1
|
Thirugnanam S, Wang C, Zheng C, Grasperge BF, Datta PK, Rappaport J, Qin X, Rout N. The Association between IL-1β and IL-18 Levels, Gut Barrier Disruption, and Monocyte Activation during Chronic Simian Immunodeficiency Virus Infection and Long-Term Suppressive Antiretroviral Therapy. Int J Mol Sci 2024; 25:8702. [PMID: 39201388 PMCID: PMC11354606 DOI: 10.3390/ijms25168702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
HIV-induced persistent immune activation is a key mediator of inflammatory comorbidities such as cardiovascular disease (CVD) and neurocognitive disorders. While a preponderance of data indicate that gut barrier disruption and microbial translocation are drivers of chronic immune activation, the molecular mechanisms of this persistent inflammatory state remain poorly understood. Here, utilizing the nonhuman primate model of Human Immunodeficiency Virus (HIV) infection with suppressive antiretroviral therapy (ART), we investigated activation of inflammasome pathways and their association with intestinal epithelial barrier disruption (IEBD). Longitudinal blood samples obtained from rhesus macaques with chronic SIV infection and long-term suppressive ART were evaluated for IEBD biomarkers, inflammasome activation (IL-1β and IL-18), inflammatory cytokines, and triglyceride (TG) levels. Activated monocyte subpopulations and glycolytic potential were investigated in peripheral blood mononuclear cells (PBMCs). During the chronic phase of treated SIV infection, elevated levels of plasma IL-1β and IL-18 were observed following the hallmark increase in IEBD biomarkers, intestinal fatty acid-binding protein (IFABP) and LPS-binding protein (LBP). Further, significant correlations of plasma IFABP levels with IL-1β and IL-18 were observed between 10 and 12 months of ART. Higher levels of sCD14, IL-6, and GM-CSF, among other inflammatory mediators, were also observed only during the long-term SIV + ART phase along with a trend of increase in the frequencies of activated CD14+CD16+ intermediate monocyte subpopulations. Lastly, we found elevated levels of blood TG and higher glycolytic capacity in PBMCs of chronic SIV-infected macaques with long-term ART. The increase in circulating IL-18 and IL-1β following IEBD and their significant positive correlation with IFABP suggest a connection between gut barrier disruption and inflammasome activation during chronic SIV infection, despite viral suppression with ART. Additionally, the increase in markers of monocyte activation, along with elevated TG and enhanced glycolytic pathway activity, indicates metabolic remodeling that could fuel metabolic syndrome. Further research is needed to understand the mechanisms by which gut dysfunction and inflammasome activation contribute to HIV-associated metabolic complications, enabling targeted interventions in people with HIV.
Collapse
Affiliation(s)
- Siva Thirugnanam
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA;
| | - Chenxiao Wang
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (C.W.); (C.Z.); (P.K.D.); (J.R.); (X.Q.)
- Division of Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Chen Zheng
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (C.W.); (C.Z.); (P.K.D.); (J.R.); (X.Q.)
- Division of Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Brooke F. Grasperge
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA 70433, USA;
| | - Prasun K. Datta
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (C.W.); (C.Z.); (P.K.D.); (J.R.); (X.Q.)
- Division of Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay Rappaport
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (C.W.); (C.Z.); (P.K.D.); (J.R.); (X.Q.)
- Division of Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Xuebin Qin
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (C.W.); (C.Z.); (P.K.D.); (J.R.); (X.Q.)
- Division of Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Namita Rout
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA;
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (C.W.); (C.Z.); (P.K.D.); (J.R.); (X.Q.)
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
2
|
Thirugnanam S, Wang C, Zheng C, Grasperge BF, Datta PK, Rappaport J, Qin X, Rout N. High IL-1β and IL-18 Levels Associate with Gut Barrier Disruption and Monocyte Activation During Chronic SIV Infection with Long-Term Suppressive Antiretroviral Therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599106. [PMID: 38948748 PMCID: PMC11212932 DOI: 10.1101/2024.06.14.599106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
HIV-induced persistent immune activation is a key mediator of inflammatory comorbidities such as cardiovascular disease (CVD) and neurocognitive disorders. While a preponderance of data indicate that gut barrier disruption and microbial translocation are drivers of chronic immune activation, the molecular mechanisms of this persistent inflammatory state remain poorly understood. Here, utilizing the nonhuman primate model of HIV infection with suppressive antiretroviral therapy (ART), we investigated activation of inflammasome pathways and their association with intestinal epithelial barrier disruption and CVD pathogenesis. Longitudinal blood samples obtained from rhesus macaques with chronic SIV infection and long-term suppressive ART were evaluated for biomarkers of intestinal epithelial barrier disruption (IEBD), inflammasome activation (IL-1β and IL-18), inflammatory cytokines, and triglyceride (TG) levels. Activated monocyte subpopulations and glycolytic potential were investigated in peripheral blood mononuclear cells (PBMCs). Higher plasma levels of IL-1β and IL-18 were observed following the hallmark increase in IEBD biomarkers, intestinal fatty acid-binding protein (IFABP) and LPS-binding protein (LBP), during the chronic phase of treated SIV infection. Further, significant correlations of plasma IFABP levels with IL-1β and IL-18 were observed between 10-12 months of ART. Higher levels of sCD14, IL-6, and GM-CSF, among other inflammatory mediators, were also observed only during the long-term SIV+ART phase along with a trend of increase in frequencies of activated CD14 + CD16 + intermediate monocyte subpopulations. Lastly, we found elevated levels of blood TG and higher glycolytic capacity in PBMCs of chronic SIV-infected macaques with long-term ART. The increase in circulating IL-18 and IL-1β following IEBD and their significant positive correlation with IFABP suggest a connection between gut barrier disruption and inflammasome activation during chronic SIV infection, despite viral suppression with ART. Additionally, the increase in markers of monocyte activation, along with elevated TG and enhanced glycolytic pathway activity, indicates metabolic remodeling that could accelerate CVD pathogenesis. Further research is needed to understand mechanisms by which gut dysfunction and inflammasome activation contribute to HIV-associated CVD and metabolic complications, enabling targeted interventions in people with HIV.
Collapse
|
3
|
Tincati C, Bono V, Cannizzo ES, Tosi D, Savi F, Falcinella C, Casabianca A, Orlandi C, Luigiano C, Augello M, Rusconi S, Muscatello A, Bandera A, Calcagno A, Gori A, Nozza S, Marchetti G. Primary HIV infection features colonic damage and neutrophil inflammation yet containment of microbial translocation. AIDS 2024; 38:623-632. [PMID: 38016163 PMCID: PMC10942218 DOI: 10.1097/qad.0000000000003799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/20/2023] [Accepted: 11/18/2023] [Indexed: 11/30/2023]
Abstract
INTRODUCTION Impairment of the gastrointestinal barrier leads to microbial translocation and peripheral immune activation, which are linked to disease progression. Data in the setting of primary HIV/SIV infection suggest that gut barrier damage is one of the first events of the pathogenic cascade, preceding mucosal immune dysfunction and microbial translocation. We assessed gut structure and immunity as well as microbial translocation in acutely and chronically-infected, combination antiretroviral therapy (cART)-naive individuals. METHODS Fifteen people with primary HIV infection (P-HIV) and 13 with chronic HIV infection (C-HIV) c-ART-naive participants were cross-sectionally studied. Gut biopsies were analysed in terms of gut reservoirs (total, integrated and unintegrated HIV DNA); tight junction proteins (E-cadherin, Zonula Occludens-1), CD4 + expression, neutrophil myeloperoxidase (histochemical staining); collagen deposition (Masson staining). Flow cytometry was used to assess γδ T-cell frequency (CD3 + panγδ+Vδ1+/Vδ2+). In plasma, we measured microbial translocation (LPS, sCD14, EndoCAb) and gut barrier function (I-FABP) markers (ELISA). RESULTS P-HIV displayed significantly higher tissue HIV DNA, yet neutrophil infiltration and collagen deposition in the gut were similar in the two groups. In contrast, microbial translocation markers were significantly lower in P-HIV compared with C-HIV. A trend to higher mucosal E-cadherin, and gut γδ T-cells was also observed in P-HIV. CONCLUSION Early HIV infection features higher HIV DNA in the gut, yet comparable mucosal alterations to those observed in chronic infection. In contrast, microbial translocation is contained in primary HIV infection, likely because of a partial preservation of E-cadherin and mucosal immune subsets, namely γδ T-cells.
Collapse
Affiliation(s)
- Camilla Tincati
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan
| | - Valeria Bono
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan
| | | | - Delfina Tosi
- Pathology Unit, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan
| | - Federica Savi
- Pathology Unit, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan
| | - Camilla Falcinella
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan
| | - Anna Casabianca
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Fano
| | - Chiara Orlandi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Fano
| | | | - Matteo Augello
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan
| | - Stefano Rusconi
- UOC Malattie Infettive, Ospedale Civile di Legnano, Department of Biomedical and Clinical Biosciences, University of Milan
| | - Antonio Muscatello
- Infectious Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan
| | - Alessandra Bandera
- Infectious Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan
| | - Andrea Calcagno
- Unit of Infectious Diseases Unit, Department of Medical Sciences, University of Turin, Turin
| | - Andrea Gori
- Clinic of Infectious Diseases, Department of Pathophysiology and Transplantation, ASST Fatebenefratelli Sacco University of Milan
| | - Silvia Nozza
- Infectious Diseases Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giulia Marchetti
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan
| |
Collapse
|
4
|
Khansalar S, Faghih Z, Barani S, Kalani M, Ataollahi MR, Mohammadi Z, Namdari S, Kalantar K. IFN-γ, IL-17, IL-22 + CD4 + subset in patients with hepatitis C virus and correlation with clinical factor. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2024; 13:43-52. [PMID: 38496355 PMCID: PMC10944356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND CD4+ T cell responses in HCV infection have a crucial role in the immunopathology of hepatitis C virus (HCV) infection. Our aim was to investigate the frequency of Th1, Th17, and Th22 cells in HCV-infected patients and elucidate their role in the progression of the disease. METHODS Twenty-six HCV-infected patients and 26 healthy individuals were recruited. Peripheral blood mononuclear cells (PBMCs) were stained to separate CD4, IFN-γ, IL-17, and IL-22 producing cells using flow cytometry. RESULTS Results showed that the mean expression of IL-22 in CD4+ T cells was significantly lower in HCV-infected patients compared to healthy controls. About correlation with clinical factor and T subsets, a negative correlation between the frequency of CD4+ IFN-γ+ cells and Thyroxine level (T4) was observed in the patients. The data showed a positive link between thyroid-stimulating hormone (TSH), cholesterol levels, and the frequency of Th17 cells. In addition, a positive correlation was seen between serum creatinine level with both Th1 and Th17. Ultimately, it was found that there was a positive link between viral burden and IL-17+ IL-22+ cells and a negative correlation between viral load and pure Th22. CONCLUSIONS Our findings indicate that Th22 cells may play a part in the immunopathology of HCV and show the associations between Thelper subsets and the clinical signs of the disease.
Collapse
Affiliation(s)
- Soolmaz Khansalar
- Department of Immunology, School of Medicine, Shiraz University of Medical SciencesShiraz, Iran
| | - Zahra Faghih
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical SciencesShiraz, Iran
| | - Shaghik Barani
- Department of Immunology, School of Medicine, Shiraz University of Medical SciencesShiraz, Iran
| | - Mehdi Kalani
- Department of Immunology, Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical SciencesShiraz, Iran
| | | | - Zeinab Mohammadi
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer CenterNew York, NY, USA
| | - Sepideh Namdari
- Department of Immunology, School of Medicine, Shiraz University of Medical SciencesShiraz, Iran
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical SciencesShiraz, Iran
- Autoimmune Diseases Research Center, Shiraz University of Medical SciencesShiraz, Iran
- Department of Bacteriology and Immunology and The Translational Immunology Research Program (TRIMM), The University of Helsinki and HUSLAB, Helsinki University HospitalHelsinki, Finland
| |
Collapse
|
5
|
Thirugnanam S, Walker EM, Schiro F, Aye PP, Rappaport J, Rout N. Enhanced IL-17 Producing and Maintained Cytolytic Effector Functions of Gut Mucosal CD161 +CD8 + T Cells in SIV-Infected Rhesus Macaques. Viruses 2023; 15:1944. [PMID: 37766350 PMCID: PMC10535321 DOI: 10.3390/v15091944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Previous studies have indicated that the loss of CD161-expressing CD4+ Th17 cells is linked to the progression of chronic HIV. These cells are significantly depleted in peripheral blood and gut mucosa of HIV-infected individuals, contributing to inflammation and disruption of the gut barrier. However, the impact of HIV infection on CD161-expressing CD8+ T cells remain unclear. Here, we examined the functions of peripheral blood and mucosal CD161+CD8+ T cells in the macaque model of HIV infection. In contrast to the significant loss of CD161+CD4+ T cells, CD161+CD8+ T cell frequencies were maintained in blood and gut during chronic SIV infection. Furthermore, gut CD161+CD8+ T cells displayed greater IL-17 production and maintained Th1-type and cytolytic functions, contrary to impaired IL-17 and granzyme-B production in CD161+CD4+ T cells of SIV-infected macaques. These results suggest that augmented Th17-type effector functions of CD161+CD8+ T cells during SIV infection is a likely mechanism to compensate for the sustained loss of gut mucosal Th17 cells. Targeting the cytokine and cytolytic effector functions of CD161+CD8+ T cells in the preclinical setting of chronic SIV infection with antiretroviral therapy has implications in the restoration of gut barrier disruption in persons with HIV infection.
Collapse
Affiliation(s)
- Siva Thirugnanam
- Tulane National Primate Research Center, Covington, LA 70433, USA; (S.T.); (P.P.A.); (J.R.)
| | - Edith M. Walker
- Tulane National Primate Research Center, Covington, LA 70433, USA; (S.T.); (P.P.A.); (J.R.)
| | - Faith Schiro
- Tulane National Primate Research Center, Covington, LA 70433, USA; (S.T.); (P.P.A.); (J.R.)
| | - Pyone P. Aye
- Tulane National Primate Research Center, Covington, LA 70433, USA; (S.T.); (P.P.A.); (J.R.)
| | - Jay Rappaport
- Tulane National Primate Research Center, Covington, LA 70433, USA; (S.T.); (P.P.A.); (J.R.)
| | - Namita Rout
- Tulane National Primate Research Center, Covington, LA 70433, USA; (S.T.); (P.P.A.); (J.R.)
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
6
|
Shukla RK, Gunasena M, Reinhold-Larsson N, Duncan M, Hatharasinghe A, Cray S, Weragalaarachchi K, Kasturiratna D, Demberg T, Liyanage NPM. Innate adaptive immune cell dynamics in tonsillar tissues during chronic SIV infection. Front Immunol 2023; 14:1201677. [PMID: 37671159 PMCID: PMC10475724 DOI: 10.3389/fimmu.2023.1201677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/01/2023] [Indexed: 09/07/2023] Open
Abstract
HIV-infected patients are at higher risk of developing oral mucosal infection and Epstein-Barr virus (EBV)-associated B cell malignancies. However, the potential role of oral immunity in the pathogenesis of oral lesions is unknown. Tonsils are oral-pharyngeal mucosal-associated lymphoid tissues that play an important role in oral mucosal immunity. In this study, we investigated the changes of innate and adaptive immune cells in macaque tonsils during chronic SIV infection. We found significantly higher frequencies of classical monocytes, CD3+CD56+ (NKT-like) cells, CD3+CD4+CD8+ (DP), and CD161+ CD4 T cells in tonsils from chronic infected compared to naïve animals. On the contrary, intermediate monocytes and CD3+CD4-CD8- (DN) cells were lower in chronic SIV-infected macaques. We further confirmed a recently described small B-cell subset, NKB cells, were higher during chronic infection. Furthermore, both adaptive and innate cells showed significantly higher TNF-α and cytotoxic marker CD107a, while IL-22 production was significantly reduced in innate and adaptive immune cells in chronic SIV-infected animals. A dramatic reduction of IFN-γ production by innate immune cells might indicate enhanced susceptibility to EBV infection and potential transformation of B cells in the tonsils. In summary, our observation shows that the SIV-associated immune responses are distinct in the tonsils compared to other mucosal tissues. Our data extends our understanding of the oral innate immune system during SIV infection and could aid future studies in evaluating the role of tonsillar immune cells during HIV-associated oral mucosal infections.
Collapse
Affiliation(s)
- Rajni Kant Shukla
- Department of Microbial Infection and Immunity, College of Medicine, Ohio State University, Columbus, OH, United States
| | - Manuja Gunasena
- Department of Microbial Infection and Immunity, College of Medicine, Ohio State University, Columbus, OH, United States
| | - Nicole Reinhold-Larsson
- Department of Microbial Infection and Immunity, College of Medicine, Ohio State University, Columbus, OH, United States
| | - Michael Duncan
- Department of Microbial Infection and Immunity, College of Medicine, Ohio State University, Columbus, OH, United States
| | - Amila Hatharasinghe
- Department of Microbial Infection and Immunity, College of Medicine, Ohio State University, Columbus, OH, United States
| | - Samuel Cray
- Department of Microbial Infection and Immunity, College of Medicine, Ohio State University, Columbus, OH, United States
| | - Krishanthi Weragalaarachchi
- Department of Microbial Infection and Immunity, College of Medicine, Ohio State University, Columbus, OH, United States
| | - Dhanuja Kasturiratna
- Department of Mathematics and Statistics, Northern Kentucky University, KY, Highland Heights, KY, United States
| | - Thorsten Demberg
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Namal P. M. Liyanage
- Department of Microbial Infection and Immunity, College of Medicine, Ohio State University, Columbus, OH, United States
- Department of Veterinary Biosciences, College of Veterinary Medicine, Ohio State University, Columbus, OH, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
7
|
Ortiz AM, Castello Casta F, Rahmberg A, Markowitz TE, Brooks K, Simpson J, Brenchley JM. 2-Hydroxypropyl-β-Cyclodextrin Treatment Induces Modest Immune Activation in Healthy Rhesus Macaques. J Virol 2023; 97:e0060023. [PMID: 37338342 PMCID: PMC10373544 DOI: 10.1128/jvi.00600-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023] Open
Abstract
Experimental simian immunodeficiency virus (SIV) infection of Asian macaques is an excellent model for HIV disease progression and therapeutic development. Recent coformulations of nucleoside analogs and an integrase inhibitor have been used for parenteral antiretroviral (ARV) administration in SIV-infected macaques, successfully resulting in undetectable plasma SIV RNA. In a cohort of SIVmac239-infected macaques, we recently observed that administration of coformulated ARVs resulted in an unexpected increase in plasma levels of soluble CD14 (sCD14), associated with stimulation of myeloid cells. We hypothesized that the coformulation solubilizing agent Kleptose (2-hydroxypropyl-β-cyclodextrin [HPβCD]) may induce inflammation with myeloid cell activation and the release of sCD14. Herein, we stimulated peripheral blood mononuclear cells (PBMCs) from healthy macaques with HPβCD from different commercial sources and evaluated inflammatory cytokine production in vitro. Treatment of PBMCs resulted in increased sCD14 release and myeloid cell interleukin-1β (IL-1β) production-with stimulation varying significantly by HPβCD source-and destabilized lymphocyte CCR5 surface expression. We further treated healthy macaques with Kleptose alone. In vivo, we observed modestly increased myeloid cell activation in response to Kleptose treatment without significant perturbation of the immunological transcriptome or epigenome. Our results demonstrate a need for vehicle-only controls and highlight immunological perturbations that can occur when using HPβCD in pharmaceutical coformulations. IMPORTANCE SIV infection of nonhuman primates is the principal model system for assessing HIV disease progression and therapeutic development. HPβCD has recently been incorporated as a solubilizing agent in coformulations of ARVs in SIV-infected nonhuman primates. Although HPβCD has historically been considered inert, recent findings suggest that HPβCD may contribute to inflammation. Herein, we investigate the contribution of HPβCD to healthy macaque inflammation in vitro and in vivo. We observe that HPβCD causes an induction of sCD14 and IL-1β from myeloid cells in vitro and demonstrate that HPβCD stimulatory capacity varies by commercial source. In vivo, we observe modest myeloid cell activation in blood and bronchoalveolar lavage specimens absent systemic immune activation. From our findings, it is unclear whether HPβCD stimulation may improve or diminish immune reconstitution in ARV-treated lentiviral infections. Our results demonstrate a need for vehicle-only controls and highlight immunological perturbations that can occur when using HPβCD in pharmaceutical coformulations.
Collapse
Affiliation(s)
- Alexandra M. Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Fabiola Castello Casta
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew Rahmberg
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Tovah E. Markowitz
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kelsie Brooks
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jennifer Simpson
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Fakharian F, Thirugnanam S, Welsh DA, Kim WK, Rappaport J, Bittinger K, Rout N. The Role of Gut Dysbiosis in the Loss of Intestinal Immune Cell Functions and Viral Pathogenesis. Microorganisms 2023; 11:1849. [PMID: 37513022 PMCID: PMC10384393 DOI: 10.3390/microorganisms11071849] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The gut microbiome plays a critical role in maintaining overall health and immune function. However, dysbiosis, an imbalance in microbiome composition, can have profound effects on various aspects of human health, including susceptibility to viral infections. Despite numerous studies investigating the influence of viral infections on gut microbiome, the impact of gut dysbiosis on viral infection and pathogenesis remains relatively understudied. The clinical variability observed in SARS-CoV-2 and seasonal influenza infections, and the presence of natural HIV suppressors, suggests that host-intrinsic factors, including the gut microbiome, may contribute to viral pathogenesis. The gut microbiome has been shown to influence the host immune system by regulating intestinal homeostasis through interactions with immune cells. This review aims to enhance our understanding of how viral infections perturb the gut microbiome and mucosal immune cells, affecting host susceptibility and response to viral infections. Specifically, we focus on exploring the interactions between gamma delta (γδ) T cells and gut microbes in the context of inflammatory viral pathogenesis and examine studies highlighting the role of the gut microbiome in viral disease outcomes. Furthermore, we discuss emerging evidence and potential future directions for microbiome modulation therapy in the context of viral pathogenesis.
Collapse
Affiliation(s)
- Farzaneh Fakharian
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Siva Thirugnanam
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - David A. Welsh
- Department of Microbiology, Immunology and Parasitology, Louisiana State University School of Medicine, New Orleans, LA 70806, USA
| | - Woong-Ki Kim
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay Rappaport
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Namita Rout
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
9
|
Fears AC, Walker EM, Chirichella N, Slisarenko N, Merino KM, Golden N, Picou B, Spencer S, Russell-Lodrigue KE, Doyle-Meyers LA, Blair RV, Beddingfield BJ, Maness NJ, Roy CJ, Rout N. The dynamics of γδ T cell responses in nonhuman primates during SARS-CoV-2 infection. Commun Biol 2022; 5:1380. [PMID: 36526890 PMCID: PMC9756695 DOI: 10.1038/s42003-022-04310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Although most SARS-CoV-2 infections are mild, some patients develop systemic inflammation and progress to acute respiratory distress syndrome (ARDS). However, the cellular mechanisms underlying this spectrum of disease remain unclear. γδT cells are T lymphocyte subsets that have key roles in systemic and mucosal immune responses during infection and inflammation. Here we show that peripheral γδT cells are rapidly activated following aerosol or intra-tracheal/intra-nasal (IT/IN) SARS-CoV-2 infection in nonhuman primates. Our results demonstrate a rapid expansion of Vδ1 γδT cells at day1 that correlate significantly with lung viral loads during the first week of infection. Furthermore, increase in levels of CCR6 and Granzyme B expression in Vδ1 T cells during viral clearance imply a role in innate-like epithelial barrier-protective and cytotoxic functions. Importantly, the early activation and mobilization of circulating HLA-DR+CXCR3+ γδT cells along with significant correlations of Vδ1 T cells with IL-1Ra and SCF levels in bronchoalveolar lavage suggest a novel role for Vδ1 T cells in regulating lung inflammation during aerosol SARS-CoV-2 infection. A deeper understanding of the immunoregulatory functions of MHC-unrestricted Vδ1 T cells in lungs during early SARS-CoV-2 infection is particularly important in the wake of emerging new variants with increased transmissibility and immune evasion potential.
Collapse
Affiliation(s)
- Alyssa C Fears
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - Edith M Walker
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - Nicole Chirichella
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - Nadia Slisarenko
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - Kristen M Merino
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - Nadia Golden
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - Breanna Picou
- High Containment Research Performance Core, Tulane National Primate Research Center, Covington, LA, USA
| | - Skye Spencer
- High Containment Research Performance Core, Tulane National Primate Research Center, Covington, LA, USA
| | - Kasi E Russell-Lodrigue
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA, USA
| | - Lara A Doyle-Meyers
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA, USA
| | - Robert V Blair
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | | | - Nicholas J Maness
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane School of Medicine, New Orleans, LA, USA
| | - Chad J Roy
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane School of Medicine, New Orleans, LA, USA
| | - Namita Rout
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA.
- Department of Microbiology and Immunology, Tulane School of Medicine, New Orleans, LA, USA.
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
10
|
Ferguson N, Cogswell A, Barker E. Contribution of Innate Lymphoid Cells in Supplementing Cytokines Produced by CD4 + T Cells During Acute and Chronic SIV Infection of the Colon. AIDS Res Hum Retroviruses 2022; 38:709-725. [PMID: 35459417 PMCID: PMC9514600 DOI: 10.1089/aid.2022.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
HIV/SIV (simian immunodeficiency virus) infection leads to a loss of CD4+ T helper (Th) cells in number and function that begins during the acute phase and persists through the chronic phase of infection. In particular, there is a drastic decrease of Th17 and Th22 cells in the HIV/SIV-infected gastrointestinal (GI) tract as a source of interleukin (IL)-17 and IL-22. These cytokines are vital in the immune response to extracellular pathogens and maintenance of the GI tract. However, innate lymphoid cells (ILCs) are a source of IL-17 and IL-22 during the early stages of an immune response in mucosal tissue and remain vital cytokine producers when the immune response is persistent. Here, we wanted to determine whether ILCs are a source of IL-17 and IL-22 in the SIV-infected colon and could compensate for the loss of Th17 and Th22 cells. As a control, we evaluated the frequency and number of ILCs expressing interferon-gamma (IFNγ) and tumor necrosis factor-alpha (TNFα). We determined the frequency and number of cytokine expressing ILC subsets and T cell subsets within leukocytes from the colons of uninfected as well as acute and chronic SIV-infected colons without in vitro mitogenic stimulation. In the present study, we find that: (1) the frequency of IL-22, IFNγ, and TNFα but not IL-17 producing ILCs is increased in the acutely infected colon and remains high during the chronically infected colon relative to cytokine expressing ILCs in the uninfected colon, (2) ILCs are a significant source of IL-22, IFNγ, and TNFα but not IL-17 when CD4+ T lymphocytes in the gut lose their capacity to secrete these cytokines during SIV infection, and (3) the changes in the cytokines expressed by ILCs relative to CD4+ T cells in the infected colon were not due to increases in the frequency or number of ILCs in relation to T lymphocytes found in the tissue.
Collapse
Affiliation(s)
- Natasha Ferguson
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Andrew Cogswell
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Edward Barker
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
11
|
Zhang Q, Tong L, Wang B, Wang T, Ma H. Diagnostic Value of Serum Levels of IL-22, IL-23, and IL-17 for Idiopathic Pulmonary Fibrosis Associated with Lung Cancer. Ther Clin Risk Manag 2022; 18:429-437. [PMID: 35469293 PMCID: PMC9034872 DOI: 10.2147/tcrm.s349185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/28/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Qian Zhang
- Pneumology Department, The Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi City, People’s Republic of China
| | - Lihong Tong
- Pneumology Department, The Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi City, People’s Republic of China
| | - Bing Wang
- Pneumology Department, The Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi City, People’s Republic of China
| | - Ting Wang
- Pneumology Department, The Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi City, People’s Republic of China
| | - Hongxia Ma
- Pneumology Department, The Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi City, People’s Republic of China
- Correspondence: Hongxia Ma, Pneumology Department, The Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi City, The Xinjiang Uygur Autonomous Region, 830000, People’s Republic of China, Email
| |
Collapse
|
12
|
Tanes C, Walker EM, Slisarenko N, Gerrets GL, Grasperge BF, Qin X, Jazwinski SM, Bushman FD, Bittinger K, Rout N. Gut Microbiome Changes Associated with Epithelial Barrier Damage and Systemic Inflammation during Antiretroviral Therapy of Chronic SIV Infection. Viruses 2021; 13:1567. [PMID: 34452432 PMCID: PMC8402875 DOI: 10.3390/v13081567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 12/26/2022] Open
Abstract
Gut dysbiosis is a common feature associated with the chronic inflammation of HIV infection. Toward understanding the interplay of chronic treated HIV infection, dysbiosis, and systemic inflammation, we investigated longitudinal fecal microbiome changes and plasma inflammatory markers in the nonhuman primate model. Following simian immunodeficiency virus (SIV) infection in rhesus macaques, significant changes were observed in several members of the phylum Firmicutes along with an increase in Bacteroidetes. Viral suppression with antiretroviral therapy (ART) resulted in an early but partial recovery of compositional changes and butyrate producing genes in the gut microbiome. Over the course of chronic SIV infection and long-term ART, however, the specific loss of Faecalibacterium prausnitzii and Treponema succinifaciens significantly correlated with an increase in plasma inflammatory cytokines including IL-6, G-CSF, I-TAC, and MIG. Further, the loss of T. succinifaciens correlated with an increase in circulating biomarkers of gut epithelial barrier damage (IFABP) and microbial translocation (LBP and sCD14). As F. prausnitzii and T. succinifaciens are major short-chain fatty acid producing bacteria, their sustained loss during chronic SV-ART may contribute to gut inflammation and metabolic alterations despite effective long-term control of viremia. A better understanding of the correlations between the anti-inflammatory bacterial community and healthy gut barrier functions in the setting of long-term ART may have a major impact on the clinical management of inflammatory comorbidities in HIV-infected individuals.
Collapse
Affiliation(s)
- Ceylan Tanes
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (C.T.); (K.B.)
| | - Edith M. Walker
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA; (E.M.W.); (N.S.); (G.L.G.)
| | - Nadia Slisarenko
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA; (E.M.W.); (N.S.); (G.L.G.)
| | - Giovanni L. Gerrets
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA; (E.M.W.); (N.S.); (G.L.G.)
| | - Brooke F. Grasperge
- Division of Veterinary Medicine, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - S. Michal Jazwinski
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (C.T.); (K.B.)
| | - Namita Rout
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA; (E.M.W.); (N.S.); (G.L.G.)
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| |
Collapse
|
13
|
Th17-type immunity and inflammation of aging. Aging (Albany NY) 2021; 13:13378-13379. [PMID: 34057906 PMCID: PMC8202903 DOI: 10.18632/aging.203119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
|