1
|
Wu T, Chen S, Zhu X, Ma J, Luo M, Wang Y, Tian Y, Sun Q, Guo X, Zhang J, Zhang X, Zhu Y, Wu L. Dynamic regulation of innate lymphoid cell development during ontogeny. Mucosal Immunol 2024; 17:1285-1300. [PMID: 39159846 DOI: 10.1016/j.mucimm.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
The helper-like ILC contains various functional subsets, such as ILC1, ILC2, ILC3 and LTi cells, mediating the immune responses against viruses, parasites, and extracellular bacteria, respectively. Among them, LTi cells are also crucial for the formation of peripheral lymphoid tissues, such as lymph nodes. Our research, along with others', indicates a high proportion of LTi cells in the fetal ILC pool, which significantly decreases after birth. Conversely, the proportion of non-LTi ILCs increases postnatally, corresponding to the need for LTi cells to mediate lymphoid tissue formation during fetal stages and other ILC subsets to combat diverse pathogen infections postnatally. However, the regulatory mechanism for this transition remains unclear. In this study, we observed a preference for fetal ILC progenitors to differentiate into LTi cells, while postnatal bone marrow ILC progenitors preferentially differentiate into non-LTi ILCs. Particularly, this differentiation shift occurs within the first week after birth in mice. Further analysis revealed that adult ILC progenitors exhibit stronger activation of the Notch signaling pathway compared to fetal counterparts, accompanied by elevated Gata3 expression and decreased Rorc expression, leading to a transition from fetal LTi cell-dominant states to adult non-LTi ILC-dominant states. This study suggests that the body can regulate ILC development by modulating the activation level of the Notch signaling pathway, thereby acquiring different ILC subsets to accommodate the varying demands within the body at different developmental stages.
Collapse
Affiliation(s)
- Tao Wu
- School of Medicine, Institute for Immunology, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Science, Beijing, China
| | - Sijie Chen
- MOE Key Lab of Bioinformatics/Bioinformatics Division, BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xinyi Zhu
- School of Medicine, Institute for Immunology, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Science, Beijing, China
| | - Jie Ma
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Maocai Luo
- School of Medicine, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Yuanhao Wang
- School of Medicine, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Yujie Tian
- School of Medicine, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Qingqing Sun
- School of Medicine, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Xiaohuan Guo
- School of Medicine, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Jianhong Zhang
- School of Medicine, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Xuegong Zhang
- MOE Key Lab of Bioinformatics/Bioinformatics Division, BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Yunping Zhu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.
| | - Li Wu
- School of Medicine, Institute for Immunology, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Science, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China.
| |
Collapse
|
2
|
Han X, Wang Z, Cao H, Liu W, Sun L, Xiao Q. Dietary human milk oligosaccharides reduce allergic airway inflammation by modulating SCFAs level and ILC2 activity. Immunology 2024; 173:562-574. [PMID: 39108003 DOI: 10.1111/imm.13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/25/2024] [Indexed: 10/04/2024] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) play a crucial role in the progression of asthma, yet the regulatory mechanisms modulating ILC2 responses in asthma remain underexplored. Human milk oligosaccharides (HMOs), vital non-nutritive components of breast milk, are known to significantly shape immune system development and influence the incidence of allergic diseases. However, their impact on ILC2-driven asthma is not fully understood. Our research reveals that dietary HMOs act as potent inhibitors of ILC2 responses and allergic airway inflammation. Treatment with 2'-fucosyllactose (2'-FL) and 6'-sialyllactose (6'-SL) significantly reduced ILC2-related airway inflammation induced by papain or Alternaria alternata in mice, evidenced by decreased eosinophil (EOS) infiltration and lower IL-5 and IL-13 levels in BALF. Notably, while ILC2 expresses HMO receptors, HMO did not act directly on ILC2 but potentially modulated their activity through alterations in gut microbiota derived SCFAs. HMO treatments alleviated airway inflammation in SCFA-dependent manners, with SCFA depletion or receptor blocking reversing these beneficial effects. This study reveals the potential of dietary HMOs in managing asthma through modulation of ILC2 activity and the gut-lung axis, proposing a new therapeutic avenue that utilises the immunomodulatory capacities of nutritional components to combat respiratory diseases.
Collapse
Affiliation(s)
- Xu Han
- Department of Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhongjie Wang
- Department of Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Hongchuan Cao
- Department of Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Weiwei Liu
- The Affiliated Junior Secondary School of Sun Yat-sen University Zhuhai Campus, Zhuhai, China
| | - Lijie Sun
- Department of Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Qiang Xiao
- Department of Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
3
|
Vassilopoulou E, Venter C, Roth-Walter F. Malnutrition and Allergies: Tipping the Immune Balance towards Health. J Clin Med 2024; 13:4713. [PMID: 39200855 PMCID: PMC11355500 DOI: 10.3390/jcm13164713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Malnutrition, which includes macro- and micronutrient deficiencies, is common in individuals with allergic dermatitis, food allergies, rhinitis, and asthma. Prolonged deficiencies of proteins, minerals, and vitamins promote Th2 inflammation, setting the stage for allergic sensitization. Consequently, malnutrition, which includes micronutrient deficiencies, fosters the development of allergies, while an adequate supply of micronutrients promotes immune cells with regulatory and tolerogenic phenotypes. As protein and micronutrient deficiencies mimic an infection, the body's innate response limits access to these nutrients by reducing their dietary absorption. This review highlights our current understanding of the physiological functions of allergenic proteins, iron, and vitamin A, particularly regarding their reduced bioavailability under inflamed conditions, necessitating different dietary approaches to improve their absorption. Additionally, the role of most allergens as nutrient binders and their involvement in nutritional immunity will be briefly summarized. Their ability to bind nutrients and their close association with immune cells can trigger exaggerated immune responses and allergies in individuals with deficiencies. However, in nutrient-rich conditions, these allergens can also provide nutrients to immune cells and promote health.
Collapse
Affiliation(s)
- Emilia Vassilopoulou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
- Department of Clinical Sciences and Community Health, Univertià degli Studi die Milano, 20122 Milan, Italy
| | - Carina Venter
- Pediatrics, Section of Allergy & Immunology, University of Colorado Denver School of Medicine, Children’s Hospital Colorado, Box B518, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Franziska Roth-Walter
- Messerli Research Institute, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, 1210 Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
4
|
Hanlon N, Gillan N, Neil J, Seidler K. The role of the aryl hydrocarbon receptor (AhR) in modulating intestinal ILC3s to optimise gut pathogen resistance in lupus and benefits of nutritional AhR ligands. Clin Nutr 2024; 43:1199-1215. [PMID: 38631087 DOI: 10.1016/j.clnu.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND AND AIMS Dysbiosis is emerging as a potential trigger of systemic lupus erythematosus (SLE). Group 3 innate lymphoid cells (ILC3s) are recognised as key regulators of intestinal homeostasis. The aryl hydrocarbon receptor (AhR) is critical to intestinal ILC3 development and function. This mechanistic review aimed to investigate whether AhR activation of gut ILC3s facilitates IL-22-mediated antimicrobial peptide (AMP) production to enhance colonisation resistance and ameliorate SLE pathology associated with intestinal dysbiosis. Furthermore, nutritional AhR ligand potential to enhance pathogen resistance was explored. METHODOLOGY This mechanistic review involved a three-tranche systematic literature search (review, mechanism, intervention) using PubMed with critical appraisal. Data was synthesised into themes and summarised in a narrative analysis. RESULTS Preclinical mechanistic data indicate that AhR modulation of intestinal ILC3s optimises pathogen resistance via IL-22-derived AMPs. Pre-clinical research is required to validate this mechanism in SLE. Data on systemic immune consequences of AhR modulation in lupus suggest UVB-activated ligands induce aberrant AhR signalling while many dietary ligands exert beneficial effects. Data on xenobiotic-origin ligands is varied, although considerable evidence has demonstrated negative effects on Th17 to Treg balance. Limited human evidence supports the role of nutritional AhR ligands in modulating SLE pathology. Preclinical and clinical data support anti-inflammatory effects of dietary AhR ligands. CONCLUSION Current evidence is insufficient to fully validate the hypothesis that AhR modulation of intestinal ILC3s can enhance pathogen resistance to ameliorate lupus pathology driven by dysbiosis. However, anti-inflammatory effects of dietary AhR ligands suggest a promising role as a therapeutic intervention for SLE.
Collapse
Affiliation(s)
- Niamh Hanlon
- CNELM (Centre for Nutrition Education and Lifestyle Management), 14 Rectory Road, Wokingham, Berkshire RG40 1DH, UK.
| | - Natalie Gillan
- CNELM (Centre for Nutrition Education and Lifestyle Management), 14 Rectory Road, Wokingham, Berkshire RG40 1DH, UK.
| | - James Neil
- CNELM (Centre for Nutrition Education and Lifestyle Management), 14 Rectory Road, Wokingham, Berkshire RG40 1DH, UK.
| | - Karin Seidler
- CNELM (Centre for Nutrition Education and Lifestyle Management), 14 Rectory Road, Wokingham, Berkshire RG40 1DH, UK.
| |
Collapse
|
5
|
Wang X, Yuan W, Yang C, Wang Z, Zhang J, Xu D, Sun X, Sun W. Emerging role of gut microbiota in autoimmune diseases. Front Immunol 2024; 15:1365554. [PMID: 38765017 PMCID: PMC11099291 DOI: 10.3389/fimmu.2024.1365554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024] Open
Abstract
Accumulating studies have indicated that the gut microbiota plays a pivotal role in the onset of autoimmune diseases by engaging in complex interactions with the host. This review aims to provide a comprehensive overview of the existing literatures concerning the relationship between the gut microbiota and autoimmune diseases, shedding light on the complex interplay between the gut microbiota, the host and the immune system. Furthermore, we aim to summarize the impacts and potential mechanisms that underlie the interactions between the gut microbiota and the host in autoimmune diseases, primarily focusing on systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome, type 1 diabetes mellitus, ulcerative colitis and psoriasis. The present review will emphasize the clinical significance and potential applications of interventions based on the gut microbiota as innovative adjunctive therapies for autoimmune diseases.
Collapse
Affiliation(s)
- Xinyi Wang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wei Yuan
- Department of Radiation Oncology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Chunjuan Yang
- Department of Central Laboratory, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Department of Rheumatology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Zhangxue Wang
- Department of Rheumatology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Jin Zhang
- Department of Rheumatology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Donghua Xu
- Department of Central Laboratory, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Department of Rheumatology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Xicai Sun
- Department of Hospital Office, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Wenchang Sun
- Department of Central Laboratory, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| |
Collapse
|
6
|
Zhang R, Wei M, Zhou J, Yang Z, Xiao M, Du L, Bao M, Ju J, Dong C, Zheng Y, Bao H. Effects of organic trace minerals chelated with oligosaccharides on growth performance, blood parameters, slaughter performance and meat quality in sheep. Front Vet Sci 2024; 11:1366314. [PMID: 38577544 PMCID: PMC10993154 DOI: 10.3389/fvets.2024.1366314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
The present study assessed the effects of oligosaccharide-chelated organic trace minerals (OTM) on the growth performance, digestive enzyme activity, blood parameters, slaughter performance, and meat quality indexes of mutton sheep. A total of 60 East Ujumuqin × small-tailed Han crossbred mutton sheep were assigned to two groups (10 duplicates per group) by body weight (26.12 ± 3.22 kg) according to a completely randomized design. Compared to the CON group, the results of the OTM group showed: (1) no significant changes in the initial body weight, final body weight, dry matter intake, average daily gain, and feed conversion ratio (p > 0.05); (2) the activities of trypsin, lipase, and amylase in the jejunum were significantly increased (p < 0.05); (3) serum total protein, albumin, and globulin of the blood were significantly increased (p < 0.05), and the growth factor interleukin IL-10 was significantly higher (p < 0.05), while IL-2, IL-6, and γ-interferon were significantly lower (p < 0.05). Immunoglobulins A, M, and G were significantly higher (p < 0.05); (4) the live weight before slaughter, carcass weights, dressing percentage, eye muscle areas, and GR values did not differ significantly (p > 0.05); (5) shear force of mutton was significantly lower (p < 0.05), while the pH45min, pH24h, drip loss, and cooking loss did not show a significant difference (p > 0.05). The content of crude protein was significantly higher (p < 0.05), while the ether extract content was significantly reduced (p < 0.05), but no significant difference was detected between moisture and ash content; (6) the total amino acids, essential amino acids, semi-essential amino acids, and umami amino acids were significantly increased (p < 0.05). Although umami amino acids were not significant, the total volume increased (p > 0.05). Among these, the essential amino acids, threonine, valine, leucine, lysine in essential amino acids and arginine were significantly increased (p < 0.05). Also, non-essential amino acids, glycine, serine, proline, tyrosine, cysteine, and aspartic acid, were significantly higher (p < 0.05). The content of alanine, aspartate, glutamic acid, phenylalanine, and tyrosine in umami amino acids was significantly higher (p < 0.05).
Collapse
Affiliation(s)
- Runze Zhang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Manlin Wei
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Jianqun Zhou
- Nanning Zeweier Feed Limited Liability Company, Nanning, China
| | - Zaibin Yang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ming Xiao
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Liu Du
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Meili Bao
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Ji Ju
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Chenyang Dong
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Yongjie Zheng
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Hailin Bao
- Horqin Left Wing Rear Banner National Vocational and Technical School, Tongliao, China
| |
Collapse
|
7
|
Roth-Walter F, Berni Canani R, O'Mahony L, Peroni D, Sokolowska M, Vassilopoulou E, Venter C. Nutrition in chronic inflammatory conditions: Bypassing the mucosal block for micronutrients. Allergy 2024; 79:353-383. [PMID: 38084827 DOI: 10.1111/all.15972] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024]
Abstract
Nutritional Immunity is one of the most ancient innate immune responses, during which the body can restrict nutrients availability to pathogens and restricts their uptake by the gut mucosa (mucosal block). Though this can be a beneficial strategy during infection, it also is associated with non-communicable diseases-where the pathogen is missing; leading to increased morbidity and mortality as micronutritional uptake and distribution in the body is hindered. Here, we discuss the acute immune response in respect to nutrients, the opposing nutritional demands of regulatory and inflammatory cells and particularly focus on some nutrients linked with inflammation such as iron, vitamins A, Bs, C, and other antioxidants. We propose that while the absorption of certain micronutrients is hindered during inflammation, the dietary lymph path remains available. As such, several clinical trials investigated the role of the lymphatic system during protein absorption, following a ketogenic diet and an increased intake of antioxidants, vitamins, and minerals, in reducing inflammation and ameliorating disease.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Roberto Berni Canani
- Department of Translational Medical Science and ImmunoNutritionLab at CEINGE-Advanced Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Liam O'Mahony
- Department of Medicine, School of Microbiology, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Diego Peroni
- Section of Paediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
- Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Emilia Vassilopoulou
- Pediatric Area, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - Carina Venter
- Children's Hospital Colorado, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
8
|
Stone OA, Kiefer F. Endothelial sensing of dietary metabolites supports barrier tissue homeostasis. NATURE CARDIOVASCULAR RESEARCH 2023; 2:861-863. [PMID: 39196253 DOI: 10.1038/s44161-023-00341-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Oliver A Stone
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK.
| | - Friedemann Kiefer
- University of Münster, European Institute for Molecular Imaging, Münster, Germany.
| |
Collapse
|
9
|
Hodge SH, Krauss MZ, Kaymak I, King JI, Howden AJ, Panic G, Grencis RK, Swann JR, Sinclair LV, Hepworth MR. Amino acid availability acts as a metabolic rheostat to determine the magnitude of ILC2 responses. J Exp Med 2023; 220:e20221073. [PMID: 36571761 PMCID: PMC9794837 DOI: 10.1084/jem.20221073] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/15/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2) are functionally poised, tissue-resident lymphocytes that respond rapidly to damage and infection at mucosal barrier sites. ILC2 reside within complex microenvironments where they are subject to cues from both the diet and invading pathogens-including helminths. Emerging evidence suggests ILC2 are acutely sensitive not only to canonical activating signals but also perturbations in nutrient availability. In the context of helminth infection, we identify amino acid availability as a nutritional cue in regulating ILC2 responses. ILC2 are found to be uniquely preprimed to import amino acids via the large neutral amino acid transporters Slc7a5 and Slc7a8. Cell-intrinsic deletion of these transporters individually impaired ILC2 expansion, while concurrent loss of both transporters markedly impaired the proliferative and cytokine-producing capacity of ILC2. Mechanistically, amino acid uptake determined the magnitude of ILC2 responses in part via tuning of mTOR. These findings implicate essential amino acids as a metabolic requisite for optimal ILC2 responses within mucosal barrier tissues.
Collapse
Affiliation(s)
- Suzanne H. Hodge
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Maria Z. Krauss
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Irem Kaymak
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - James I. King
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Andrew J.M. Howden
- Cell Signalling and Immunology Division, School of Life Sciences, University of Dundee, Dundee, UK
| | - Gordana Panic
- Division of Integrative Systems Medicine and Digestive Diseases, Imperial College London, South Kensington, UK
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Richard K. Grencis
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Jonathan R. Swann
- Division of Integrative Systems Medicine and Digestive Diseases, Imperial College London, South Kensington, UK
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Linda V. Sinclair
- Cell Signalling and Immunology Division, School of Life Sciences, University of Dundee, Dundee, UK
| | - Matthew R. Hepworth
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
10
|
Peroni DG, Hufnagl K, Comberiati P, Roth-Walter F. Lack of iron, zinc, and vitamins as a contributor to the etiology of atopic diseases. Front Nutr 2023; 9:1032481. [PMID: 36698466 PMCID: PMC9869175 DOI: 10.3389/fnut.2022.1032481] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023] Open
Abstract
Micronutritional deficiencies are common in atopic children suffering from atopic dermatitis, food allergy, rhinitis, and asthma. A lack of iron, in particular, may impact immune activation with prolonged deficiencies of iron, zinc, vitamin A, and vitamin D associated with a Th2 signature, maturation of macrophages and dendritic cells (DCs), and the generation of IgE antibodies. In contrast, the sufficiency of these micronutrients establishes immune resilience, promotion of regulatory cells, and tolerance induction. As micronutritional deficiencies mimic an infection, the body's innate response is to limit access to these nutrients and also impede their dietary uptake. Here, we summarize our current understanding of the physiological function of iron, zinc, and vitamins A and D in relation to immune cells and the clinical consequences of deficiencies in these important nutrients, especially in the perinatal period. Improved dietary uptake of iron is achieved by vitamin C, vitamin A, and whey compounds, whereas zinc bioavailability improves through citrates and proteins. The addition of oil is essential for the dietary uptake of beta-carotene and vitamin D. As for vitamin D, the major source comes via sun exposure and only a small amount is consumed via diet, which should be factored into clinical nutritional studies. We summarize the prevalence of micronutritional deficiencies of iron, zinc, and vitamins in the pediatric population as well as nutritional intervention studies on atopic diseases with whole food, food components, and micronutrients. Dietary uptake via the lymphatic route seems promising and is associated with a lower atopy risk and symptom amelioration. This review provides useful information for clinical studies and concludes/emphasizes that a healthy, varied diet containing dairy products, fish, nuts, fruits, and vegetables as well as supplementing foods or supplementation with micronutrients as needed is essential to combat the atopic march.
Collapse
Affiliation(s)
- Diego G. Peroni
- Section of Paediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Karin Hufnagl
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria,Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Pasquale Comberiati
- Section of Paediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria,Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria,*Correspondence: Franziska Roth-Walter, ;
| |
Collapse
|
11
|
Xiong L, Nutt SL, Seillet C. Innate lymphoid cells: More than just immune cells. Front Immunol 2022; 13:1033904. [PMID: 36389661 PMCID: PMC9643152 DOI: 10.3389/fimmu.2022.1033904] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/10/2022] [Indexed: 11/21/2022] Open
Abstract
Since their discovery, innate lymphoid cells (ILCs) have been described as the innate counterpart of the T cells. Indeed, ILCs and T cells share many features including their common progenitors, transcriptional regulation, and effector cytokine secretion. Several studies have shown complementary and redundant roles for ILCs and T cells, leaving open questions regarding why these cells would have been evolutionarily conserved. It has become apparent in the last decade that ILCs, and rare immune cells more generally, that reside in non-lymphoid tissue have non-canonical functions for immune cells that contribute to tissue homeostasis and function. Viewed through this lens, ILCs would not be just the innate counterpart of T cells, but instead act as a link between sensory cells that monitor any changes in the environment that are not necessarily pathogenic and instruct effector cells that act to maintain body homeostasis. As these non-canonical functions of immune cells are operating in absence of pathogenic signals, it opens great avenues of research for immunologists that they now need to identify the physiological cues that regulate these cells and how the process confers a finer level of control and a greater flexibility that enables the organism to adapt to changing environmental conditions. In the review, we highlight how ILCs participate in the physiologic function of the tissue in which they reside and how physiological cues, in particular neural inputs control their homeostatic activity.
Collapse
Affiliation(s)
- Le Xiong
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen L. Nutt
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Cyril Seillet
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Cyril Seillet,
| |
Collapse
|
12
|
Liu N, He J, Fan D, Gu Y, Wang J, Li H, Zhu X, Du Y, Tian Y, Liu B, Fan Z. Circular RNA circTmem241 drives group III innate lymphoid cell differentiation via initiation of Elk3 transcription. Nat Commun 2022; 13:4711. [PMID: 35953472 PMCID: PMC9372085 DOI: 10.1038/s41467-022-32322-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/25/2022] [Indexed: 12/12/2022] Open
Abstract
Innate lymphoid cells (ILCs) exert important roles in host defense, tissue repair and inflammatory diseases. However, how ILC lineage specification is regulated remains largely elusive. Here we identify that circular RNA circTmem241 is highly expressed in group III innate lymphoid cells (ILC3s) and their progenitor cells. CircTmem241 deficiency impairs ILC3 commitment and attenuates anti-bacterial immunity. Mechanistically, circTmem241 interacts with Nono protein to recruit histone methyltransferase Ash1l onto Elk3 promoter in ILC progenitor cells (ILCPs). Ash1l-mediated histone modifications on Elk3 promoter enhance chromatin accessibility to initiate Elk3 transcription. Of note, circTmem241-/-, Nono-/- and Ash1l-/- ILCPs display impaired ILC3 differentiation, while Elk3 overexpression rescues ILC3 commitment ability. Finally, circTmem241-/-Elk3-/- mice show lower numbers of ILC3s and are more susceptible to bacterial infection. We reveal that the circTmem241-Nono-Ash1l-Elk3 axis is required for the ILCP differentiation into ILC3P and ILC3 maturation, which is important to manipulate this axis for ILC development on treatment of infectious diseases.
Collapse
Affiliation(s)
- Nian Liu
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiacheng He
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongdong Fan
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Gu
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianyi Wang
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huimu Li
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxiao Zhu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Du
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong Tian
- University of Chinese Academy of Sciences, Beijing, 100049, China. .,Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Benyu Liu
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Zusen Fan
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Group 3 innate lymphoid cells mediate host defense against attaching and effacing pathogens. Curr Opin Microbiol 2021; 63:83-91. [PMID: 34274597 DOI: 10.1016/j.mib.2021.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 01/03/2023]
Abstract
Group 3 innate lymphoid cells (ILC3) are innate effector cells that have essential roles in lymphoid organogenesis and maintenance of tissue homeostasis under steady-state and pathogenic conditions. ILC3 also promote immune defense, notably during bacterial breach of epithelial barriers, including those caused by attaching and effacing (A/E) pathogens for which Citrobacter rodentium infection in mice is a relevant pre-clinical model. Through their ability to sustain interactions with tissue-resident immune cells, epithelial cells, neurons or stromal cells, ILC3 constitute a key orchestrator that maintains the intestinal barrier. In this review, we will examine the function of murine ILC3 in host defense against C. rodentium infection and provide a discussion of recent advances that help elucidate the specific roles of these novel innate immune effector cells at mucosal surfaces.
Collapse
|