1
|
Zhao M, Zhang M, Yang Z, Zhou Z, Huang J, Zhao B. Role of E3 ubiquitin ligases and deubiquitinating enzymes in SARS-CoV-2 infection. Front Cell Infect Microbiol 2023; 13:1217383. [PMID: 37360529 PMCID: PMC10288995 DOI: 10.3389/fcimb.2023.1217383] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Ever since its emergence in 2019, COVID-19 has rapidly disseminated worldwide, engendering a pervasive pandemic that has profoundly impacted healthcare systems and the socio-economic milieu. A plethora of studies has been conducted targeting its pathogenic virus, SARS-CoV-2, to find ways to combat COVID-19. The ubiquitin-proteasome system (UPS) is widely recognized as a crucial mechanism that regulates human biological activities by maintaining protein homeostasis. Within the UPS, the ubiquitination and deubiquitination, two reversible modifications, of substrate proteins have been extensively studied and implicated in the pathogenesis of SARS-CoV-2. The regulation of E3 ubiquitin ligases and DUBs(Deubiquitinating enzymes), which are key enzymes involved in the two modification processes, determines the fate of substrate proteins. Proteins associated with the pathogenesis of SARS-CoV-2 may be retained, degraded, or even activated, thus affecting the ultimate outcome of the confrontation between SARS-CoV-2 and the host. In other words, the clash between SARS-CoV-2 and the host can be viewed as a battle for dominance over E3 ubiquitin ligases and DUBs, from the standpoint of ubiquitin modification regulation. This review primarily aims to clarify the mechanisms by which the virus utilizes host E3 ubiquitin ligases and DUBs, along with its own viral proteins that have similar enzyme activities, to facilitate invasion, replication, escape, and inflammation. We believe that gaining a better understanding of the role of E3 ubiquitin ligases and DUBs in COVID-19 can offer novel and valuable insights for developing antiviral therapies.
Collapse
Affiliation(s)
- Mingjiu Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mengdi Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhou Yang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, China
| |
Collapse
|
2
|
Zornikova KV, Sheetikov SA, Rusinov AY, Iskhakov RN, Bogolyubova AV. Architecture of the SARS-CoV-2-specific T cell repertoire. Front Immunol 2023; 14:1070077. [PMID: 37020560 PMCID: PMC10067759 DOI: 10.3389/fimmu.2023.1070077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/08/2023] [Indexed: 03/22/2023] Open
Abstract
The T cell response plays an indispensable role in the early control and successful clearance of SARS-CoV-2 infection. However, several important questions remain about the role of cellular immunity in COVID-19, including the shape and composition of disease-specific T cell repertoires across convalescent patients and vaccinated individuals, and how pre-existing T cell responses to other pathogens—in particular, common cold coronaviruses—impact susceptibility to SARS-CoV-2 infection and the subsequent course of disease. This review focuses on how the repertoire of T cell receptors (TCR) is shaped by natural infection and vaccination over time. We also summarize current knowledge regarding cross-reactive T cell responses and their protective role, and examine the implications of TCR repertoire diversity and cross-reactivity with regard to the design of vaccines that confer broader protection against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ksenia V. Zornikova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Saveliy A. Sheetikov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander Yu Rusinov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Rustam N. Iskhakov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Apollinariya V. Bogolyubova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- *Correspondence: Apollinariya V. Bogolyubova,
| |
Collapse
|
3
|
Yang D, Lu Q, Peng S, Hua J. Ubiquitin C-terminal hydrolase L1 (UCHL1), a double-edged sword in mammalian oocyte maturation and spermatogenesis. Cell Prolif 2023; 56:e13347. [PMID: 36218038 PMCID: PMC9890544 DOI: 10.1111/cpr.13347] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/14/2022] [Accepted: 09/29/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Recent studies have shown that ubiquitin-mediated cell apoptosis can modulate protein interaction and involve in the progress of oocyte maturation and spermatogenesis. As one of the key regulators involved in ubiquitin signal, ubiquitin C-terminal hydrolase L1 (UCHL1) is considered a molecular marker associated with spermatogonia stem cells. However, the function of UCHL1 was wildly reported to regulate various bioecological processes, such as Parkinson's disease, lung cancer, breast cancer and colon cancer, how UCHL1 affects the mammalian reproductive system remains an open question. METHODS We identified papers through electronic searches of PubMed database from inception to July 2022. RESULTS Here, we summarize the important function of UCHL1 in controlling mammalian oocyte development, regulating spermatogenesis and inhibiting polyspermy, and we posit the balance of UCHL1 was essential to maintaining reproductive cellular and tissue homeostasis. CONCLUSION This study considers the 'double-edged sword' role of UCHL1 during gametogenesis and presents new insights into UCHL1 in germ cells.
Collapse
Affiliation(s)
- Donghui Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYanglingShaanxiChina
| | - Qizhong Lu
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Collaborative Innovation Center of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYanglingShaanxiChina
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
4
|
Körper S, Schrezenmeier EV, Rincon-Arevalo H, Grüner B, Zickler D, Weiss M, Wiesmann T, Zacharowski K, Kalbhenn J, Bentz M, Dollinger MM, Paul G, Lepper PM, Ernst L, Wulf H, Zinn S, Appl T, Jahrsdörfer B, Rojewski M, Lotfi R, Dörner T, Jungwirth B, Seifried E, Fürst D, Schrezenmeier H. Cytokine levels associated with favorable clinical outcome in the CAPSID randomized trial of convalescent plasma in patients with severe COVID-19. Front Immunol 2022; 13:1008438. [PMID: 36275695 PMCID: PMC9582990 DOI: 10.3389/fimmu.2022.1008438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/12/2022] [Indexed: 12/03/2022] Open
Abstract
Objectives To determine the profile of cytokines in patients with severe COVID-19 who were enrolled in a trial of COVID-19 convalescent plasma (CCP). Methods Patients were randomized to receive standard treatment and 3 CCP units or standard treatment alone (CAPSID trial, ClinicalTrials.gov NCT04433910). The primary outcome was a dichotomous composite outcome (survival and no longer severe COVID-19 on day 21). Time to clinical improvement was a key secondary endpoint. The concentrations of 27 cytokines were measured (baseline, day 7). We analyzed the change and the correlation between serum cytokine levels over time in different subgroups and the prediction of outcome in receiver operating characteristics (ROC) analyses and in multivariate models. Results The majority of cytokines showed significant changes from baseline to day 7. Some were strongly correlated amongst each other (at baseline the cluster IL-1ß, IL-2, IL-6, IL-8, G-CSF, MIP-1α, the cluster PDGF-BB, RANTES or the cluster IL-4, IL-17, Eotaxin, bFGF, TNF-α). The correlation matrix substantially changed from baseline to day 7. The heatmaps of the absolute values of the correlation matrix indicated an association of CCP treatment and clinical outcome with the cytokine pattern. Low levels of IP-10, IFN-γ, MCP-1 and IL-1ß on day 0 were predictive of treatment success in a ROC analysis. In multivariate models, low levels of IL-1ß, IFN-γ and MCP-1 on day 0 were significantly associated with both treatment success and shorter time to clinical improvement. Low levels of IP-10, IL-1RA, IL-6, MCP-1 and IFN-γ on day 7 and high levels of IL-9, PDGF and RANTES on day 7 were predictive of treatment success in ROC analyses. Low levels of IP-10, MCP-1 and high levels of RANTES, on day 7 were associated with both treatment success and shorter time to clinical improvement in multivariate models. Conclusion This analysis demonstrates a considerable dynamic of cytokines over time, which is influenced by both treatment and clinical course of COVID-19. Levels of IL-1ß and MCP-1 at baseline and MCP-1, IP-10 and RANTES on day 7 were associated with a favorable outcome across several endpoints. These cytokines should be included in future trials for further evaluation as predictive factors.
Collapse
Affiliation(s)
- Sixten Körper
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Eva Vanessa Schrezenmeier
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health Charité Universitätsmedizin Berlin, Berlin Institute of Health (BIH) Academy, Berlin, Germany
| | - Hector Rincon-Arevalo
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Beate Grüner
- Division of Infectious Diseases, University Hospital and Medical Center Ulm, Ulm, Germany
| | - Daniel Zickler
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Manfred Weiss
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm University, Ulm, Germany
| | - Thomas Wiesmann
- Department of Anaesthesiology and Intensive Care Medicine, Phillips-University Marburg, Marburg, Germany
| | - Kai Zacharowski
- Clinic of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Johannes Kalbhenn
- Clinic of Anesthesiology and Intensive Care Medicine University Medical Center of Freiburg, Freiburg, Germany
| | - Martin Bentz
- Department of Internal Medicine III, Hospital of Karlsruhe, Karlsruhe, Germany
| | | | - Gregor Paul
- Department of Gastroenterology, Hepatology, Pneumology and Infectious Diseases, Klinikum Stuttgart, Stuttgart, Germany
| | - Philipp M. Lepper
- Department of Internal Medicine V – Pneumology, Allergology, Intensive Care Medicine, Saarland University Hospital, Homburg, Germany
| | - Lucas Ernst
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Hinnerk Wulf
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm University, Ulm, Germany
| | - Sebastian Zinn
- Department of Anaesthesiology and Intensive Care Medicine, Phillips-University Marburg, Marburg, Germany
| | - Thomas Appl
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Bernd Jahrsdörfer
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Markus Rojewski
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Ramin Lotfi
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Thomas Dörner
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Bettina Jungwirth
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm University, Ulm, Germany
| | - Erhard Seifried
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Transfusion Service Baden-Württemberg – Hessen, Frankfurt, Germany
| | - Daniel Fürst
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
- *Correspondence: Hubert Schrezenmeier,
| |
Collapse
|
5
|
Dai X, Shen L. Advances and Trends in Omics Technology Development. Front Med (Lausanne) 2022; 9:911861. [PMID: 35860739 PMCID: PMC9289742 DOI: 10.3389/fmed.2022.911861] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/09/2022] [Indexed: 12/11/2022] Open
Abstract
The human history has witnessed the rapid development of technologies such as high-throughput sequencing and mass spectrometry that led to the concept of “omics” and methodological advancement in systematically interrogating a cellular system. Yet, the ever-growing types of molecules and regulatory mechanisms being discovered have been persistently transforming our understandings on the cellular machinery. This renders cell omics seemingly, like the universe, expand with no limit and our goal toward the complete harness of the cellular system merely impossible. Therefore, it is imperative to review what has been done and is being done to predict what can be done toward the translation of omics information to disease control with minimal cell perturbation. With a focus on the “four big omics,” i.e., genomics, transcriptomics, proteomics, metabolomics, we delineate hierarchies of these omics together with their epiomics and interactomics, and review technologies developed for interrogation. We predict, among others, redoxomics as an emerging omics layer that views cell decision toward the physiological or pathological state as a fine-tuned redox balance.
Collapse
|