1
|
Ceccopieri C, Madej JP. Chicken Secondary Lymphoid Tissues-Structure and Relevance in Immunological Research. Animals (Basel) 2024; 14:2439. [PMID: 39199973 PMCID: PMC11350708 DOI: 10.3390/ani14162439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Recent discoveries have indicated the importance of developing modern strategies for vaccinations, more ethical research models, and effective alternatives to antibiotic treatment in farm animals. Chickens (Gallus gallus) play a crucial role in this context given the commercial and economic relevance of poultry production worldwide and the search for analogies between the immune systems of humans and birds. Specifically, chicken secondary lymphoid tissues share similar features to their human counterparts. Chickens have several secondary or peripheral lymphoid tissues that are the sites where the adaptive immune response is initiated. The more general classification of these organs divides them into the spleen and skin-, pineal-, or mucosa-associated lymphoid tissues. Each of these tissues is further subdivided into separate lymphoid structures that perform specific and different functions along the animal's body. A review summarizing the state of the art of research on chicken secondary lymphoid organs is of great relevance for the design of future studies.
Collapse
Affiliation(s)
| | - Jan P. Madej
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| |
Collapse
|
2
|
Wishna-Kadawarage RN, Połtowicz K, Hickey RM, Siwek M. Modulation of gene expression in immune-related organs by in ovo stimulation with probiotics and prophybiotics in broiler chickens. J Appl Genet 2024:10.1007/s13353-024-00891-y. [PMID: 38987456 DOI: 10.1007/s13353-024-00891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
In ovo stimulation has been studied intensively as an alternative to antibiotic use in poultry production. We investigated the potential use of a probiotic in combination with a phytobiotic as a prophybiotic for in ovo stimulation and reported its beneficial effects on the gut microbiome of broiler chickens. The current study further investigates the gene expression in the immune-related organs of these chickens to understand the tissue-specific immunomodulatory effects of the treatments. The selected prophybiotic (Leuconostoc mesenteroides with garlic aqueous extract) and its probiotic component alone were injected into ROSS308 chicken eggs on the 12th day of incubation, and gene expression in cecal tonsils, spleen, and liver at 35 days of age was determined using qPCR method. The relative expression of each treatment was compared to the positive control, chickens injected with physiological saline in ovo. The results displayed a downregulation of pro- and anti-inflammatory cytokines in the cecal tonsils of the probiotic group and the liver of the prophybiotic group. The spleen displayed upregulated AVBD1 in both groups and upregulated IL1-β in the probiotic group. The probiotic group displayed increased expression of genes related to metabolism of energy (COX16), protein (mTOR), and lipids (CYP46A1) whereas the prophybiotic group displayed reduced expression of genes related to cholesterol synthesis (SREBP1) and glucose transportation (SLC2A2) in the liver. In conclusion, Leuconostoc mesenteroides differentially modulated gene expression in chickens when administered in ovo in combination with garlic aqueous extract. Further in ovo studies with different prophybiotic combinations are required to optimize the benefits in broiler chickens.
Collapse
Affiliation(s)
- Ramesha N Wishna-Kadawarage
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland.
| | - Katarzyna Połtowicz
- Department of Poultry Breeding, National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Poland
| | - Rita M Hickey
- Teagasc Food Research Centre, Moorepark, P61 C996, Fermoy, Co. Cork, Ireland
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland
| |
Collapse
|
3
|
Ciszewski A, Jarosz ŁS, Michalak K, Marek A, Grądzki Z, Wawrzykowski J, Szymczak B, Rysiak A. Proteome and Peptidome Changes and Zn Concentration in Chicken after In Ovo Stimulation with a Multi-Strain Probiotic and Zn-Gly Chelate: Preliminary Research. Curr Issues Mol Biol 2024; 46:1259-1280. [PMID: 38392198 PMCID: PMC10888147 DOI: 10.3390/cimb46020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
The aim of the study was to determine differences in the proteome and peptidome and zinc concentrations in the serum and tissues of chickens supplemented with a multi-strain probiotic and/or zinc glycine chelate in ovo. A total of 1400 fertilized broiler eggs (Ross × Ross 708) were divided into four groups: a control and experimental groups injected with a multi-strain probiotic, with zinc glycine chelate, and with the multi-strain probiotic and zinc glycine chelate. The proteome and peptidome were analyzed using SDS-PAGE and MALDI-TOF MS, and the zinc concentration was determined by flame atomic absorption spectrometry. We showed that in ovo supplementation with zinc glycine chelate increased the Zn concentration in the serum and yolk sac at 12 h post-hatch. The results of SDS-PAGE and western blot confirmed the presence of Cu/Zn SOD in the liver and in the small and large intestines at 12 h and at 7 days after hatching in all groups. Analysis of the MALDI-TOF MS spectra of chicken tissues showed in all experimental groups the expression of proteins and peptides that regulate immune response, metabolic processes, growth, development, and reproduction.
Collapse
Affiliation(s)
- Artur Ciszewski
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| | - Łukasz S Jarosz
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| | - Katarzyna Michalak
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| | - Agnieszka Marek
- Sub-Department of Preventive Veterinary and Avian Diseases, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| | - Zbigniew Grądzki
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| | - Jacek Wawrzykowski
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| | - Bartłomiej Szymczak
- Sub-Department of Pathophysiology, Department of Preclinical of Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| | - Anna Rysiak
- Department of Botany, Mycology, and Ecology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
4
|
Lamichhane B, Mawad AMM, Saleh M, Kelley WG, Harrington PJ, Lovestad CW, Amezcua J, Sarhan MM, El Zowalaty ME, Ramadan H, Morgan M, Helmy YA. Salmonellosis: An Overview of Epidemiology, Pathogenesis, and Innovative Approaches to Mitigate the Antimicrobial Resistant Infections. Antibiotics (Basel) 2024; 13:76. [PMID: 38247636 PMCID: PMC10812683 DOI: 10.3390/antibiotics13010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/24/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Salmonella is a major foodborne pathogen and a leading cause of gastroenteritis in humans and animals. Salmonella is highly pathogenic and encompasses more than 2600 characterized serovars. The transmission of Salmonella to humans occurs through the farm-to-fork continuum and is commonly linked to the consumption of animal-derived food products. Among these sources, poultry and poultry products are primary contributors, followed by beef, pork, fish, and non-animal-derived food such as fruits and vegetables. While antibiotics constitute the primary treatment for salmonellosis, the emergence of antibiotic resistance and the rise of multidrug-resistant (MDR) Salmonella strains have highlighted the urgency of developing antibiotic alternatives. Effective infection management necessitates a comprehensive understanding of the pathogen's epidemiology and transmission dynamics. Therefore, this comprehensive review focuses on the epidemiology, sources of infection, risk factors, transmission dynamics, and the host range of Salmonella serotypes. This review also investigates the disease characteristics observed in both humans and animals, antibiotic resistance, pathogenesis, and potential strategies for treatment and control of salmonellosis, emphasizing the most recent antibiotic-alternative approaches for infection control.
Collapse
Affiliation(s)
- Bibek Lamichhane
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Asmaa M. M. Mawad
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Mohamed Saleh
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - William G. Kelley
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Patrick J. Harrington
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Cayenne W. Lovestad
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Jessica Amezcua
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Mohamed M. Sarhan
- Faculty of Pharmacy, King Salman International University (KSIU), Ras Sudr 8744304, Egypt
| | - Mohamed E. El Zowalaty
- Veterinary Medicine and Food Security Research Group, Medical Laboratory Sciences Program, Faculty of Health Sciences, Abu Dhabi Women’s Campus, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Melissa Morgan
- Department of Animal and Food Sciences, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
5
|
Sharma S, Kulkarni RR, Sharif S, Hassan H, Alizadeh M, Pratt S, Abdelaziz K. In ovo feeding of probiotic lactobacilli differentially alters expression of genes involved in the development and immunological maturation of bursa of Fabricius in pre-hatched chicks. Poult Sci 2024; 103:103237. [PMID: 38011819 PMCID: PMC10801656 DOI: 10.1016/j.psj.2023.103237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 11/29/2023] Open
Abstract
Compelling evidence indicates that immunological maturation of the gut-associated lymphoid tissues, including the bursa of Fabricius, is dependent upon antigenic stimulation post-hatch. In view of these data, the present study investigated the impact of exposing the immune system of chick embryos to antigenic stimuli, via in ovo delivery of poultry-specific lactobacilli, on the expression of genes associated with early bursal development and maturation. Broiler line embryonated eggs were inoculated with 106 and 107 colony-forming units (CFUs) of an individual or a mixture of Lactobacillus species, including L. crispatus (C25), L. animalis (P38), L. acidophilus (P42), and L. reuteri (P43), at embryonic day 18 (ED18). The bursa of Fabricius was collected from pre-hatched chicks (ED20) to measure the expression levels of various immune system genes. The results revealed that L. acidophilus and the mixture of Lactobacillus species at the dose of 106 CFU consistently elicited higher expression of genes responsible for B cell development, differentiation, and survival (B cell activating factor (BAFF), BAFF-receptor (BAFF-R)), and antibody production (interleukin (IL)-10) and diversification (TGF-β). Similar expression patterns were also noted in T helper (Th) cell-associated cytokine genes, including Th1-type cytokines (interferon (IFN)-γ and IL-12p40), Th2-type cytokines (IL-4 and IL-13) and Th17 cytokine (IL-17). Overall, these results suggest that the supplementation of poultry-specific lactobacilli to chick embryos might be beneficial for accelerating the development and immunological maturation of the bursa of Fabricius. However, further studies are required to determine if the changes in gene expression are associated with the developmental trajectory and phenotypes of bursal cells.
Collapse
Affiliation(s)
- Shreeya Sharma
- Department of Animal and Veterinary Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, USA
| | - Raveendra R Kulkarni
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Hosni Hassan
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Scott Pratt
- Department of Animal and Veterinary Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, USA
| | - Khaled Abdelaziz
- Department of Animal and Veterinary Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, USA.
| |
Collapse
|
6
|
Alizadeh M, Raj S, Shojadoost B, Matsuyama-Kato A, Boodhoo N, Abdelaziz K, Sharif S. In ovo administration of retinoic acid enhances cell-mediated immune responses against an inactivated H9N2 avian influenza virus vaccine. Vaccine 2023; 41:7281-7289. [PMID: 37923694 DOI: 10.1016/j.vaccine.2023.10.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 10/15/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
The H9N2 subtype avian influenza virus (AIV) is a low pathogenic AIV that infects avian species and lead to huge economical losses in the poultry industry. The unique immunomodulatory properties of Retinoic acid (RA), an active component of vitamin A, highlights its potential to enhance chicken's resistance to infectious diseases and perhaps vaccine-induced immunity. Therefore, the present study evaluated the effects of in ovo supplementation of RA on the immunogenicity and protective efficacy of an inactivated avian influenza virus vaccine. On embryonic day 18, eggs were inoculated with either 90 μmol RA/200 μL/egg or diluent into the amniotic sac. On days 7 and 21 post-hatch, birds were vaccinated with 15 μg of β-propiolactone (BPL) inactivated H9N2 virus via the intramuscular route. One group received BPL in combination with an adjuvant, while the other group received saline solution and served as a non-vaccinated control group. Serum samples were collected on days 7, 14, 21, 28, 35, and 42 post-primary vaccination (ppv) for antibody analysis. On day 24 ppv, spleens were collected, and splenocytes were isolated to analyze cytokine expression, interferon gamma (IFN-γ) production, and cell population. On day 28 ppv, birds in all groups were infected with H9N2 virus and oral and cloacal swabs were collected for TCID50 (50 % Tissue Culture Infectious Dose) assay up to day 7 post-infection. The results demonstrated that in ovo administration of RA did not significantly enhance the AIV vaccine-induced antibody response against H9N2 virus compared to the group that received the vaccine alone. However, RA supplementation enhanced the frequency of macrophages (KUL01+), expression of inflammatory cytokines and production of IFN-γ by splenocytes. In addition, RA administration reduced oral shedding of AIV on day 5 post-infection. In conclusion, these findings suggest that RA can be supplemented in ovo to enhance AIV vaccine efficacy against LPAIV.
Collapse
Affiliation(s)
- Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Sugandha Raj
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | | - Ayumi Matsuyama-Kato
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Nitish Boodhoo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Khaled Abdelaziz
- Animal and Veterinary Sciences Department, Clemson University, Clemson, SC 29634, USA.
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
7
|
Alizadeh M, Shojadoost B, Boodhoo N, Raj S, Sharif S. Molecular and cellular characterization of immunity conferred by lactobacilli against necrotic enteritis in chickens. Front Immunol 2023; 14:1301980. [PMID: 38022592 PMCID: PMC10662302 DOI: 10.3389/fimmu.2023.1301980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Necrotic enteritis is an important enteric disease of poultry that can be controlled with in-feed antibiotics. However, with the concerns over antimicrobial resistance, there is an increased interest in the use of alternatives. Probiotics are one of the alternatives that have gained considerable attention due to their antimicrobial and immunomodulatory activities. Therefore, in the present study, we evaluated the effects of two different Lactobacillus species alone or as a cocktail on prevention of necrotic enteritis. Day-old male broiler chickens were divided into five groups and on days 1, 8, 15, and 22, birds in groups 2 and 3 received 1×108 colony forming units (CFU) of L. johnsonii and L. reuteri, respectively. Group 4 received probiotic cocktails containing both bacteria (108 CFU/bird) and the negative and positive control groups did not receive any lactobacilli. Starting on day 23 post-hatch, birds in all groups (except the negative control group) were orally challenged twice per day with 3×108 CFU of a pathogenic C. perfringens strain for 3 days. Tissue and cecal samples were collected before and after challenge to assess gene expression, lymphocyte subsets determination, and microbiome analysis. On day 26 of age, lesion scoring was performed. The results demonstrated that the group that received the lactobacilli cocktail had significantly reduced lesion scores compared to the positive control group. In addition, the expression of interleukin (IL)-12 in the jejunum and CXC motif chemokine ligand 8 (CXCL8), IL-13, and IL-17 in the ileum were downregulated in the group that received the lactobacilli cocktail when compared to the positive control. Treating chickens with the lactobacilli cocktail prior to challenge enhanced the percentage of CD3-CD8+ cells and Bu-1+IgY+ B cells in the ileum and increased the frequency of monocyte/macrophages, CD3-CD8+ cells, Bu-1+IgM+, and Bu-1+IgY+ B cells in the jejunum. Treatment with the lactobacilli cocktail reduced the relative expression of Gamma-Protobacteria and Firmicutes compared to the positive control group. In conclusion, the results presented here suggest that treatment with the lactobacilli cocktail containing L. johnsonii and L. reuteri reduced necrotic enteritis lesions in the small intestine of chickens, possibly through the modulation of immune responses.
Collapse
Affiliation(s)
- Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Nitish Boodhoo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sugandha Raj
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
8
|
Ciszewski A, Jarosz ŁS, Bielecka A, Marek A, Szymczak B, Grądzki Z, Rysiak A. Effect of In Ovo Administration of a Multi-Strain Probiotic and Zinc Glycine Chelate on Antioxidant Capacity and Selected Immune Parameters in Newly Hatched Chicks. Antioxidants (Basel) 2023; 12:1905. [PMID: 38001758 PMCID: PMC10669093 DOI: 10.3390/antiox12111905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
The aim of this study was to determine the effect of in ovo co-supplementation of chicken embryos with a multi-strain probiotic containing effective microorganisms and zinc glycine chelate on total antioxidant capacity; concentrations of sulfhydryl groups, bityrosine bridges, formylkynurenines, hydroperoxides, proteins, corticosterone, pro- and anti-inflammatory cytokines and heat shock proteins; and the activity of catalase and superoxide dismutase in the serum, yolk sac and tissues of broiler chickens at 12 h and at 7 days after hatching. The results indicate high SOD activity in the small and large intestines of chicks at 12 h post-hatch in the groups receiving the multi-strain probiotic and in the small intestine and yolk sac of birds receiving the multi-strain probiotic and Zn-Gly chelate. High concentrations of TNF-α and IFN-γ in the yolk sac and serum after in ovo administration of Zn-Gly chelate were observed 12 h after hatching. The use of a probiotic and a probiotic with Zn-Gly chelate increased the total antioxidant capacity in the tissues of chickens. It can be concluded that in ovo administration of a multi-strain probiotic and Zn-Gly chelate can maintain the oxidant/antioxidant balance in chickens and increase the defense capacity against oxidative stress.
Collapse
Affiliation(s)
- Artur Ciszewski
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland; (A.C.)
| | - Łukasz S. Jarosz
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland; (A.C.)
| | - Arletta Bielecka
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland;
| | - Agnieszka Marek
- Department of Preventive Veterinary and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Bartłomiej Szymczak
- Sub-Department of Pathophysiology, Department of Preclinical of Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| | - Zbigniew Grądzki
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland; (A.C.)
| | - Anna Rysiak
- Department of Botany, Mycology, and Ecology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
9
|
Ciszewski A, Jarosz Ł, Marek A, Michalak K, Grądzki Z, Kaczmarek B, Rysiak A. Effect of combined in ovo administration of zinc glycine chelate (Zn-Gly) and a multistrain probiotic on the modulation of cellular and humoral immune responses in broiler chickens. Poult Sci 2023; 102:102823. [PMID: 37406438 PMCID: PMC10466233 DOI: 10.1016/j.psj.2023.102823] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/05/2023] [Accepted: 05/26/2023] [Indexed: 07/07/2023] Open
Abstract
The aim of the study was to determine the effect of in ovo administration of zinc glycine chelate (Zn-Gly), and a multistrain probiotic on the hatchability and selected parameters of the cellular and humoral immune response of chickens. The study was conducted on 1,400 fertilized eggs from commercial broiler breeders (Ross x Ross 708). Material for the study consisted of peripheral blood and spleens of chicks taken 12 h and 7 d after hatching. The results showed that both combined and single in ovo administration of the multistrain probiotic and zinc glycine chelate significantly reduced hatchability of chicks. The flow cytometry study showed that the highest percentage of CD4+ T cells, CD4+CD25+, and high expression of KUL01 in the serum were obtained in the group supplemented with probiotic and Zn-Gly both 12 h and 7 d after hatching. In birds supplemented with probiotic and zinc chelate, a high percentage of TCRγδ+ cells was found in serum and spleen 12 h after hatching and in serum after 7 d. The percentage of Bu-1A+ lymphocytes in serum and spleen 12 h and 7 d after hatching was the highest in the group supplemented with probiotic and Zn-Gly. The highest expression of CD79A was observed in the group supplemented only with zinc chelate. There were no significant differences in the percentage of CD4+ cells in the spleens of birds in the groups receiving the multistrain probiotic at 12 h after hatching, and after 7 d, the percentage of CD4+ T cells was lower in the experimental groups than in the control group. The percentage of CD8+ cells in the serum of birds after hatching was lower in the group supplemented with multistrain probiotic and Zn-Gly than in the control group, but reached the highest value on d 7 after hatching. The obtained results confirm the strong effect of the combined administration of a multistrain probiotic and Zn-Gly chelate on lymphocyte proliferation and stimulation of cellular immune mechanisms in birds.
Collapse
Affiliation(s)
- Artur Ciszewski
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin 20-612, Poland
| | - Łukasz Jarosz
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin 20-612, Poland
| | - Agnieszka Marek
- Department of Preventive Veterinary and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin 20-950, Poland
| | - Katarzyna Michalak
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin 20-612, Poland.
| | - Zbigniew Grądzki
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin 20-612, Poland
| | - Beata Kaczmarek
- Department and Clinic of Animal Internal Diseases, Sub-Department of Internal Diseases of Farm Animals and Horses, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin 20-612, Poland
| | - Anna Rysiak
- Department of Botany, Mycology, and Ecology, Maria Curie-Skłodowska University, Lublin 20-033, Poland
| |
Collapse
|
10
|
Karaffová V, Teleky J, Pintarič M, Langerholc T, Mudroňová D, Hudec E, Ševčíková Z. Application of Lactobacillus reuteri B1/1 ( Limosilactobacillus reuteri) Improves Immunological Profile of the Non-Carcinogenic Porcine-Derived Enterocytes. Life (Basel) 2023; 13:life13051090. [PMID: 37240735 DOI: 10.3390/life13051090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
In our previous studies, Lactobacillus reuteri B1/1, which was renamed Limosilactobacillus reuteri (L. reuteri), was able to modulate the production of pro-inflammatory cytokines and other components of the innate immune response in vitro and in vivo. In this study, we evaluated the effect of Lactobacillus reuteri B1/1 in two concentrations (1 × 107 and 1 × 109 CFU) on the metabolic activity, adherence ability and relative gene expression of pro-inflammatory interleukins (IL-1β, IL-6, IL-8, IL-18), lumican and olfactomedin 4 produced by non-carcinogenic porcine-derived enterocytes (CLAB). CLAB cells were cultured in a 12-well cell culture plate at a concentration of 4 × 105 cells/well in DMEM medium in a controlled humidified atmosphere for 48 h. A 1 mL volume of each probiotic bacterial suspension was added to the CLAB cells. Plates were incubated for 2 h and 4 h. Our results revealed that L. reuteri B1/1 was able to adhere to CLAB cells in sufficient numbers in both concentrations. In particular, the concentration of 109L. reuteri B1/1 allowed to modulate the gene expression of pro-inflammatory cytokines, as well as to increase the metabolic activity of the cells. In addition, administration of L. reuteri B1/1 in both concentrations significantly stimulated gene expression for both proteins in the CLAB cell line after 4 h of incubation.
Collapse
Affiliation(s)
- Viera Karaffová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181 Košice, Slovakia
| | - Jana Teleky
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181 Košice, Slovakia
| | - Maša Pintarič
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia
| | - Tomaž Langerholc
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia
| | - Dagmar Mudroňová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181 Košice, Slovakia
| | - Erik Hudec
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181 Košice, Slovakia
| | - Zuzana Ševčíková
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181 Košice, Slovakia
| |
Collapse
|
11
|
Leal K, Truong L, Maga E, King A. Lactobacillus (L. plantarum & L. rhamnosus) and Saccharomyces (S. cerevisiae): effects on performance, biochemical parameters, ammonium ion in manure, and digestibility of broiler chickens. Poult Sci 2023; 102:102525. [PMID: 36848757 PMCID: PMC9982685 DOI: 10.1016/j.psj.2023.102525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Two strains of Lactobacillus combined with Baker's yeast (Saccharomyces cerevisiae) used as probiotics were evaluated to replace antibiotics in poultry flocks by reducing ammonia emissions in manure of broilers without comprising performance or health. One-day-old Cobb 500 broilers (600) were fed starter, grower, and finisher diets as control (CON); probiotic S. cerevisiae, inclusion rate at 4.26 × 106 CFU/kg of feed (SCY); probiotic L. plantarum and L. rhamnosus, inclusion rate at 4.35 × 108 CFU/kg of feed (LPR) for each; and a combination of Lactobacillus plantarum and L. rhamnosus at 4.35 × 108 CFU/kg of feed for each plus Saccharomyces cerevisiae and 4.26 × 106 CFU/kg of feed (SWL). The 4 treatments had 5 replicates (pens), each with 30 broilers. Performance was measured weekly as feed consumption, weight gain, BW, and feed conversion ratio (FCR) over a 6-wk grow-out period. Accompanying biochemical analyses included lipase activity of the pancreas, liver weight, and uric acid (UA) concentration in liver. Albumin, total protein, UA, ammonia, and blood urea nitrogen (BUN) were measured in serum. Ammonium (NH4+) in manure and apparent ileal digestibility from digesta were also measured. Significance was determined at P ≤ 0.05. Results showed that biochemical analyses had no significant treatment effect; however, there were significant temporal changes in performance measures for individual treatments. Feed consumption increased over time for all treatments (P = 2.00 × 10-16). CON had lower weight gain in wk 2 (P = 0.013) compared to all treatment and the lowest BW in wk 5 (P = 0.0008) and wk 6 (P = 0.0124) compared to SWL. Specific probiotic strains, with well-defined inclusion rates, and surrounding environmental analyses of present microbes are needed to ascertain effects of probiotics. Other important areas for investigation include 1) confirmation of probiotics present in the digesta/ceca and how they alter the microbiota within the gastrointestinal (GI) tract and 2) the serum heterophil:lymphocyte ratio to further examine potential immune responses to the probiotics.
Collapse
Affiliation(s)
- Kirsten Leal
- Animal Science Department, University of California - Davis, Davis, CA, USA.
| | | | | | | |
Collapse
|
12
|
In ovo feeding of nutraceuticals and its role in adjusting the gastrointestinal tract, antioxidative properties, immunological response, and performance in poultry: An updated review. CZECH JOURNAL OF ANIMAL SCIENCE 2023. [DOI: 10.17221/201/2022-cjas] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Taha-Abdelaziz K, Singh M, Sharif S, Sharma S, Kulkarni RR, Alizadeh M, Yitbarek A, Helmy YA. Intervention Strategies to Control Campylobacter at Different Stages of the Food Chain. Microorganisms 2023; 11:113. [PMID: 36677405 PMCID: PMC9866650 DOI: 10.3390/microorganisms11010113] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Campylobacter is one of the most common bacterial pathogens of food safety concern. Campylobacter jejuni infects chickens by 2-3 weeks of age and colonized chickens carry a high C. jejuni load in their gut without developing clinical disease. Contamination of meat products by gut contents is difficult to prevent because of the high numbers of C. jejuni in the gut, and the large percentage of birds infected. Therefore, effective intervention strategies to limit human infections of C. jejuni should prioritize the control of pathogen transmission along the food supply chain. To this end, there have been ongoing efforts to develop innovative ways to control foodborne pathogens in poultry to meet the growing customers' demand for poultry meat that is free of foodborne pathogens. In this review, we discuss various approaches that are being undertaken to reduce Campylobacter load in live chickens (pre-harvest) and in carcasses (post-harvest). We also provide some insights into optimization of these approaches, which could potentially help improve the pre- and post-harvest practices for better control of Campylobacter.
Collapse
Affiliation(s)
- Khaled Taha-Abdelaziz
- Department of Animal and Veterinary Science, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634, USA
| | - Mankerat Singh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shreeya Sharma
- Department of Animal and Veterinary Science, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634, USA
| | - Raveendra R. Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alexander Yitbarek
- Department of Animal Science, McGill University, Montreal, QC H9X 3V9, Canada
| | - Yosra A. Helmy
- Department of Veterinary Science, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
14
|
Balta I, Butucel E, Stef L, Pet I, Gradisteanu-Pircalabioru G, Chifiriuc C, Gundogdu O, McCleery D, Corcionivoschi N. Anti- Campylobacter Probiotics: Latest Mechanistic Insights. Foodborne Pathog Dis 2022; 19:693-703. [PMID: 35905047 PMCID: PMC9595622 DOI: 10.1089/fpd.2022.0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Campylobacter genus is the leading cause of human gastroenteritis, with the consumption of contaminated poultry meat as the main route of infection. Probiotic bacteria, such as Lactobacillus, Bacillus, Escherichia coli Nissle, and Bifidobacterium species, have a great immunomodulatory capacity and exhibit antipathogenic effects through various molecular mechanisms. Reducing Campylobacter levels in livestock animals, such as poultry, will have a substantial benefit to humans as it will reduce disease transmissibility through the food chain. Moreover, probiotic-based strategies might attenuate intestinal inflammatory processes, which consequently reduce the severity of Campylobacter disease progression. At a molecular level, probiotics can also negatively impact on the functionality of various Campylobacter virulence and survival factors (e.g., adhesion, invasion), and on the associated colonization proteins involved in epithelial translocation. The current review describes recent in vitro, in vivo, and preclinical findings on probiotic therapies, aiming to reduce Campylobacter counts in poultry and reduce the pathogen's virulence in the avian and human host. Moreover, we focused in particular on probiotics with known anti-Campylobacter activity seeking to understand the biological mechanisms involved in their mode of action.
Collapse
Affiliation(s)
- Igori Balta
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania.,Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine-King Michael I of Romania, Timisoara, Romania
| | - Eugenia Butucel
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine-King Michael I of Romania, Timisoara, Romania
| | - Lavinia Stef
- Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine-King Michael I of Romania, Timisoara, Romania
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine-King Michael I of Romania, Timisoara, Romania
| | | | - Carmen Chifiriuc
- Research Institute of University of Bucharest, Bucharest, Romania
| | - Ozan Gundogdu
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - David McCleery
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine-King Michael I of Romania, Timisoara, Romania
| |
Collapse
|
15
|
Alizadeh M, Astill J, Alqazlan N, Shojadoost B, Taha-Abdelaziz K, Bavananthasivam J, Doost JS, Sedeghiisfahani N, Sharif S. In ovo co-administration of vitamins (A and D) and probiotic lactobacilli modulates immune responses in broiler chickens. Poult Sci 2022; 101:101717. [PMID: 35172231 PMCID: PMC8851267 DOI: 10.1016/j.psj.2022.101717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 11/24/2022] Open
Abstract
There is evidence that probiotic lactobacilli, in addition to essential vitamins, such as vitamin A and D, have immunomodulatory properties that enhance immune response of neonatal chickens against infections. The present study evaluated the effects of in ovo administration of retinoic acid (RA), 25-Hydroxyvitamin D3 (VitD), and a lactobacilli cocktail on cytokine gene expression, antibody responses and spleen cell subsets in chickens. RA (90 µmol/egg) and VitD (0.6 μg/egg) were administered in ovo, either alone or in combination with lactobacilli (107 CFU/egg), at embryonic d 18. On d 5 and 10 posthatch, gene expression and cellular composition were analyzed in the bursa of Fabricius and spleen. Birds were immunized on d 14 and 21 posthatch with 2 T-dependent antigens, sheep red blood cells (SRBC) and keyhole limpet hemocyanin (KLH), to assess their antibody responses. Sera were collected from the immunized chickens on d 14, 21, 28, and 35 posthatch. The results demonstrated that lactobacilli treatment increased the number of monocyte/macrophages (KUL01+) and CD3+CD4+ T cells in the spleen, and enhanced serum anti-KLH IgM and IgY on d 14 postprimary immunization (P < 0.05). RA significantly increased serum IgY and IgM titers to KLH and enhanced the expression of interferon (IFN)-α, interleukin (IL)-1β, IL-6, IL-8, IL-12, IL-13, and transforming growth factor-β (TGF-β) in the bursa of Fabricius (P < 0.05). The percentage of CD3+CD8+ T cells, and monocyte/macrophages (KUL01+) was elevated in the spleen as well (P < 0.05). These findings reveal that prehatch administration of RA improves immunocompetency of neonatal chickens by increasing the production of cytokines that regulate innate immunity and through enhancing antibody-mediated response against T-dependent antigens.
Collapse
Affiliation(s)
- Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jake Astill
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada; Artemis Technologies Inc., Guelph, Ontario, Canada
| | - Nadiyah Alqazlan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Bahram Shojadoost
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Khaled Taha-Abdelaziz
- Animal and Veterinary Sciences Department, Clemson University, Clemson, SC, 29634, USA
| | | | - Janan Shoja Doost
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Negin Sedeghiisfahani
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|