1
|
Mohagheghi M, Abisoye-Ogunniyan A, Evans AC, Peterson AE, Bude GA, Hoang-Phou S, Vannest BD, Hall D, Rasley A, Weilhammer DR, Fischer NO, He W, Robinson BV, Pal S, Slepenkin A, de la Maza L, Coleman MA. Cell-Free Screening, Production and Animal Testing of a STI-Related Chlamydial Major Outer Membrane Protein Supported in Nanolipoproteins. Vaccines (Basel) 2024; 12:1246. [PMID: 39591149 PMCID: PMC11598365 DOI: 10.3390/vaccines12111246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Vaccine development against Chlamydia, a prevalent sexually transmitted infection (STI), is imperative due to its global public health impact. However, significant challenges arise in the production of effective subunit vaccines based on recombinant protein antigens, particularly with membrane proteins like the Major Outer Membrane Protein (MOMP). METHODS Cell-free protein synthesis (CFPS) technology is an attractive approach to address these challenges as a method of high-throughput membrane protein and protein complex production coupled with nanolipoprotein particles (NLPs). NLPs provide a supporting scaffold while allowing easy adjuvant addition during formulation. Over the last decade, we have been working toward the production and characterization of MOMP-NLP complexes for vaccine testing. RESULTS The work presented here highlights the expression and biophysical analyses, including transmission electron microscopy (TEM) and dynamic light scattering (DLS), which confirm the formation and functionality of MOMP-NLP complexes for use in animal studies. Moreover, immunization studies in preclinical models compare the past and present protective efficacy of MOMP-NLP formulations, particularly when co-adjuvanted with CpG and FSL1. CONCLUSION Ex vivo assessments further highlight the immunomodulatory effects of MOMP-NLP vaccinations, emphasizing their potential to elicit robust immune responses. However, further research is warranted to optimize vaccine formulations further, validate efficacy against Chlamydia trachomatis, and better understand the underlying mechanisms of immune response.
Collapse
Affiliation(s)
- Mariam Mohagheghi
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA (A.A.-O.); (S.H.-P.); (B.D.V.); (A.R.); (B.V.R.)
| | - Abisola Abisoye-Ogunniyan
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA (A.A.-O.); (S.H.-P.); (B.D.V.); (A.R.); (B.V.R.)
| | - Angela C. Evans
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA (A.A.-O.); (S.H.-P.); (B.D.V.); (A.R.); (B.V.R.)
| | - Alexander E. Peterson
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA (A.A.-O.); (S.H.-P.); (B.D.V.); (A.R.); (B.V.R.)
| | - Gregory A. Bude
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA (A.A.-O.); (S.H.-P.); (B.D.V.); (A.R.); (B.V.R.)
| | - Steven Hoang-Phou
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA (A.A.-O.); (S.H.-P.); (B.D.V.); (A.R.); (B.V.R.)
| | - Byron Dillon Vannest
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA (A.A.-O.); (S.H.-P.); (B.D.V.); (A.R.); (B.V.R.)
| | - Dominique Hall
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA (A.A.-O.); (S.H.-P.); (B.D.V.); (A.R.); (B.V.R.)
| | - Amy Rasley
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA (A.A.-O.); (S.H.-P.); (B.D.V.); (A.R.); (B.V.R.)
| | - Dina R. Weilhammer
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA (A.A.-O.); (S.H.-P.); (B.D.V.); (A.R.); (B.V.R.)
| | - Nicholas O. Fischer
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA (A.A.-O.); (S.H.-P.); (B.D.V.); (A.R.); (B.V.R.)
| | - Wei He
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA (A.A.-O.); (S.H.-P.); (B.D.V.); (A.R.); (B.V.R.)
| | - Beverly V. Robinson
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA (A.A.-O.); (S.H.-P.); (B.D.V.); (A.R.); (B.V.R.)
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Anatoli Slepenkin
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Luis de la Maza
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Matthew A. Coleman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA (A.A.-O.); (S.H.-P.); (B.D.V.); (A.R.); (B.V.R.)
| |
Collapse
|
2
|
Vega E, Burgos JM, Souto EB, García ML, Pujol M, Sánchez-López E. Biodegradable nanoplatforms for antigen delivery: part I - state of the art review of polymeric nanoparticles for cancer immunotherapy. Expert Opin Drug Deliv 2024; 21:1251-1262. [PMID: 39245953 DOI: 10.1080/17425247.2024.2400293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
INTRODUCTION Polymeric nanoparticles used for antigen delivery against infections and for cancer immunotherapy are an emerging therapeutic strategy in promoting the development of innovative vaccines. Beyond their capability to create targeted delivery systems with controlled release of payloads, biodegradable polymers are utilized for their ability to enhance the immunogenicity and stability of antigens. AREAS COVERED This review extensively discusses the physicochemical parameters that affect the behavior of nanoparticles as antigen-delivery systems. Additionally, various types of natural and synthetic polymers and recent advancements in nanoparticle-based targeted vaccine production are reviewed. EXPERT OPINION Biodegradable polymeric nanoparticles have gained major interest in the vaccination filed and have been extensively used to encapsulate antigens against a wide variety of tumors. Moreover, their versatility in terms of tunning their physicochemical characteristics, and their surface, facilitates the targeting to antigen presenting cells and enhances immune response.
Collapse
Affiliation(s)
- Estefanía Vega
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Jordi Madariaga Burgos
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Eliana B Souto
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Ireland
| | - María Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Montserrat Pujol
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Yilma AN, Sahu R, Subbarayan P, Villinger F, Coats MT, Singh SR, Dennis VA. PLGA-Chitosan Encapsulated IL-10 Nanoparticles Modulate Chlamydia Inflammation in Mice. Int J Nanomedicine 2024; 19:1287-1301. [PMID: 38348174 PMCID: PMC10860865 DOI: 10.2147/ijn.s432970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/12/2023] [Indexed: 02/15/2024] Open
Abstract
Introduction Interleukin-10 (IL-10) is a key anti-inflammatory mediator in protecting host from over-exuberant responses to pathogens and play important roles in wound healing, autoimmunity, cancer, and homeostasis. However, its application as a therapeutic agent for biomedical applications has been limited due to its short biological half-life. Therefore, it is important to prolong the half-life of IL-10 to replace the current therapeutic application, which relies on administering large and repeated dosages. Therefore, not a cost-effective approach. Thus, studies that aim to address this type of challenges are always in need. Methods Recombinant IL-10 was encapsulated in biodegradable nanoparticles (Poly-(Lactic-co-Glycolic Acid) and Chitosan)) by the double emulsion method and then characterized for size, surface charge, thermal stability, cytotoxicity, in vitro release, UV-visible spectroscopy, and Fourier Transform-Infrared Spectroscopy as well as evaluated for its anti-inflammatory effects. Bioactivity of encapsulated IL-10 was evaluated in vitro using J774A.1 macrophage cell-line and in vivo using BALB/c mice. Inflammatory cytokines (IL-6 and TNF-α) were quantified from culture supernatants using specific enzyme-linked immunosorbent assay (ELISA), and significance was analyzed using ANOVA. Results We obtained a high 96% encapsulation efficiency with smooth encapsulated IL-10 nanoparticles of ~100-150 nm size and release from nanoparticles as measurable to 22 days. Our result demonstrated that encapsulated IL-10 was biocompatible and functional by reducing the inflammatory responses induced by LPS in macrophages. Of significance, we also proved the functionality of encapsulated IL-10 by its capacity to reduce inflammation in BALB/c mice as provoked by Chlamydia trachomatis, an inflammatory sexually transmitted infectious bacterium. Discussion Collectively, our results show the successful IL-10 encapsulation, slow release to prolong its biological half-life and reduce inflammatory cytokines IL-6 and TNF production in vitro and in mice. Our results serve as proof of concept to further explore the therapeutic prospective of encapsulated IL-10 for biomedical applications, including inflammatory diseases.
Collapse
Affiliation(s)
- Abebayehu N Yilma
- Center for NanoBiotechnology Research (CNBR), Alabama State University, Montgomery, AL, USA
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Rajnish Sahu
- Center for NanoBiotechnology Research (CNBR), Alabama State University, Montgomery, AL, USA
| | - Praseetha Subbarayan
- Center for NanoBiotechnology Research (CNBR), Alabama State University, Montgomery, AL, USA
| | - Francois Villinger
- Department of Biology, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Mamie T Coats
- Department of Clinical and Diagnostics Sciences, School of Health Professionals, The University at Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Shree R Singh
- Center for NanoBiotechnology Research (CNBR), Alabama State University, Montgomery, AL, USA
| | - Vida A Dennis
- Center for NanoBiotechnology Research (CNBR), Alabama State University, Montgomery, AL, USA
| |
Collapse
|
4
|
Sahu R, Verma R, Egbo TE, Giambartolomei GH, Singh SR, Dennis VA. Effects of prime-boost strategies on the protective efficacy and immunogenicity of a PLGA (85:15)-encapsulated Chlamydia recombinant MOMP nanovaccine. Pathog Dis 2024; 82:ftae004. [PMID: 38862192 PMCID: PMC11186516 DOI: 10.1093/femspd/ftae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/08/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024] Open
Abstract
To begin to optimize the immunization routes for our reported PLGA-rMOMP nanovaccine [PLGA-encapsulated Chlamydia muridarum (Cm) recombinant major outer membrane protein (rMOMP)], we compared two prime-boost immunization strategies [subcutaneous (SC) and intramuscular (IM-p) prime routes followed by two SC-boosts)] to evaluate the nanovaccine-induced protective efficacy and immunogenicity in female BALB/c mice. Our results showed that mice immunized via the SC and IM-p routes were protected against a Cm genital challenge by a reduction in bacterial burden and with fewer bacteria in the SC mice. Protection of mice correlated with rMOMP-specific Th1 (IL-2 and IFN-γ) and not Th2 (IL-4, IL-9, and IL-13) cytokines, and CD4+ memory (CD44highCD62Lhigh) T-cells, especially in the SC mice. We also observed higher levels of IL-1α, IL-6, IL-17, CCL-2, and G-CSF in SC-immunized mice. Notably, an increase of cytokines/chemokines was seen after the challenge in the SC, IM-p, and control mice (rMOMP and PBS), suggesting a Cm stimulation. In parallel, rMOMP-specific Th1 (IgG2a and IgG2b) and Th2 (IgG1) serum, mucosal, serum avidity, and neutralizing antibodies were more elevated in SC than in IM-p mice. Overall, the homologous SC prime-boost immunization of mice induced enhanced cellular and antibody responses with better protection against a genital challenge compared to the heterologous IM-p.
Collapse
Affiliation(s)
- Rajnish Sahu
- Center for NanoBiotechnology Research, Department of Biological Sciences, 1627 Harris Way, Alabama State University, Montgomery AL, 36104, United States
| | - Richa Verma
- Center for NanoBiotechnology Research, Department of Biological Sciences, 1627 Harris Way, Alabama State University, Montgomery AL, 36104, United States
| | - Timothy E Egbo
- US Army Medical Research Institute of Infectious Diseases, Unit 8900, DPO, AE, Box 330, 09831, United States
| | - Guillermo H Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM). CONICET. AV. Cordoba 2351, Universidad de Buenos Aires, Buenos Aires, C1120AAR, Argentina
| | - Shree R Singh
- Center for NanoBiotechnology Research, Department of Biological Sciences, 1627 Harris Way, Alabama State University, Montgomery AL, 36104, United States
| | - Vida A Dennis
- Center for NanoBiotechnology Research, Department of Biological Sciences, 1627 Harris Way, Alabama State University, Montgomery AL, 36104, United States
| |
Collapse
|
5
|
Narmani A, Jahedi R, Bakhshian-Dehkordi E, Ganji S, Nemati M, Ghahramani-Asl R, Moloudi K, Hosseini SM, Bagheri H, Kesharwani P, Khani A, Farhood B, Sahebkar A. Biomedical applications of PLGA nanoparticles in nanomedicine: advances in drug delivery systems and cancer therapy. Expert Opin Drug Deliv 2023; 20:937-954. [PMID: 37294853 DOI: 10.1080/17425247.2023.2223941] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 06/06/2023] [Indexed: 06/11/2023]
Abstract
INTRODUCTION During the last decades, the ever-increasing proportion of patients with cancer has been led to serious concerns worldwide. Therefore, the development and use of novel pharmaceuticals, like nanoparticles (NPs)-based drug delivery systems (DDSs), can be potentially effective in cancer therapy. AREA COVERED Poly lactic-co-glycolic acid (PLGA) NPs, as a kind of bioavailable, biocompatible, and biodegradable polymers, have approved by the Food and Drug Administration (FDA) for some biomedical and pharmaceutical applications. PLGA is comprised of lactic acid (LA) and glycolic acid (GA) and their ratio could be controlled during various syntheses and preparation approaches. LA/GA ratio determines the stability and degradation time of PLGA; lower content of GA results in fast degradation. There are several approaches for preparing PLGA NPs that can affect their various aspects, such as size, solubility, stability, drug loading, pharmacokinetics, and pharmacodynamics, and so on. EXPERT OPINION These NPs have indicated the controlled and sustained drug release in the cancer site and can use in passive and active (via surface modification) DDSs. This review aims to provide an overview of PLGA NPs, their preparation approach and physicochemical aspects, drug release mechanism and the cellular fate, DDSs for efficient cancer therapy, and status in the pharmaceutical industry and nanomedicine.
Collapse
Affiliation(s)
- Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Roghayyeh Jahedi
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ehsan Bakhshian-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Saeid Ganji
- Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mahnaz Nemati
- Amir Oncology Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ruhollah Ghahramani-Asl
- Department of Medical Physics and Radiological Sciences, Faculty of Paramedicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Kave Moloudi
- Department of Radiology and Nuclear Medicine, Alley School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Mohammad Hosseini
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Hamed Bagheri
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Ali Khani
- Radiation Sciences Department, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Ali A, Waris A, Khan MA, Asim M, Khan AU, Khan S, Zeb J. Recent advancement, immune responses, and mechanism of action of various vaccines against intracellular bacterial infections. Life Sci 2023; 314:121332. [PMID: 36584914 DOI: 10.1016/j.lfs.2022.121332] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Emerging and re-emerging bacterial infections are a serious threat to human and animal health. Extracellular bacteria are free-living, while facultative intracellular bacteria replicate inside eukaryotic host cells. Many serious human illnesses are now known to be caused by intracellular bacteria such as Salmonella enterica, Escherichia coli, Staphylococcus aureus, Rickettsia massiliae, Chlamydia species, Brucella abortus, Mycobacterium tuberculosis and Listeria monocytogenes, which result in substantial morbidity and mortality. Pathogens like Mycobacterium, Brucella, MRSA, Shigella, Listeria, and Salmonella can infiltrate and persist in mammalian host cells, particularly macrophages, where they proliferate and establish a repository, resulting in chronic and recurrent infections. The current treatment for these bacteria involves the application of narrow-spectrum antibiotics. FDA-approved vaccines against obligate intracellular bacterial infections are lacking. The development of vaccines against intracellular pathogenic bacteria are more difficult because host defense against these bacteria requires the activation of the cell-mediated pathway of the immune system, such as CD8+ T and CD4+ T. However, different types of vaccines, including live, attenuated, subunit, killed whole cell, nano-based and DNA vaccines are currently in clinical trials. Substantial development has been made in various vaccine strategies against intracellular pathogenic bacteria. This review focuses on the mechanism of intracellular bacterial infection, host immune response, and recent advancements in vaccine development strategies against various obligate intracellular bacterial infections.
Collapse
Affiliation(s)
- Asmat Ali
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Pakistan
| | - Abdul Waris
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong.
| | - Muhammad Ajmal Khan
- Division of Life Sciences, Center for Cancer Research and State Key Laboratory of Molecular Neurosciences, The Hong Kong University of Science and Technology, Hong Kong
| | - Muhammad Asim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong
| | - Atta Ullah Khan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China
| | - Sahrish Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jehan Zeb
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong
| |
Collapse
|
7
|
Fang L, Liu J, Liu Z, Zhou H. Immune modulating nanoparticles for the treatment of ocular diseases. J Nanobiotechnology 2022; 20:496. [DOI: 10.1186/s12951-022-01658-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022] Open
Abstract
AbstractOcular diseases are increasingly influencing people’s quality of life. Complicated inflammatory mechanisms involved in the pathogenic process of ocular diseases make inflammation-targeting treatment a potential therapeutic approach. The limited efficacy of conventional anti-inflammatory therapeutic strategies, caused by various objective factors, such as complex ocular biological barriers, and subjective factors, such as poor compliance, are promoting the development of new therapeutic methods. With the advantages of considerable tissue permeability, a controllable drug release rate, and selective tissue targeting ability, nanoparticles have successfully captured researchers’ attention and have become a research hotspot in treating ocular diseases. This review will focus on the advantages of nanosystems over traditional therapy, the anti-inflammation mechanisms of nanoparticles, and the anti-inflammatory applications of nanoparticles in different ocular diseases (ocular surface diseases, vitreoretinopathy, uveal diseases, glaucoma, and visual pathway diseases). Furthermore, by analyzing the current situation of nanotherapy and the challenges encountered, we hope to inspire new ideas and incentives for designing nanoparticles more consistent with human physiological characteristics to make progress based on conventional treatments. Overall, some progress has been made in nanoparticles for the treatment of ocular diseases, and nanoparticles have rather broad future clinical translation prospects.
Collapse
|
8
|
Peng B, Zhong S, Hua Y, Luo Q, Dong W, Wang C, Li Z, Yang C, Lei A, Lu C. Efficacy of Pgp3 vaccination for Chlamydia urogenital tract infection depends on its native conformation. Front Immunol 2022; 13:1018774. [PMID: 36466885 PMCID: PMC9709265 DOI: 10.3389/fimmu.2022.1018774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/31/2022] [Indexed: 07/28/2023] Open
Abstract
Urogenital tract infections with Chlamydia trachomatis have frequently been detected among patients diagnosed with sexually transmitted infections, and such infections lead to inflammatory complications. Currently, no licensed chlamydial vaccine is available in clinical practice. We previously reported that immunization with recombinant C. trachomatis plasmid-encoded virulence factor Pgp3 provided cross-serovar protection against C. muridarum genital tract infection. Because Pgp3 is a homotrimer and human antisera only recognize the trimeric form of Pgp3, we compared the effects of the native conformation of Pgp3 (trimer) and heat-denatured Pgp3 (monomer) to determine whether the native conformation is dispensable for the induction of protective immunity against chlamydial vaginal challenge. Both Pgp3 trimer and monomer immunization induced corresponding specific antibody production, but only trimer-induced antibody recognized endogenous Pgp3, and trimer-immunized mouse splenocytes showed the highest IFN-γ production upon restimulation with the chlamydial elementary body or native Pgp3 in vitro. Importantly, only Pgp3 trimer-immunized mice showed shortened lower genital tract chlamydial shedding and decreased upper genital tract pathology. Thus, Pgp3-induced protective immunity against Chlamydia urogenital tract infection is highly dependent on the native conformation, which will guide the design of Pgp3-based polypeptides and multi-subunit chlamydial vaccines.
Collapse
Affiliation(s)
- Bo Peng
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
- Department of Pathology, Hengyang Medical College, University of South China, Hengyang, China
| | - Shufang Zhong
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Yaoqin Hua
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Qizheng Luo
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Weilei Dong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Chuan Wang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Zhongyu Li
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Chunfen Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Aihua Lei
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Chunxue Lu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| |
Collapse
|
9
|
Abisoye-Ogunniyan A, Carrano IM, Weilhammer DR, Gilmore SF, Fischer NO, Pal S, de la Maza LM, Coleman MA, Rasley A. A Survey of Preclinical Studies Evaluating Nanoparticle-Based Vaccines Against Non-Viral Sexually Transmitted Infections. Front Pharmacol 2021; 12:768461. [PMID: 34899322 PMCID: PMC8662999 DOI: 10.3389/fphar.2021.768461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
A worldwide estimate of over one million STIs are acquired daily and there is a desperate need for effective preventive as well as therapeutic measures to curtail this global health burden. Vaccines have been the most effective means for the control and potential eradication of infectious diseases; however, the development of vaccines against STIs has been a daunting task requiring extensive research for the development of safe and efficacious formulations. Nanoparticle-based vaccines represent a promising platform as they offer benefits such as targeted antigen presentation and delivery, co-localized antigen-adjuvant combinations for enhanced immunogenicity, and can be designed to be biologically inert. Here we discuss promising types of nanoparticles along with outcomes from nanoparticle-based vaccine preclinical studies against non-viral STIs including chlamydia, syphilis, gonorrhea, and recommendations for future nanoparticle-based vaccines against STIs.
Collapse
Affiliation(s)
- Abisola Abisoye-Ogunniyan
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Isabella M Carrano
- Department of Plant and Microbial Biology, Rausser College of Natural Resources, University of California, Berkeley, Berkeley, CA, United States
| | - Dina R Weilhammer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Sean F Gilmore
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Nicholas O Fischer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
| | - Matthew A Coleman
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Amy Rasley
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
10
|
Jearanaiwitayakul T, Apichirapokey S, Chawengkirttikul R, Limthongkul J, Seesen M, Jakaew P, Trisiriwanich S, Sapsutthipas S, Sunintaboon P, Ubol S. Peritoneal Administration of a Subunit Vaccine Encapsulated in a Nanodelivery System Not Only Augments Systemic Responses against SARS-CoV-2 but Also Stimulates Responses in the Respiratory Tract. Viruses 2021; 13:v13112202. [PMID: 34835008 PMCID: PMC8617950 DOI: 10.3390/v13112202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022] Open
Abstract
The COVID-19 pandemic has currently created an unprecedented threat to human society and global health. A rapid mass vaccination to create herd immunity against SARS-CoV-2 is a crucial measure to ease the spread of this disease. Here, we investigated the immunogenicity of a SARS-CoV-2 subunit vaccine candidate, a SARS-CoV-2 spike glycoprotein encapsulated in N,N,N-trimethyl chitosan particles or S-TMC NPs. Upon intraperitoneal immunization, S-TMC NP-immunized mice elicited a stronger systemic antibody response, with neutralizing capacity against SARS-CoV-2, than mice receiving the soluble form of S-glycoprotein. S-TMC NPs were able to stimulate the circulating IgG and IgA as found in SARS-CoV-2-infected patients. In addition, spike-specific T cell responses were drastically activated in S-TMC NP-immunized mice. Surprisingly, administration of S-TMC NPs via the intraperitoneal route also stimulated SARS-CoV-2-specific immune responses in the respiratory tract, which were demonstrated by the presence of high levels of SARS-CoV-2-specific IgG and IgA in the lung homogenates and bronchoalveolar lavages of the immunized mice. We found that peritoneal immunization with spike nanospheres stimulates both systemic and respiratory mucosal immunity.
Collapse
Affiliation(s)
- Tuksin Jearanaiwitayakul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.J.); (S.A.); (R.C.); (J.L.); (M.S.); (P.J.)
| | - Suttikarn Apichirapokey
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.J.); (S.A.); (R.C.); (J.L.); (M.S.); (P.J.)
| | - Runglawan Chawengkirttikul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.J.); (S.A.); (R.C.); (J.L.); (M.S.); (P.J.)
| | - Jitra Limthongkul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.J.); (S.A.); (R.C.); (J.L.); (M.S.); (P.J.)
| | - Mathurin Seesen
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.J.); (S.A.); (R.C.); (J.L.); (M.S.); (P.J.)
| | - Phissinee Jakaew
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.J.); (S.A.); (R.C.); (J.L.); (M.S.); (P.J.)
| | - Sakalin Trisiriwanich
- Institute of Biological Products, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand; (S.T.); (S.S.)
| | - Sompong Sapsutthipas
- Institute of Biological Products, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand; (S.T.); (S.S.)
| | - Panya Sunintaboon
- Department of Chemistry, Faculty of Science, Mahidol University, Salaya, Nakornpatom 73170, Thailand;
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.J.); (S.A.); (R.C.); (J.L.); (M.S.); (P.J.)
- Correspondence:
| |
Collapse
|