.
Collapse
Affiliation(s)
| | | | | | - Sofia D. Forssten
- International Flavors and Fragrances, Health and Biosciences, Danisco Sweeteners Oy, Kantvik, Finland
| |
Collapse
|
9
|
Liberti A, Natarajan O, Atkinson CGF, Dishaw LJ. Secreted immunoglobulin domain effector molecules of invertebrates and management of gut microbial ecology. Immunogenetics 2022; 74:99-109. [PMID: 34988622 DOI: 10.1007/s00251-021-01237-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/18/2021] [Indexed: 02/01/2023]
Abstract
The origins of a "pass-through" gut in early bilaterians facilitated the exploration of new habitats, motivated the innovation of feeding styles and behaviors, and helped drive the evolution of more complex organisms. The gastrointestinal tract has evolved to consist of a series of interwoven exchanges between nutrients, host immunity, and an often microbe-rich environmental interface. Not surprisingly, animals have expanded their immune repertoires to include soluble effectors that can be secreted into luminal spaces, e.g., in the gut, facilitating interactions with microbes in ways that influence their settlement dynamics, virulence, and their interaction with other microbes. The immunoglobulin (Ig) domain, which is also found in some non-immune molecules, is recognized as one of the most versatile recognition domains lying at the interface of innate and adaptive immunity; among vertebrates, secreted Igs are known to play crucial roles in the management of gut microbial communities. In this mini-review, we will focus on secreted immune effectors possessing Ig-like domains in invertebrates, such as the fibrinogen-related effector proteins first described in the gastropod Biomphalaria glabrata, the Down syndrome cellular adhesion molecule first described in the arthropod, Drosophila melanogaster, and the variable region-containing chitin-binding proteins of the protochordates. We will highlight our current understanding of their function and their potential role, if not yet recognized, in the establishment and maintenance of host-microbial interfaces and argue that these Igs are likely also essential to microbiome management.
Collapse
Affiliation(s)
- Assunta Liberti
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Ojas Natarajan
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Division of Molecular Genetics, Children's Research Institute, St. Petersburg, FL, USA
| | - Celine Grace F Atkinson
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA.,Division of Molecular Genetics, Children's Research Institute, St. Petersburg, FL, USA
| | - Larry J Dishaw
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, USA. .,Division of Molecular Genetics, Children's Research Institute, St. Petersburg, FL, USA.
| |
Collapse
|
10
|
Li Y, Liu H, Qi H, Tang W, Zhang C, Liu Z, Liu Y, Wei X, Kong Z, Jia S, Du B, Yuan J, Wang C, Li M. Probiotic fermentation of Ganoderma lucidum fruiting body extracts promoted its immunostimulatory activity in mice with dexamethasone-induced immunosuppression. Biomed Pharmacother 2021; 141:111909. [PMID: 34328088 DOI: 10.1016/j.biopha.2021.111909] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
Ganoderma lucidum is a legendary traditional Chinese medicine with various bioactivities. This study was conducted (a) to explore the in vitro fermentation of the water extracts of G. lucidum fruiting body with Lactobacillus acidophilus and Bifidobacterium breve and (b) to investigate the effect of fermentation broth (GLFB) on dexamethasone (DEX)-induced immunosuppressed mice. Our results demonstrated that probiotic fermentation of G. lucidum fruiting body extracts underwent structural changing of major ganoderic acid components, such as ganoderic acid A (GA) into GC2, and this fermentation process involves changing of several metabolic pathways in the probiotic strains. GLFB could significantly improve the immunity, intestinal integrity, and gut microbiota dysbiosis in DEX-treated mice, and the immunostimulatory activity of GLFB was found closely related to its direct regulation on the expansion of CD4+ T cells in Peyer's patches of mice. These data implied that probiotic fermentation of G. lucidum fruiting body extracts promoted its immunostimulatory activity via biotransformation of components such as GA. This research provides a theoretical support for the development and application of G. lucidum fermentation by probiotics.
Collapse
Affiliation(s)
- Yuyuan Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - He Liu
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Huawen Qi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China
| | - Wei Tang
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Caihua Zhang
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Zhaiyi Liu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yinhui Liu
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Xiaoqing Wei
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Zhen Kong
- Hefei Kangchuntang Pharmaceutical Co.,Ltd, Hefei, China
| | - Shangyi Jia
- Hefei Kangchuntang Pharmaceutical Co.,Ltd, Hefei, China
| | - Borong Du
- People's Hospital of Jiuquan City, Gansu, China
| | - Jieli Yuan
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Chaoran Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China.
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, Dalian, China.
| |
Collapse
|
11
|
Ballarin L, Karahan A, Salvetti A, Rossi L, Manni L, Rinkevich B, Rosner A, Voskoboynik A, Rosental B, Canesi L, Anselmi C, Pinsino A, Tohumcu BE, Jemec Kokalj A, Dolar A, Novak S, Sugni M, Corsi I, Drobne D. Stem Cells and Innate Immunity in Aquatic Invertebrates: Bridging Two Seemingly Disparate Disciplines for New Discoveries in Biology. Front Immunol 2021; 12:688106. [PMID: 34276677 PMCID: PMC8278520 DOI: 10.3389/fimmu.2021.688106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
The scopes related to the interplay between stem cells and the immune system are broad and range from the basic understanding of organism's physiology and ecology to translational studies, further contributing to (eco)toxicology, biotechnology, and medicine as well as regulatory and ethical aspects. Stem cells originate immune cells through hematopoiesis, and the interplay between the two cell types is required in processes like regeneration. In addition, stem and immune cell anomalies directly affect the organism's functions, its ability to cope with environmental changes and, indirectly, its role in ecosystem services. However, stem cells and immune cells continue to be considered parts of two branches of biological research with few interconnections between them. This review aims to bridge these two seemingly disparate disciplines towards much more integrative and transformative approaches with examples deriving mainly from aquatic invertebrates. We discuss the current understanding of cross-disciplinary collaborative and emerging issues, raising novel hypotheses and comments. We also discuss the problems and perspectives of the two disciplines and how to integrate their conceptual frameworks to address basic equations in biology in a new, innovative way.
Collapse
Affiliation(s)
| | - Arzu Karahan
- Middle East Technical University, Institute of Marine Sciences, Erdemli, Mersin, Turkey
| | - Alessandra Salvetti
- Department of Clinical and Experimental Medicine, Unit of Experimental Biology and Genetics, University of Pisa, Pisa, Italy
| | - Leonardo Rossi
- Department of Clinical and Experimental Medicine, Unit of Experimental Biology and Genetics, University of Pisa, Pisa, Italy
| | - Lucia Manni
- Department of Biology, University of Padua, Padua, Italy
| | - Baruch Rinkevich
- Department of Biology, Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Amalia Rosner
- Department of Biology, Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Ayelet Voskoboynik
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA, United States
- Department of Biology, Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Benyamin Rosental
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Regenerative Medicine and Stem Cells, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Laura Canesi
- Department of Earth Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Chiara Anselmi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA, United States
| | - Annalisa Pinsino
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Begüm Ece Tohumcu
- Middle East Technical University, Institute of Marine Sciences, Erdemli, Mersin, Turkey
| | - Anita Jemec Kokalj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Andraž Dolar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Sara Novak
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|