1
|
Rojas I, Caballero-Solares A, Vadboncoeur É, Sandrelli RM, Hall JR, Clow KA, Parrish CC, Rise ML, Swanson AK, Gamperl AK. Prolonged Cold Exposure Negatively Impacts Atlantic Salmon ( Salmo salar) Liver Metabolism and Function. BIOLOGY 2024; 13:494. [PMID: 39056688 PMCID: PMC11273521 DOI: 10.3390/biology13070494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/12/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Large-scale mortality events have occurred during the winter in Atlantic salmon sea cages in Eastern Canada and Iceland. Thus, in salmon held at 3 °C that were apparently healthy (i.e., asymptomatic) and that had 'early' and 'advanced' symptoms of 'winter syndrome'/'winter disease' (WS/WD), we measured hepatic lipid classes and fatty acid levels, and the transcript expression of 34 molecular markers of fatty liver disease (FLD; a clinical sign of WS/WD). In addition, we correlated our results with previously reported characteristics associated with this disease's progression in these same individuals. Total lipid and triacylglycerol (TAG) levels increased by ~50%, and the expression of 32 of the 34 genes was dysregulated, in fish with symptoms of FLD. TAG was positively correlated with markers of inflammation (5loxa, saa5), hepatosomatic index (HSI), and plasma aspartate aminotransferase levels, but negatively correlated with genes related to lipid metabolism (elovl5b, fabp3a, cd36c), oxidative stress (catc), and growth (igf1). Multivariate analyses clearly showed that the three groups of fish were different, and that saa5 was the largest contributor to differences. Our results provide a number of biomarkers for FLD in salmon, and very strong evidence that prolonged cold exposure can trigger FLD in this ecologically and economically important species.
Collapse
Affiliation(s)
- Isis Rojas
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada (A.K.G.)
| | - Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada (A.K.G.)
| | - Émile Vadboncoeur
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada (A.K.G.)
| | - Rebeccah M. Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada (A.K.G.)
| | - Jennifer R. Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada
| | - Kathy A. Clow
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada (A.K.G.)
| | - Christopher C. Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada (A.K.G.)
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada (A.K.G.)
| | | | - Anthony K. Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada (A.K.G.)
| |
Collapse
|
2
|
Feng J, Huang Y, Huang M, Li X, Amoah K, Huang Y, Jian J. Apolipoprotein Eb (On-ApoEb) protects Oreochromis niloticus against Streptococcus agalactiae infection. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109069. [PMID: 37696347 DOI: 10.1016/j.fsi.2023.109069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Apolipoprotein E (ApoE), a critical targeting protein, has been found to play an essential role in the protection against infection and inflammation. However, the immune functions of ApoE against bacterial infection in fish have not been investigated. In this study, a full-length cDNA for ApoE, named On-ApoEb was cloned from Oreochromis niloticus. The predicted cDNA sequence was 831bp in length and coded for a protein of 276 amino acid residues, which shared 63.87%-98.55% identity with ApoEb from other fishes, and about 22% identity with ApoEb from mammals. On-ApoEb from O. niloticus was highly expressed in the liver and could be activated in the tissues (liver, spleen, brain, and intestine) after infection with Streptococcus agalactiae. Moreover, the results revealed that On-ApoEb could decrease the expression levels of pro-inflammatory factors, immune-related pathways, and apoptosis, while increasing the expression levels of anti-inflammatory factors. Furthermore, On-ApoEb was noted to improve the survival rate and reduce the bacterial load in the liver and spleen. These results suggested that On-ApoEb was connected with immune response and had anti-inflammation and anti-apoptosis activities.
Collapse
Affiliation(s)
- Jiamin Feng
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Yongxiong Huang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Meiling Huang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Xing Li
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Kwaku Amoah
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Yu Huang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| | - Jichang Jian
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| |
Collapse
|
3
|
Zhang Z, Li Q, Huang Y, Xu Z, Chen X, Jiang B, Huang Y, Jian J. Vasoactive Intestinal Peptide (VIP) Protects Nile Tilapia ( Oreochromis niloticus) against Streptococcus agalatiae Infection. Int J Mol Sci 2022; 23:ijms232314895. [PMID: 36499231 PMCID: PMC9738603 DOI: 10.3390/ijms232314895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Vasoactive intestinal peptide (VIP), a member of secretin/glucagon family, is involved in a variety of biological activities such as gut motility, immune responses, and carcinogenesis. In this study, the VIP precursor gene (On-VIP) and its receptor gene VIPR1 (On-VIPR1) were identified from Nile tilapia (Oreochromis niloticus), and the functions of On-VIP in the immunomodulation of Nile tilapia against bacterial infection were investigated and characterized. On-VIP and On-VIPR1 contain a 450 bp and a 1326 bp open reading frame encoding deduced protein of 149 and 441 amino acids, respectively. Simultaneously, the transcript of both On-VIP and On-VIPR1 were highly expressed in the intestine and sharply induced by Streptococcus agalatiae. Moreover, the positive signals of On-VIP and On-VIPR1 were detected in the longitudinal muscle layer and mucosal epithelium of intestine, respectively. Furthermore, both in vitro and in vivo experiments indicated several immune functions of On-VIP, including reduction of P65, P38, MyD88, STAT3, and AP1, upregulation of CREB and CBP, and suppression of inflammation. Additionally, in vivo experiments proved that On-VIP could protect Nile tilapia from bacterial infection and promote apoptosis and pyroptosis. These data lay a theoretical basis for further understanding of the mechanism of VIP guarding bony fish against bacterial infection.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qi Li
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongxiong Huang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhou Xu
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xinjin Chen
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Baijian Jiang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yu Huang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen 327005, China
| | - Jichang Jian
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen 327005, China
- Correspondence:
| |
Collapse
|
4
|
Li Q, Jiang B, Zhang Z, Huang Y, Xu Z, Chen X, Cai J, Huang Y, Jian J. CRP Involved in Nile Tilapia (Oreochromis niloticus) against Bacterial Infection. BIOLOGY 2022; 11:biology11081149. [PMID: 36009776 PMCID: PMC9405397 DOI: 10.3390/biology11081149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 01/08/2023]
Abstract
Simple Summary C-reactive protein (CRP) is an acute-phase protein that can be used as an early diagnostic marker for inflammation. Few CRPs have been isolated from teleost, and the specific immunological functions and mechanism of fish CRP have not been well-studied. Therefore, in this research, a CRP gene from Nile tilapia was identified, and its roles during bacterial infection were investigated. The current results revealed that CRP participated in anti-bacterial immune response through agglutinating bacterial, regulating phagocytosis and inflammation. Hopefully, our data might be beneficial in further study to understand the protective mechanism of fish CRP against bacterial infection. Abstract C-reactive protein (CRP) is an acute-phase protein that can be used as an early diagnostic marker for inflammation, which is also an evolutionarily conserved protein and has been identified from arthropods to mammals. However, the roles of CRP during the immune response of Nile tilapia (Oreochromis niloticus) remain unclear. In this study, a CRP gene from Nile tilapia (On-CRP) was identified, and its roles in response to bacterial infection were investigated in vivo or in vitro. On-CRP was found to contain an open reading frame of 675 bp, encoding a polypeptide of 224 amino acids with the conservative pentraxin domain. On-CRP shares more than 50% of its identity with other fish species, and 30% of its identity with mammals. The transcriptional level of On-CRP was most abundant in the liver and its transcripts can be remarkably induced following Streptococcus agalactiae and Aeromonas hydrophila infection. Furthermore, in vitro analysis indicated that the recombinant protein of On-CRP improved phagocytic activity of monocytes/macrophages, and possessed a bacterial agglutination activity in a calcium-dependent manner. Both in vivo and in vitro experiments indicated that On-CRP could promote inflammation and activate the complement pathway. However, a direct relationship between CRP and several immune pathways could not be confirmed. The present data lays a theoretical foundation to further explore the mechanism of how CRP protects fish against bacterial infection.
Collapse
Affiliation(s)
- Qi Li
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524094, China; (Q.L.); (B.J.); (Z.Z.); (Y.H.); (Z.X.); (X.C.); (J.C.)
| | - Baijian Jiang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524094, China; (Q.L.); (B.J.); (Z.Z.); (Y.H.); (Z.X.); (X.C.); (J.C.)
| | - Zhiqiang Zhang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524094, China; (Q.L.); (B.J.); (Z.Z.); (Y.H.); (Z.X.); (X.C.); (J.C.)
| | - Yongxiong Huang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524094, China; (Q.L.); (B.J.); (Z.Z.); (Y.H.); (Z.X.); (X.C.); (J.C.)
| | - Zhou Xu
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524094, China; (Q.L.); (B.J.); (Z.Z.); (Y.H.); (Z.X.); (X.C.); (J.C.)
| | - Xinjin Chen
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524094, China; (Q.L.); (B.J.); (Z.Z.); (Y.H.); (Z.X.); (X.C.); (J.C.)
| | - Jia Cai
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524094, China; (Q.L.); (B.J.); (Z.Z.); (Y.H.); (Z.X.); (X.C.); (J.C.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen 518116, China
| | - Yu Huang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524094, China; (Q.L.); (B.J.); (Z.Z.); (Y.H.); (Z.X.); (X.C.); (J.C.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen 518116, China
- Correspondence: (Y.H.); (J.J.)
| | - Jichang Jian
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524094, China; (Q.L.); (B.J.); (Z.Z.); (Y.H.); (Z.X.); (X.C.); (J.C.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen 518116, China
- Correspondence: (Y.H.); (J.J.)
| |
Collapse
|
5
|
Li Q, Jiang B, Zhang Z, Huang Y, Xu Z, Chen X, Hou X, Cai J, Huang Y, Jian J. Serotonin system is partially involved in immunomodulation of Nile tilapia ( Oreochromis niloticus) immune cells. Front Immunol 2022; 13:944388. [PMID: 35967362 PMCID: PMC9366525 DOI: 10.3389/fimmu.2022.944388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Serotonin (5-hydroxytryptamine) is a well-known neurotransmitter affecting emotion, behavior, and cognition. Additionally, numerous immunomodulatory functions of serotonin have been discovered in mammals. However, the regulatory role of the serotonin system in fish immunity remains unclear. In this study, various serotonergic markers in Nile tilapia (Oreochromis niloticus) were identified and characterized. The involvement of the serotonin system during bacterial infection was investigated. Moreover, the expression characteristics and specific functions of serotonergic markers within Nile tilapia immune cells were also assessed. Overall, 22 evolutionarily conserved serotonergic marker genes in Nile tilapia were cloned and characterized. Transcriptional levels of these molecules were most abundant in the brain, and their transcripts were induced during Streptococcus agalactiae infection. Nevertheless, few serotonergic markers exist on Nile tilapia immune cells, and no distinct immunomodulation effect was observed during an immune response. The present study lays a theoretical foundation for further investigation of the immunological mechanisms in fish as well as the evolution of the serotonin system in animals.
Collapse
Affiliation(s)
- Qi Li
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Baijian Jiang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Zhiqiang Zhang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Yongxiong Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Zhou Xu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Xinjin Chen
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Xitan Hou
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Jia Cai
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Yu Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| |
Collapse
|
6
|
Li Q, Jiang B, Zhang Z, Huang Y, Xu Z, Chen X, Huang Y, Jian J. SP protects Nile tilapia (Oreochromis niloticus) against acute Streptococcus agalatiae infection. FISH & SHELLFISH IMMUNOLOGY 2022; 123:218-228. [PMID: 35257891 DOI: 10.1016/j.fsi.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/16/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Substance P (SP) is a neuropeptide that involves in a wide variety of physiological and pathological events, mainly exerts its roles by neurokinin 1 receptor (NK1R), also modulates immune function. However, the roles of SP during immune response to acute bacterial infection of Nile tilapia (Oreochromis niloticus) remain unclear. In this study, the gene of SP precursor (tachykinin precursor 1, TAC1) and the gene of SP receptor (NK1R) from Nile tilapia were identified, and the roles of SP during an acute bacterial infection in a warm water environment were investigated. On-TAC1(Oreochromis niloticus-TAC1) contains conservative SP & NKA peptide sequences and On-NK1R contains seven conservative transmembrane domains. Their transcriptional levels were most abundant in brain and the On-TAC1 transcripts can be induced in the tilapia challenged with Streptococcus agalactiae. Furthermore, the experimental results revealed that On-SP could promote pyroptosis, suppress inflammation, and improve survival rate during acute bacterial infection. The present data lays a theoretical foundation to further elucidate the mechanism of SP protecting fish against pathogens.
Collapse
Affiliation(s)
- Qi Li
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Baijian Jiang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Zhiqiang Zhang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yongxiong Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Zhou Xu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Xinjin Chen
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yu Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| |
Collapse
|
7
|
Zhang Z, Niu J, Li Q, Huang Y, Jiang B, Wu Y, Huang Y, Jian J. HMG20A from Nile tilapia (Oreochromis niloticus) involved in the immune response to bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2021; 119:499-507. [PMID: 34687883 DOI: 10.1016/j.fsi.2021.10.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
High-mobility group 20 A (HMG20A) has important biological functions, such as inhibiting the differentiation of red blood cells and nerve cells, promoting the proliferation and metastasis of cancer cells, and regulating inflammatory reaction. However, the role of HMG20A in the response to bacterial infection in the economic fish Nile tilapia (Oreochromis niloticus) remains unclear. In this study, a HMG20A homolog was successfully identified and characterized from Nile tilapia (On-HMG20A), and its expression model and biological effects on bacterial infection were analyzed. The open reading frame (ORF) of On-HMG20A was 876 bp in length, which encoded 291 amino acids and possessed a HMG domain (High mobility group domains) and coiled coil region. Results of the expression model showed that On-HMG20A was widely distributed in immune-related tissues of healthy tilapia and upregulated in a time-dependent manner after being challenged by Streptococcus agalactiae. Meanwhile, knocking down the expression of On-HMG20A can reduce the inflammatory response of tilapia and the degree of tissue damage caused by S. agalactiae. Moreover, knocking down the expression of On-HMG20A can reduce the bacterial load of tilapia tissues after being challenged by S. agalactiae and improve the survival rate. Collectively, these results showed that On-HMG20A may be related to the immune response of Nile tilapia against bacterial infection.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Jinzhong Niu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Qi Li
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yongxiong Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Baijian Jiang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yiqin Wu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yu Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| |
Collapse
|