1
|
Lisnerová M, Pecková H, Fiala I. Neoparamoeba perurans. Trends Parasitol 2025; 41:330-331. [PMID: 39814641 DOI: 10.1016/j.pt.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025]
Affiliation(s)
- Martina Lisnerová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic.
| | - Hana Pecková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Ivan Fiala
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
2
|
Shibl AA, Ochsenkühn MA, Mohamed AR, Isaac A, Coe LSY, Yun Y, Skrzypek G, Raina JB, Seymour JR, Afzal AJ, Amin SA. Molecular mechanisms of microbiome modulation by the eukaryotic secondary metabolite azelaic acid. eLife 2024; 12:RP88525. [PMID: 38189382 PMCID: PMC10945470 DOI: 10.7554/elife.88525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Photosynthetic eukaryotes, such as microalgae and plants, foster fundamentally important relationships with their microbiome based on the reciprocal exchange of chemical currencies. Among these, the dicarboxylate metabolite azelaic acid (Aze) appears to play an important, but heterogeneous, role in modulating these microbiomes, as it is used as a carbon source for some heterotrophs but is toxic to others. However, the ability of Aze to promote or inhibit growth, as well as its uptake and assimilation mechanisms into bacterial cells are mostly unknown. Here, we use transcriptomics, transcriptional factor coexpression networks, uptake experiments, and metabolomics to unravel the uptake, catabolism, and toxicity of Aze on two microalgal-associated bacteria, Phycobacter and Alteromonas, whose growth is promoted or inhibited by Aze, respectively. We identify the first putative Aze transporter in bacteria, a 'C4-TRAP transporter', and show that Aze is assimilated through fatty acid degradation, with further catabolism occurring through the glyoxylate and butanoate metabolism pathways when used as a carbon source. Phycobacter took up Aze at an initial uptake rate of 3.8×10-9 nmol/cell/hr and utilized it as a carbon source in concentrations ranging from 10 μM to 1 mM, suggesting a broad range of acclimation to Aze availability. For growth-impeded bacteria, we infer that Aze inhibits the ribosome and/or protein synthesis and that a suite of efflux pumps is utilized to shuttle Aze outside the cytoplasm. We demonstrate that seawater amended with Aze becomes enriched in bacterial families that can catabolize Aze, which appears to be a different mechanism from that in soil, where modulation by the host plant is required. This study enhances our understanding of carbon cycling in the oceans and how microscale chemical interactions can structure marine microbial populations. In addition, our findings unravel the role of a key chemical currency in the modulation of eukaryote-microbiome interactions across diverse ecosystems.
Collapse
Affiliation(s)
- Ahmed A Shibl
- Biology Program, New York University Abu DhabiAbu DhabiUnited Arab Emirates
| | | | - Amin R Mohamed
- Biology Program, New York University Abu DhabiAbu DhabiUnited Arab Emirates
| | - Ashley Isaac
- Biology Program, New York University Abu DhabiAbu DhabiUnited Arab Emirates
- Max Planck Institute for Marine MicrobiologyBremenGermany
| | - Lisa SY Coe
- Biology Program, New York University Abu DhabiAbu DhabiUnited Arab Emirates
| | - Yejie Yun
- Biology Program, New York University Abu DhabiAbu DhabiUnited Arab Emirates
| | - Grzegorz Skrzypek
- West Australian Biogeochemistry Centre, School of Biological Sciences, The University of Western AustraliaPerthAustralia
| | - Jean-Baptiste Raina
- Climate Change Cluster, Faculty of Science, University of Technology SydneyUltimoAustralia
| | - Justin R Seymour
- Climate Change Cluster, Faculty of Science, University of Technology SydneyUltimoAustralia
| | - Ahmed J Afzal
- Biology Program, New York University Abu DhabiAbu DhabiUnited Arab Emirates
| | - Shady A Amin
- Biology Program, New York University Abu DhabiAbu DhabiUnited Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu DhabiAbu DhabiUnited Arab Emirates
- Arabian Center for Climate and Environmental Sciences (ACCESS), New York University Abu DhabiAbu DhabiUnited Arab Emirates
| |
Collapse
|
3
|
Attia MM, Mohamed RI, Salem HM. Impact of Eimeria tenella experimental Infection on intestinal and splenic reaction of broiler chickens. J Parasit Dis 2023; 47:829-836. [PMID: 38009153 PMCID: PMC10667201 DOI: 10.1007/s12639-023-01629-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/08/2023] [Indexed: 11/28/2023] Open
Abstract
This work assesses the cell-mediated immune reaction IL-6, TNF-α, and IFN-γ of experimentally challenged broiler chicken with Eimeria tenella (E. tenella). Therefore, ninety, 2-weeks-old healthy broiler chicks were allocated as eighty chicks infected orally with 2.5 × 104 E. tenella sporulated oocysts, and the other ten birds were kept as control negative birds. Post-challenge, mortality rate, symptoms, oocysts shedding, and lesion score were evaluated. Tissue samples (cecum and spleen) were collected at 0, 4, 8, and 12 days post-infection (dpi). Ten chickens were ethically slaughtered at 0, 4, 8, and 12 days post-infection, as well as two birds from the negative control group; parts from cecal and spleen samples were kept in cryopreservation containers, and other parts were preserved in formaline 10% for further investigation. The evaluated genes (IL-6, TNF-α, and IFN-γ) were normal at 0 days and upregulated at 4 and 8 days, which reached maximum upregulation at eight dpi. The histopathological examination of the ceca and spleen were evaluated before and after challenge. It could be concluded that E. tenella revealed direct severe macroscopic and microscopic changes in cecal tissues and indirectly induced alteration in splenic tissues, resulting in upregulation of different cell mediated immune response in cecum and spleen in relation to the experimental period.
Collapse
Affiliation(s)
- Marwa M. Attia
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| | - Rania I. Mohamed
- Department of Pathology, Agricultural Research Center (ARC), Animal Health Research Institute- Mansoura provincial Laboratory (AHRI-Mansoura), P.O. Box 264, Giza, Cairo, 12618 Egypt
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| |
Collapse
|
4
|
Zhong L, Carvalho LA, Gao S, Whyte SK, Purcell SL, Fast MD, Cai W. Transcriptome analysis revealed immune responses in the kidney of Atlantic salmon (Salmo salar) co-infected with sea lice (Lepeophtheirus salmonis) and infectious salmon anemia virus. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109210. [PMID: 37951318 DOI: 10.1016/j.fsi.2023.109210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 11/13/2023]
Abstract
Sea lice (Lepeophtheirus salmonis) and infectious salmon anemia virus (ISAv) are two of the most important pathogens in Atlantic salmon (Salmo salar) farming and typically cause substantial economic losses to the industry. However, the immune interactions between hosts and these pathogens are still unclear, especially in the scenario of co-infection. In this study, we artificially infected Atlantic salmon with sea lice and ISAv, and investigated the gene expression patterns of Atlantic salmon head kidneys in response to both lice only and co-infection with lice and ISAv by transcriptomic analysis. The challenge experiment indicated that co-infection resulted in a cumulative mortality rate of 47.8 %, while no mortality was observed in the lice alone infection. We identified 240 differentially expressed genes (DEGs) under the lice alone infection, of which 185 were down-regulated and 55 were up-regulated, while a total of 994 DEGs were identified in the co-infection, of which 206 were down-regulated and 788 were significantly up-regulated. The pathway enrichment analysis revealed that single-infection significantly suppressed the innate immune system (e.g., the complement system), whereas co-infection induced a strong immune response, leading to the activation of immune-related signaling pathways such as Toll-like receptors and NOD-like receptors pathways, as well as significant upregulation of genes related to the activation of interferon and MH class I protein complex. Our results provide the first global transcriptomic study of gene expression in the Atlantic salmon head kidney in response to co-infection with sea lice and ISAv, and provided the baseline knowledge for understanding the immune responses during co-infection.
Collapse
Affiliation(s)
- Liang Zhong
- Department of Infectious Diseases and Public Health, and State Key Lab of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Laura A Carvalho
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Shengnan Gao
- Department of Infectious Diseases and Public Health, and State Key Lab of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Shona K Whyte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Sara L Purcell
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Mark D Fast
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada.
| | - Wenlong Cai
- Department of Infectious Diseases and Public Health, and State Key Lab of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada.
| |
Collapse
|
5
|
Alsulami MN, El-Saadony MT. Supplementing broiler diets with bacterial selenium nanoparticles enhancing performance, carcass traits, blood indices, antioxidant status, and caecal microbiota of Eimeria tenella-infected broiler chickens. Poult Sci 2023; 102:103111. [PMID: 37866222 PMCID: PMC10597796 DOI: 10.1016/j.psj.2023.103111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 10/24/2023] Open
Abstract
Nanomedicine is a critical therapeutic approach for treating most poultry illnesses, particularly parasitic infections. Coccidiosis is a severe protozoan infection affecting poultry; the emergence of drug-resistant Eimeria strains demands the development of new, safe therapies. Consequently, the objective of this work was to investigate the efficacy of the biosynthesized selenium nanoparticles (SeNPs) by Paenibacillus polymyxa (P. polymyxa) against Eimeria tenella (E. tenella) experimental infection in broiler chickens. The prepared SeNPs absorbed the UV at 270 nm were spherical with a size of 26 nm, and had a surface negative charge of -25 mV. One hundred and fifty, 1-day-old male broiler chicks were randomly allocated into 5 groups (30 birds/group with triplicates each) as follows: T1: negative control (noninfected and nontreated with SeNPs); T2: delivered SeNPs (500 µg/kg diet) for 35 successive days, T3: E. tenella-infected (positive control birds), T4: E. tenella-infected and treated with SeNPs (500 µg/kg diet) and T5: E. tenella-infected chicks and treated with anticoccidial agent (sulfadimidine, 16% solution 8 mL/L of drinking water) for 5 successive days. At 14 d of age, each bird in infected groups was orally treated with 3 × 103 sporulated oocyst of E. tenella. SeNPs considerably decreased the number of oocysts in broiler feces compared to positive control and anticoccidial drug, followed by a substantial reduction of parasite phase count in the cecum (15, 10, and 8 for meronts, gamonts, and developing oocysts) when compared with positive control birds. The Eimeria experimental infection lowered the activity of antioxidant enzymes, superoxide dismutase (SOD), glutathione peroxidase (GPx), and reduced glutathione (GSH) while increasing the stress parameters nitric oxide (NO) and malonaldehyde (MDA). Moreover, the production of proinflammatory (TNF-α and IL-6) and apoptotic genes (BcL2 and Cas-3) were significantly elevated. Administrating SeNPs to chicks significantly decreased oxidative stress, inflammation, and apoptotic markers in the cecum tissue. Therefore, growth performance, carcass weights, antioxidant enzymes, and blood properties of infected chicks were enhanced. The findings compared the protecting role of Se-nanoparticles against cecum damages in E. tenella-infected broilers.
Collapse
Affiliation(s)
- Muslimah N Alsulami
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
6
|
Daniels RR, Taylor RS, Robledo D, Macqueen DJ. Single cell genomics as a transformative approach for aquaculture research and innovation. REVIEWS IN AQUACULTURE 2023; 15:1618-1637. [PMID: 38505116 PMCID: PMC10946576 DOI: 10.1111/raq.12806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 03/21/2024]
Abstract
Single cell genomics encompasses a suite of rapidly maturing technologies that measure the molecular profiles of individual cells within target samples. These approaches provide a large up-step in biological information compared to long-established 'bulk' methods that profile the average molecular profiles of all cells in a sample, and have led to transformative advances in understanding of cellular biology, particularly in humans and model organisms. The application of single cell genomics is fast expanding to non-model taxa, including aquaculture species, where numerous research applications are underway with many more envisaged. In this review, we highlight the potential transformative applications of single cell genomics in aquaculture research, considering barriers and potential solutions to the broad uptake of these technologies. Focusing on single cell transcriptomics, we outline considerations for experimental design, including the essential requirement to obtain high quality cells/nuclei for sequencing in ectothermic aquatic species. We further outline data analysis and bioinformatics considerations, tailored to studies with the under-characterized genomes of aquaculture species, where our knowledge of cellular heterogeneity and cell marker genes is immature. Overall, this review offers a useful source of knowledge for researchers aiming to apply single cell genomics to address biological challenges faced by the global aquaculture sector though an improved understanding of cell biology.
Collapse
Affiliation(s)
- Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianUK
| | - Richard S. Taylor
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianUK
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianUK
| | - Daniel J. Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianUK
| |
Collapse
|
7
|
Wu H, Yuan X, Gao J, Xie M, Tian X, Xiong Z, Song R, Xie Z, Ou D. Conventional Anthelmintic Concentration of Deltamethrin Immersion Disorder in the Gill Immune Responses of Crucian Carp. TOXICS 2023; 11:743. [PMID: 37755753 PMCID: PMC10534886 DOI: 10.3390/toxics11090743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023]
Abstract
Current treatment strategies for parasitic infectious diseases in crucian carp primarily rely on chemotherapy. As a commonly used antiparasitic agent, deltamethrin (DEL) may have the potential adverse effects on external mucosa of fish such as gills. In this study, 180 healthy juvenile crucian carp (Carassius auratus) (average weight: 8.8 ± 1.0 g) were randomly divided into three groups for 28 days, which were immersed in 0 μg/L, 0.3 μg/L, and 0.6 μg/L of DEL, respectively. The results of histological analysis revealed that severe hyperplasia in the secondary lamellae of gills was observed, and the number of goblet (mucus-secreting) cells increased significantly after DEL immersion. TUNEL staining indicated that the number of apoptotic cells increased in crucian carp gill. At the molecular level, the mRNA expression analysis revealed significant upregulation of apoptosis (caspase 3, caspase 8, and bax), autophagy (atg5 and beclin-1), and immune response (lzm, muc5, il-6, il-8, il-10, tnfα, ifnγ, tgfβ, tlr4, myd88, and nf-kb), whereas tight junction-related genes (occludin and claudin12) were downregulated after DEL immersion, suggesting that DEL immersion altered innate immunity responses and promoted mucus secretion. Moreover, tandem mass tag (TMT)-based proteomics revealed that a total of 428 differentially expressed proteins (DEPs) contained 341 upregulated DEPs and 87 downregulated DEPs with function annotation were identified between the control and DEL groups. Functional analyses revealed that the DEPs were enriched in apoptotic process, phagosome, and lysosome pathways. Additionally, DEL immersion also drove gill microbiota to dysbiosis and an increase in potentially harmful bacteria such as Flavobacterium. Overall, this study showed that DEL elicited shifts in the immune response and changes in the surface microbiota of fish. These results provide new perspectives on the conventional anthelmintic concentration of DEL immersion disorder of the gill immune microenvironment in crucian carp and theoretical support for future optimization of their practical application.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rui Song
- Hunan Fisheries Science Institute, Changsha 410153, China; (H.W.); (X.Y.); (J.G.); (M.X.); (X.T.); (Z.X.); (Z.X.); (D.O.)
| | | | | |
Collapse
|
8
|
Mohamed AR, Ochsenkühn MA, Kazlak AM, Moustafa A, Amin SA. The coral microbiome: towards an understanding of the molecular mechanisms of coral-microbiota interactions. FEMS Microbiol Rev 2023; 47:fuad005. [PMID: 36882224 PMCID: PMC10045912 DOI: 10.1093/femsre/fuad005] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Corals live in a complex, multipartite symbiosis with diverse microbes across kingdoms, some of which are implicated in vital functions, such as those related to resilience against climate change. However, knowledge gaps and technical challenges limit our understanding of the nature and functional significance of complex symbiotic relationships within corals. Here, we provide an overview of the complexity of the coral microbiome focusing on taxonomic diversity and functions of well-studied and cryptic microbes. Mining the coral literature indicate that while corals collectively harbour a third of all marine bacterial phyla, known bacterial symbionts and antagonists of corals represent a minute fraction of this diversity and that these taxa cluster into select genera, suggesting selective evolutionary mechanisms enabled these bacteria to gain a niche within the holobiont. Recent advances in coral microbiome research aimed at leveraging microbiome manipulation to increase coral's fitness to help mitigate heat stress-related mortality are discussed. Then, insights into the potential mechanisms through which microbiota can communicate with and modify host responses are examined by describing known recognition patterns, potential microbially derived coral epigenome effector proteins and coral gene regulation. Finally, the power of omics tools used to study corals are highlighted with emphasis on an integrated host-microbiota multiomics framework to understand the underlying mechanisms during symbiosis and climate change-driven dysbiosis.
Collapse
Affiliation(s)
- Amin R Mohamed
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Michael A Ochsenkühn
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Ahmed M Kazlak
- Systems Genomics Laboratory, American University in Cairo, New Cairo 11835, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed Moustafa
- Systems Genomics Laboratory, American University in Cairo, New Cairo 11835, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo 11835, Egypt
- Department of Biology, American University in Cairo, New Cairo 11835, Egypt
| | - Shady A Amin
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| |
Collapse
|
9
|
Robinson NA, Robledo D, Sveen L, Daniels RR, Krasnov A, Coates A, Jin YH, Barrett LT, Lillehammer M, Kettunen AH, Phillips BL, Dempster T, Doeschl‐Wilson A, Samsing F, Difford G, Salisbury S, Gjerde B, Haugen J, Burgerhout E, Dagnachew BS, Kurian D, Fast MD, Rye M, Salazar M, Bron JE, Monaghan SJ, Jacq C, Birkett M, Browman HI, Skiftesvik AB, Fields DM, Selander E, Bui S, Sonesson A, Skugor S, Østbye TK, Houston RD. Applying genetic technologies to combat infectious diseases in aquaculture. REVIEWS IN AQUACULTURE 2023; 15:491-535. [PMID: 38504717 PMCID: PMC10946606 DOI: 10.1111/raq.12733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/24/2022] [Accepted: 08/16/2022] [Indexed: 03/21/2024]
Abstract
Disease and parasitism cause major welfare, environmental and economic concerns for global aquaculture. In this review, we examine the status and potential of technologies that exploit genetic variation in host resistance to tackle this problem. We argue that there is an urgent need to improve understanding of the genetic mechanisms involved, leading to the development of tools that can be applied to boost host resistance and reduce the disease burden. We draw on two pressing global disease problems as case studies-sea lice infestations in salmonids and white spot syndrome in shrimp. We review how the latest genetic technologies can be capitalised upon to determine the mechanisms underlying inter- and intra-species variation in pathogen/parasite resistance, and how the derived knowledge could be applied to boost disease resistance using selective breeding, gene editing and/or with targeted feed treatments and vaccines. Gene editing brings novel opportunities, but also implementation and dissemination challenges, and necessitates new protocols to integrate the technology into aquaculture breeding programmes. There is also an ongoing need to minimise risks of disease agents evolving to overcome genetic improvements to host resistance, and insights from epidemiological and evolutionary models of pathogen infestation in wild and cultured host populations are explored. Ethical issues around the different approaches for achieving genetic resistance are discussed. Application of genetic technologies and approaches has potential to improve fundamental knowledge of mechanisms affecting genetic resistance and provide effective pathways for implementation that could lead to more resistant aquaculture stocks, transforming global aquaculture.
Collapse
Affiliation(s)
- Nicholas A. Robinson
- Nofima ASTromsøNorway
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Andrew Coates
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Ye Hwa Jin
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Luke T. Barrett
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | - Ben L. Phillips
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Tim Dempster
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Andrea Doeschl‐Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Francisca Samsing
- Sydney School of Veterinary ScienceThe University of SydneyCamdenAustralia
| | | | - Sarah Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | | | | | | | - Dominic Kurian
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Mark D. Fast
- Atlantic Veterinary CollegeThe University of Prince Edward IslandCharlottetownPrince Edward IslandCanada
| | | | | | - James E. Bron
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Sean J. Monaghan
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Celeste Jacq
- Blue Analytics, Kong Christian Frederiks Plass 3BergenNorway
| | | | - Howard I. Browman
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | - Anne Berit Skiftesvik
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | | | - Erik Selander
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| | - Samantha Bui
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | | | | |
Collapse
|
10
|
Sánchez-Roncancio C, García B, Gallardo-Hidalgo J, Yáñez JM. GWAS on Imputed Whole-Genome Sequence Variants Reveal Genes Associated with Resistance to Piscirickettsia salmonis in Rainbow Trout ( Oncorhynchus mykiss). Genes (Basel) 2022; 14:114. [PMID: 36672855 PMCID: PMC9859203 DOI: 10.3390/genes14010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Genome-wide association studies (GWAS) allow the identification of associations between genetic variants and important phenotypes in domestic animals, including disease-resistance traits. Whole Genome Sequencing (WGS) data can help increase the resolution and statistical power of association mapping. Here, we conduced GWAS to asses he facultative intracellular bacterium Piscirickettsia salmonis, which affects farmed rainbow trout, Oncorhynchus mykiss, in Chile using imputed genotypes at the sequence level and searched for candidate genes located in genomic regions associated with the trait. A total of 2130 rainbow trout were intraperitoneally challenged with P. salmonis under controlled conditions and genotyped using a 57K single nucleotide polymorphism (SNP) panel. Genotype imputation was performed in all the genotyped animals using WGS data from 102 individuals. A total of 488,979 imputed WGS variants were available in the 2130 individuals after quality control. GWAS revealed genome-wide significant quantitative trait loci (QTL) in Omy02, Omy03, Omy25, Omy26 and Omy27 for time to death and in Omy26 for binary survival. Twenty-four (24) candidate genes associated with P. salmonis resistance were identified, which were mainly related to phagocytosis, innate immune response, inflammation, oxidative response, lipid metabolism and apoptotic process. Our results provide further knowledge on the genetic variants and genes associated with resistance to intracellular bacterial infection in rainbow trout.
Collapse
Affiliation(s)
- Charles Sánchez-Roncancio
- Doctorado en Acuicultura, Programa Cooperativo: Universidad de Chile. Universidad Católica del Norte. Pontificia Universidad Católica de Valparaíso, Chile
- Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago 8820808, Chile
| | - Baltasar García
- Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago 8820808, Chile
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago 8820808, Chile
| | - Jousepth Gallardo-Hidalgo
- Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago 8820808, Chile
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago 8820808, Chile
| | - José M. Yáñez
- Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago 8820808, Chile
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago 8820808, Chile
- Núcleo Milenio de Salmonidos Invasores Australes (INVASAL), Concepcion 4030000, Chile
| |
Collapse
|
11
|
Birlanga VB, McCormack G, Ijaz UZ, MacCarthy E, Smith C, Collins G. Dynamic gill and mucus microbiomes during a gill disease episode in farmed Atlantic salmon. Sci Rep 2022; 12:16719. [PMID: 36202859 PMCID: PMC9537138 DOI: 10.1038/s41598-022-17008-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 04/11/2022] [Indexed: 12/18/2022] Open
Abstract
Amoebic gill disease (AGD) and complex gill disease (CGD) are recurrent gill disorders in Atlantic salmon, resulting in significant aquaculture losses. The role of gill microbiomes in gill disease development is unclear. We undertook a longitudinal study to characterise the gill tissue and gill mucus microbiomes of farmed Atlantic salmon before, and during, a gill disease episode. Using a newly optimised DNA extraction protocol, we sequenced rRNA genes from microbiomes of gill samples taken from 105 individual salmon on a farm, over a summer season. The AGD aetiological agent, Neoparamoeba perurans, was PCR-quantified targeting 18S rRNA genes. Similar analyses were carried out on mucus samples. Mucus scrapings were suitable, non-lethal substitutes for characterisation of the gill prokaryotic community in this study. Gill tissue and gill mucus microbiomes changed during the campaign, correlating with N. perurans concentrations. Time explained 35% of the gill tissue and gill mucus microbiome variance, while N. perurans concentrations explained 5%. Genera including Dyadobacter, Shewanella and Pedobacter were maximally abundant in gill and mucus samples at the timepoint prior to the the detection of gill disorder signs, at T3. Shewanella was significantly more abundant before than during the gill disease episode, and we suggest this genus could be considered in future studies addressing relationships between gill disease and the gill microbiome.
Collapse
Affiliation(s)
- Victor B Birlanga
- Microbiology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| | - Grace McCormack
- School of Natural Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.,Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Umer Z Ijaz
- Infrastructure and Environment, School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow, G12 8LT, UK
| | - Eugene MacCarthy
- Institute of Science, Technology and Medicine, Galway-Mayo Institute of Technology, Galway, H91 T8NW, Ireland
| | - Cindy Smith
- Infrastructure and Environment, School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow, G12 8LT, UK
| | - Gavin Collins
- Microbiology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.,Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
12
|
Lazado CC, Strand DA, Breiland MW, Furtado F, Timmerhaus G, Gjessing MC, Hytterød S, Merkin GV, Pedersen LF, Pittman KA, Krasnov A. Mucosal immune and stress responses of Neoparamoeba perurans-infected Atlantic salmon ( Salmo salar) treated with peracetic acid shed light on the host-parasite-oxidant interactions. Front Immunol 2022; 13:948897. [PMID: 36090977 PMCID: PMC9454302 DOI: 10.3389/fimmu.2022.948897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/18/2022] [Indexed: 12/05/2022] Open
Abstract
Treatment development for parasitic infestation is often limited to disease resolution as an endpoint response, and physiological and immunological consequences are not thoroughly considered. Here, we report the impact of exposing Atlantic salmon affected with amoebic gill disease (AGD) to peracetic acid (PAA), an oxidative chemotherapeutic. AGD-affected fish were treated with PAA either by exposing them to 5 ppm for 30 min or 10 ppm for 15 min. Unexposed fish from both infected and uninfected groups were also included. Samples for molecular, biochemical, and histological evaluations were collected at 24 h, 2 weeks, and 4 weeks post-treatment. Behavioral changes were observed during PAA exposure, and post-treatment mortality was higher in the infected and PAA treated groups, especially in 10 ppm for 15 min. Plasma indicators showed that liver health was affected by AGD, though PAA treatment did not exacerbate the infection-related changes. Transcriptome profiling in the gills showed significant changes, triggered by AGD and PAA treatments, and the effects of PAA were more notable 24 h after treatment. Genes related to immune pathways of B- and T- cells and protein synthesis and metabolism were downregulated, where the magnitude was more remarkable in 10 ppm for 15 min group. Even though treatment did not fully resolve the pathologies associated with AGD, 5 ppm for 30 min group showed lower parasite load at 4 weeks post-treatment. Mucous cell parameters (i.e., size and density) increased within 24 h post-treatment and were significantly higher at termination, especially in AGD-affected fish, with some treatment effects influenced by the dose of PAA. Infection and treatments resulted in oxidative stress-in the early phase in the gill mucosa, while systemic reactive oxygen species (ROS) dysregulation was evident at the later stage. Infected fish responded to elevated circulating ROS by increasing antioxidant production. Exposing the fish to a crowding stress revealed the interference in the post-stress responses. Lower cortisol response was displayed by AGD-affected groups. Collectively, the study established that PAA, within the evaluated treatment protocols, could not provide a convincing treatment resolution and, thus, requires further optimization. Nonetheless, PAA treatment altered the mucosal immune and stress responses of AGD-affected Atlantic salmon, shedding light on the host-parasite-treatment interactions. .
Collapse
Affiliation(s)
- Carlo C. Lazado
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | | | - Mette W. Breiland
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø, Norway
| | - Francisco Furtado
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Gerrit Timmerhaus
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | | | | | | | - Lars-Flemming Pedersen
- DTU Aqua, Section for Aquaculture, The North Sea Research Centre, Technical University of Denmark, Hirtshals, Denmark
| | - Karin A. Pittman
- Quantidoc AS, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Aleksei Krasnov
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| |
Collapse
|
13
|
Yao G, Zhang H, Xiong P, Jia H, He M. Effects of scale worm parasitism on interactions between the symbiotic gill microbiome and gene regulation in deep sea mussel hosts. Front Microbiol 2022; 13:940766. [PMID: 36046021 PMCID: PMC9421265 DOI: 10.3389/fmicb.2022.940766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Diverse adaptations to the challenging deep sea environment are expected to be found across all deep sea organisms. Scale worms Branchipolynoe pettiboneae are believed to adapt to the deep sea environment by parasitizing deep sea mussels; this biotic interaction is one of most known in the deep sea chemosynthetic ecosystem. However, the mechanisms underlying the effects of scale worm parasitism on hosts are unclear. Previous studies have revealed that the microbiota plays an important role in host adaptability. Here, we compared gill-microbiota, gene expression and host-microorganism interactions in a group of deep sea mussels (Gigantidas haimaensis) parasitized by scale worm (PA group) and a no parasitic control group (NPA group). The symbiotic microorganism diversity of the PA group significantly decreased than NPA group, while the relative abundance of chemoautotrophic symbiotic bacteria that provide the host with organic carbon compounds significantly increased in PA. Interestingly, RNA-seq revealed that G. haimaensis hosts responded to B. pettiboneaei parasitism through significant upregulation of protein and lipid anabolism related genes, and that this parasitism may enhance host mussel nutrient anabolism but inhibit the host’s ability to absorb nutrients, thus potentially helping the parasite obtain nutrients from the host. In an integrated analysis of the interactions between changes in the microbiota and host gene dysregulation, we found an agreement between the microbiota and transcriptomic responses to B. pettiboneaei parasitism. Together, our findings provide new insights into the effects of parasite scale worms on changes in symbiotic bacteria and gene expression in deep sea mussel hosts. We explored the potential role of host-microorganism interactions between scale worms and deep sea mussels, and revealed the mechanisms through which scale worm parasitism affects hosts in deep sea chemosynthetic ecosystem.
Collapse
Affiliation(s)
- Gaoyou Yao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hua Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Panpan Xiong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Huixia Jia
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Maoxian He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- *Correspondence: Maoxian He,
| |
Collapse
|
14
|
Mohamed AR, Naval-Sanchez M, Menzies M, Evans B, King H, Reverter A, Kijas JW. Leveraging transcriptome and epigenome landscapes to infer regulatory networks during the onset of sexual maturation. BMC Genomics 2022; 23:413. [PMID: 35650521 PMCID: PMC9158274 DOI: 10.1186/s12864-022-08514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/29/2022] [Indexed: 12/03/2022] Open
Abstract
Background Despite sexual development being ubiquitous to vertebrates, the molecular mechanisms underpinning this fundamental transition remain largely undocumented in many organisms. We designed a time course experiment that successfully sampled the period when Atlantic salmon commence their trajectory towards sexual maturation. Results Through deep RNA sequencing, we discovered key genes and pathways associated with maturation in the pituitary-ovarian axis. Analyzing DNA methylomes revealed a bias towards hypermethylation in ovary that implicated maturation-related genes. Co-analysis of DNA methylome and gene expression changes revealed chromatin remodeling genes and key transcription factors were both significantly hypermethylated and upregulated in the ovary during the onset of maturation. We also observed changes in chromatin state landscapes that were strongly correlated with fundamental remodeling of gene expression in liver. Finally, a multiomic integrated analysis revealed regulatory networks and identified hub genes including TRIM25 gene (encoding the estrogen-responsive finger protein) as a putative key regulator in the pituitary that underwent a 60-fold change in connectivity during the transition to maturation. Conclusion The study successfully documented transcriptome and epigenome changes that involved key genes and pathways acting in the pituitary – ovarian axis. Using a Systems Biology approach, we identified hub genes and their associated networks deemed crucial for onset of maturation. The results provide a comprehensive view of the spatiotemporal changes involved in a complex trait and opens the door to future efforts aiming to manipulate puberty in an economically important aquaculture species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08514-8.
Collapse
|
15
|
Comparative transcriptome profiling of virulent and avirulent isolates of Neoparamoeba perurans. Sci Rep 2022; 12:5860. [PMID: 35393457 PMCID: PMC8989968 DOI: 10.1038/s41598-022-09806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/22/2022] [Indexed: 12/03/2022] Open
Abstract
Neoparamoeba perurans, the aetiological agent of amoebic gill disease, remains a persistent threat to Atlantic salmon mariculture operations worldwide. Innovation in methods of AGD control is required yet constrained by a limited understanding of the mechanisms of amoebic gill disease pathogenesis. In the current study, a comparative transcriptome analysis of two N. perurans isolates of contrasting virulence phenotypes is presented using gill-associated, virulent (wild type) isolates, and in vitro cultured, avirulent (clonal) isolates. Differential gene expression analysis identified a total of 21,198 differentially expressed genes between the wild type and clonal isolates, with 5674 of these genes upregulated in wild type N. perurans. Gene set enrichment analysis predicted gene sets enriched in the wild type isolates including, although not limited to, cortical actin cytoskeleton, pseudopodia, phagocytosis, macropinocytic cup, and fatty acid beta-oxidation. Combined, the results from these analyses suggest that upregulated gene expression associated with lipid metabolism, oxidative stress response, protease activity, and cytoskeleton reorganisation is linked to pathogenicity in wild type N. perurans. These findings provide a foundation for future AGD research and the development of novel therapeutic and prophylactic AGD control measures for commercial aquaculture.
Collapse
|
16
|
|
17
|
Hernández-Cabanyero C, Sanjuán E, Reyes-López FE, Vallejos-Vidal E, Tort L, Amaro C. A Transcriptomic Study Reveals That Fish Vibriosis Due to the Zoonotic Pathogen Vibrio vulnificus Is an Acute Inflammatory Disease in Which Erythrocytes May Play an Important Role. Front Microbiol 2022; 13:852677. [PMID: 35432241 PMCID: PMC9011161 DOI: 10.3389/fmicb.2022.852677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Vibrio vulnificus is a marine zoonotic pathogen associated with fish farms that is considered a biomarker of climate change. Zoonotic strains trigger a rapid death of their susceptible hosts (fish or humans) by septicemia that has been linked to a cytokine storm in mice. Therefore, we hypothesize that V. vulnificus also causes fish death by triggering a cytokine storm in which red blood cells (RBCs), as nucleated cells in fish, could play an active role. To do it, we used the eel immersion infection model and then analyzed the transcriptome in RBCs, white BCs, and whole blood using an eel-specific microarray platform. Our results demonstrate that V. vulnificus triggers an acute but atypical inflammatory response that occurs in two main phases. The early phase (3 h post-infection [hpi]) is characterized by the upregulation of several genes for proinflammatory cytokines related to the mucosal immune response (il17a/f1 and il20) along with genes for antiviral cytokines (il12β) and antiviral factors (ifna and ifnc). In contrast, the late phase (12 hpi) is based on the upregulation of genes for typical inflammatory cytokines (il1β), endothelial destruction (mmp9 and hyal2), and, interestingly, genes related to an RNA-based immune response (sidt1). Functional assays revealed significant proteolytic and hemolytic activity in serum at 12 hpi that would explain the hemorrhages characteristic of this septicemia in fish. As expected, we found evidence that RBCs are transcriptionally active and contribute to this atypical immune response, especially in the short term. Based on a selected set of marker genes, we propose here an in vivo RT-qPCR assay that allows detection of early sepsis caused by V. vulnificus. Finally, we develop a model of sepsis that could serve as a basis for understanding sepsis caused by V. vulnificus not only in fish but also in humans.
Collapse
Affiliation(s)
- Carla Hernández-Cabanyero
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
| | - Eva Sanjuán
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
| | - Felipe E. Reyes-López
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Eva Vallejos-Vidal
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Lluis Tort
- Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carmen Amaro
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
- *Correspondence: Carmen Amaro,
| |
Collapse
|
18
|
Fu Q, Li Y, Zhang H, Cao M, Zhang L, Gao C, Cai X, Chen D, Yang Z, Li J, Yang N, Li C. Comparative Transcriptome Analysis of Spleen Reveals Potential Regulation of Genes and Immune Pathways Following Administration of Aeromonas salmonicida subsp. masoucida Vaccine in Atlantic Salmon (Salmo salar). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:97-115. [PMID: 35084599 PMCID: PMC8792528 DOI: 10.1007/s10126-021-10089-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Aeromonas salmonicida is a global fish pathogen. Aeromonas salmonicida subsp. masoucida (ASM) is classified as atypical A. salmonicida and caused huge losses to salmonid industry in China. Hence, it is of great significance to develop ASM vaccine and explore its protection mechanism in salmonids. In this regard, we conducted RNA-seq analysis with spleen tissue of Atlantic salmon after ASM vaccination to reveal genes, their expression patterns, and pathways involved in immune protections. In our results, a total of 441.63 million clean reads were obtained, and 389.37 million reads were mapped onto the Atlantic salmon reference genome. In addition, 1125, 2126, 1098, 820, and 1351 genes were significantly up-regulated, and 747, 2626, 818, 254, and 908 genes were significantly down-regulated post-ASM vaccination at 12 h, 24 h, 1 month, 2 months, and 3 months, respectively. Subsequent pathway analysis revealed that many differentially expressed genes (DEGs) following ASM vaccination were involved in cytokine-cytokine receptor interaction (TNFRSF11b, IL-17RA, CCR9, and CXCL11), HTLV-I infection (MR1 and HTLV-1), MAPK signaling pathway (MAPK, IL8, and TNF-α-1), PI3K-Akt signaling pathway (PIK3R3, THBS4, and COL2A1), and TNF signaling pathway (PTGS2, TNFRSF21-l, and CXCL10). Finally, the results of qRT-PCR showed a significant correlation with RNA-seq results, suggesting the reliability of RNA-seq for gene expression analysis. This study provided insights into regulation of gene expression and their involved pathways in Atlantic salmon spleen in responses to vaccine, and set the foundation for further study on the vaccine protective mechanism in Atlantic salmon as well as other teleost species.
Collapse
Affiliation(s)
- Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuqing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hao Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lu Zhang
- Shandong Sinder Technology Co., Ltd, Zhucheng, 262200, China
| | - Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin Cai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Defeng Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ziying Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jie Li
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
19
|
McGrath L, O'Keeffe J, Slattery O. Antimicrobial peptide gene expression in Atlantic salmon (Salmo salar) seven days post-challenge with Neoparamoeba perurans. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104287. [PMID: 34619176 DOI: 10.1016/j.dci.2021.104287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Amoebic gill disease in teleost fish is caused by the marine parasite Neoparamoeba perurans. To date, the role of antimicrobial peptides β-defensins and cathelicidins in this infection have not been explored. Using a high-throughput microfluidics quantitative polymerase chain reaction system (Biomark HD™ by Fluidigm), this study aimed to: firstly, to investigate organ-specific expression of antimicrobial peptide genes β-defensin-1, -3 and -4 and cathelicidin 2 in healthy Atlantic salmon; secondly, to compare the expression of these antimicrobial peptide genes in healthy versus asymptomatic Atlantic salmon seven days post-challenge with Neoparamoeba perurans. Results from this study indicate expression of the β-defensin and cathelicidin genes in the selected organs from healthy Atlantic salmon. Furthermore, a statistically significant upregulation of β-defensins -3 and -4 and cathelicidin 2 was detected in gill of parasite-challenged salmon. The upregulated cathelicidin and β-defensin genes in gill could indicate novel potential roles in innate immune responses to Neoparamoeba perurans.
Collapse
Affiliation(s)
- Leisha McGrath
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Rd., Galway, H91 T8NW, Ireland
| | - Joan O'Keeffe
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Rd., Galway, H91 T8NW, Ireland
| | - Orla Slattery
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Rd., Galway, H91 T8NW, Ireland.
| |
Collapse
|
20
|
Talbot A, Gargan L, Moran G, Prudent L, O'Connor I, Mirimin L, Carlsson J, MacCarthy E. Investigation of the transcriptomic response in Atlantic salmon (Salmo salar) gill exposed to Paramoeba perurans during early onset of disease. Sci Rep 2021; 11:20682. [PMID: 34667245 PMCID: PMC8526816 DOI: 10.1038/s41598-021-99996-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/23/2021] [Indexed: 01/06/2023] Open
Abstract
Amoebic Gill Disease (AGD), caused by the protozoan extracellular parasite Paramoeba perurans (P. perurans) is a disease affecting Atlantic salmon (Salmo salar). This study investigated the gill transcriptomic profile of pre-clinical AGD using RNA-sequencing (RNA-seq) technology. RNA-seq libraries generated at 0, 4, 7, 14 and 16 days post infection (dpi) identified 19,251 differentially expressed genes (DEGs) of which 56.2% were up-regulated. DEGs mapped to 224 Gene Ontology (GO) terms including 140 biological processes (BP), 45 cellular components (CC), and 39 molecular functions (MF). A total of 27 reference pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) and 15 Reactome gene sets were identified. The RNA-seq data was validated using real-time, quantitative PCR (qPCR). A host immune response though the activation of complement and the acute phase genes was evident at 7 dpi, with a concurrent immune suppression involving cytokine signalling, notably in interleukins, interferon regulatory factors and tumour necrosis factor-alpha (tnf-α) genes. Down-regulated gene expression with involvement in receptor signalling pathways (NOD-like, Toll-like and RIG-1) were also identified. The results of this study support the theory that P. perurans can evade immune surveillance during the initial stages of gill colonisation through interference of signal transduction pathways.
Collapse
Affiliation(s)
- Anita Talbot
- Galway Mayo Institute of Technology, Galway, Ireland.
| | | | - Grainne Moran
- Galway Mayo Institute of Technology, Galway, Ireland
| | - Louis Prudent
- Galway Mayo Institute of Technology, Galway, Ireland
| | - Ian O'Connor
- Galway Mayo Institute of Technology, Galway, Ireland
| | - Luca Mirimin
- Galway Mayo Institute of Technology, Galway, Ireland
| | | | | |
Collapse
|