1
|
Ma R, Li Y, Yin S, Gao Y, Zhao G. Interstitial pneumonia development after chemotherapy in B-cell non-hodgkin's lymphoma patients: clinical profiles and risk factors. Am J Cancer Res 2024; 14:4484-4494. [PMID: 39417196 PMCID: PMC11477814 DOI: 10.62347/btgq7302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Interstitial pneumonia (IP) is a significant adverse effect of chemotherapy in B-cell non-Hodgkin's lymphoma (NHL) patients. This study aimed to identify the clinical characteristics, risk factors, and treatment outcomes associated with IP in these patients. A retrospective review of 615 NHL patients treated at the Fourth Hospital of Hebei Medical University from 2016 to 2021 identified 50 patients with IP post-chemotherapy as the case group. A propensity score matched control group of 55 patients without pneumonia was established. Clinical profiles, risk factors, and treatment outcomes were evaluated. The IP incidence was 8.13% (50/615) in B-cell NHL patients. Multivariate analysis revealed liposomes, elevated lactate dehydrogenase (LDH), and erythrocyte sedimentation rate (ESR) as independent risk factors for IP. Receiver Operating Characteristic (ROC) curve analyses suggested that alterations in LDH and ESR could predict IP risk. The conclusion suggests that IP is associated with liposomal doxorubicin-induced lung injury and other cytotoxic chemotherapy, possibly due to Rituximab (RTX)-induced immune imbalance. Given the potential of IP with pulmonary infections, high-risk patients may need prophylactic antibiotics and appropriate corticosteroid therapy.
Collapse
Affiliation(s)
- Ruijuan Ma
- Department of Hematology, The Fourth Hospital of Hebei Medical University Shijiazhuang 050000, Hebei, China
| | - Yuan Li
- Department of Hematology, The Fourth Hospital of Hebei Medical University Shijiazhuang 050000, Hebei, China
| | - Shaoning Yin
- Department of Hematology, The Fourth Hospital of Hebei Medical University Shijiazhuang 050000, Hebei, China
| | - Yuhuan Gao
- Department of Hematology, The Fourth Hospital of Hebei Medical University Shijiazhuang 050000, Hebei, China
| | - Guimin Zhao
- Department of Hematology, The Fourth Hospital of Hebei Medical University Shijiazhuang 050000, Hebei, China
| |
Collapse
|
2
|
Su M, Chen L, Xie L, Fleurie A, Jonquieres R, Cao Q, Li B, Liang J, Tang Y. Identification of early predictive biomarkers for severe cytokine release syndrome in pediatric patients with chimeric antigen receptor T-cell therapy. Front Immunol 2024; 15:1450173. [PMID: 39328408 PMCID: PMC11424402 DOI: 10.3389/fimmu.2024.1450173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
CAR-T cell therapy is a revolutionary new treatment for hematological malignancies, but it can also result in significant adverse effects, with cytokine release syndrome (CRS) being the most common and potentially life-threatening. The identification of biomarkers to predict the severity of CRS is crucial to ensure the safety and efficacy of CAR-T therapy. To achieve this goal, we characterized the expression profiles of seven cytokines, four conventional biochemical markers, and five hematological markers prior to and following CAR-T cell infusion. Our results revealed that IL-2, IFN-γ, IL-6, and IL-10 are the key cytokines for predicting severe CRS (sCRS). Notably, IL-2 levels rise at an earlier stage of sCRS and have the potential to serve as the most effective cytokine for promptly detecting the condition's onset. Furthermore, combining these cytokine biomarkers with hematological factors such as lymphocyte counts can further enhance their predictive performance. Finally, a predictive tree model including lymphocyte counts, IL-2, and IL-6 achieved an accuracy of 85.11% (95% CI = 0.763-0.916) for early prediction of sCRS. The model was validated in an independent cohort and achieved an accuracy of 74.47% (95% CI = 0.597-0.861). This new prediction model has the potential to become an effective tool for assessing the risk of CRS in clinical practice.
Collapse
Affiliation(s)
- Meng Su
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luoquan Chen
- Shanghai Children's Medical Center-bioMérieux Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- bioMérieux (Shanghai) Company Limited, Shanghai, China
| | - Li Xie
- Shanghai Children's Medical Center-bioMérieux Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- bioMérieux (Shanghai) Company Limited, Shanghai, China
| | - Aurore Fleurie
- Open Innovation & Partnerships Department, bioMérieux SA, Marcy l'Etoile, France
| | - Renaud Jonquieres
- Open Innovation & Partnerships Department, bioMérieux SA, Marcy l'Etoile, France
| | - Qing Cao
- Infectious Disease Department, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Benshang Li
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji Liang
- Shanghai Children's Medical Center-bioMérieux Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- bioMérieux (Shanghai) Company Limited, Shanghai, China
| | - Yanjing Tang
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Bardwell B, Bay J, Colburn Z. The clinical applications of immunosequencing. Curr Res Transl Med 2024; 72:103439. [PMID: 38447267 DOI: 10.1016/j.retram.2024.103439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/20/2023] [Accepted: 01/11/2024] [Indexed: 03/08/2024]
Abstract
Technological advances in high-throughput sequencing have opened the door for the interrogation of adaptive immune responses at unprecedented scale. It is now possible to determine the sequences of antibodies or T-cell receptors produced by individual B and T cells in a sample. This capability, termed immunosequencing, has transformed the study of both infectious and non-infectious diseases by allowing the tracking of dynamic changes in B and T cell clonal populations over time. This has improved our understanding of the pathology of cancers, autoimmune diseases, and infectious diseases. However, to date there has been only limited clinical adoption of the technology. Advances over the last decade and on the horizon that reduce costs and improve interpretability could enable widespread clinical use. Many clinical applications have been proposed and, while most are still undergoing research and development, some methods relying on immunosequencing data have been implemented, the most widespread of which is the detection of measurable residual disease. Here, we review the diagnostic, prognostic, and therapeutic applications of immunosequencing for both infectious and non-infectious diseases.
Collapse
Affiliation(s)
- B Bardwell
- Department of Clinical Investigation, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA 98431, USA
| | - J Bay
- Department of Medicine, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA 98431, USA
| | - Z Colburn
- Department of Clinical Investigation, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA 98431, USA.
| |
Collapse
|
4
|
Anurogo D, Luthfiana D, Anripa N, Fauziah AI, Soleha M, Rahmah L, Ratnawati H, Wargasetia TL, Pratiwi SE, Siregar RN, Sholichah RN, Maulana MS, Ikrar T, Chang YH, Qiu JT. The Art of Bioimmunogenomics (BIGs) 5.0 in CAR-T Cell Therapy for Lymphoma Management. Adv Pharm Bull 2024; 14:314-330. [PMID: 39206402 PMCID: PMC11347730 DOI: 10.34172/apb.2024.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 01/13/2024] [Accepted: 03/03/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose Lymphoma, the most predominant neoplastic disorder, is divided into Hodgkin and Non-Hodgkin Lymphoma classifications. Immunotherapeutic modalities have emerged as essential methodologies in combating lymphoid malignancies. Chimeric Antigen Receptor (CAR) T cells exhibit promising responses in chemotherapy-resistant B-cell non-Hodgkin lymphoma cases. Methods This comprehensive review delineates the advancement of CAR-T cell therapy as an immunotherapeutic instrument, the selection of lymphoma antigens for CAR-T cell targeting, and the conceptualization, synthesis, and deployment of CAR-T cells. Furthermore, it encompasses the advantages and disadvantages of CAR-T cell therapy and the prospective horizons of CAR-T cells from a computational research perspective. In order to improve the design and functionality of artificial CARs, there is a need for TCR recognition investigation, followed by the implementation of a quality surveillance methodology. Results Various lymphoma antigens are amenable to CAR-T cell targeting, such as CD19, CD20, CD22, CD30, the kappa light chain, and ROR1. A notable merit of CAR-T cell therapy is the augmentation of the immune system's capacity to generate tumoricidal activity in patients exhibiting chemotherapy-resistant lymphoma. Nevertheless, it also introduces manufacturing impediments that are laborious, technologically demanding, and financially burdensome. Physical, physicochemical, and physiological limitations further exacerbate the challenge of treating solid neoplasms with CAR-T cells. Conclusion While the efficacy and safety of CAR-T cell immunotherapy remain subjects of fervent investigation, the promise of this cutting-edge technology offers valuable insights for the future evolution of lymphoma treatment management approaches. Moreover, CAR-T cell therapies potentially benefit patients, motivating regulatory bodies to foster international collaboration.
Collapse
Affiliation(s)
- Dito Anurogo
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Faculty of Medicine and Health Sciences, Muhammadiyah University of Makassar, Makassar, South Sulawesi, 90221, Indonesia
| | - Dewi Luthfiana
- Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO), Malang, East Java, 65162, Indonesia
| | - Nuralfin Anripa
- Department of Environmental Science, Dumoga University, Kotamobagu, South Sulawesi, 95711, Indonesia
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Apriliani Ismi Fauziah
- MSc Program in Tropical Medicine, Kaohsiung Medical University, Kaohsiung City, 807378, Taiwan
| | - Maratu Soleha
- National Research and Innovation Agency (BRIN), Central Jakarta, 10340, Indonesia
- IKIFA College of Health Sciences, East Jakarta, Special Capital Region of Jakarta, 13470, Indonesia
| | - Laila Rahmah
- Department of Digital Health, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416634793, Iran
- Faculty of Medicine, Muhammadiyah University of Surabaya, Surabaya, East Java, 60113, Indonesia
| | - Hana Ratnawati
- Faculty of Medicine, Maranatha Christian University, Bandung, West Java, 40164, Indonesia
| | | | - Sari Eka Pratiwi
- Department of Biology and Pathobiology, Faculty of Medicine, Tanjungpura University, Pontianak, West Kalimantan, 78115, Indonesia
| | - Riswal Nafi Siregar
- National Research and Innovation Agency (BRIN), Central Jakarta, 10340, Indonesia
| | - Ratis Nour Sholichah
- Department of Biotechnology, Postgraduate School of Gadjah Mada University, Yogyakarta, 55284, Indonesia
| | - Muhammad Sobri Maulana
- Community Health Center (Puskesmas) Temon 1, Kulon Progo, Special Region of Yogyakarta, 55654, Indonesia
| | - Taruna Ikrar
- Director of Members-at-Large, International Association of Medical Regulatory Authorities (IAMRA), Texas, 76039, USA
- Aivita Biomedical Inc., Irvine, California, 92612, USA
- Chairman of Medical Council, The Indonesian Medical Council (KKI), Central Jakarta, 10350, Indonesia
- Adjunct Professor, School of Military Medicine, The Republic of Indonesia Defense University (RIDU), Jakarta Pusat, 10440, Indonesia
- Department of Pharmacology, Faculty of Medicine, Malahayati University, Bandar Lampung, Lampung, 35152, Indonesia
| | - Yu Hsiang Chang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Locus Cell Co., LTD., Xizhi Dist., New Taipei City, 221, Taiwan
| | - Jiantai Timothy Qiu
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, 110301, Taiwan
| |
Collapse
|
5
|
Zhou S, Rao J, Ma X, Zeng Y, Xiang X, Li J, Liu H, Lin S, Dong S, Li F, Zhang X, Gao L. Optimized BEAC conditioning regimen improves clinical outcomes of autologous hematopoietic stem cell transplantation in non-Hodgkin lymphomas. Int J Hematol 2024; 120:96-105. [PMID: 38587693 PMCID: PMC11226560 DOI: 10.1007/s12185-024-03755-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024]
Abstract
The conditioning regimen is an important part of autologous hematopoietic stem cell transplantation (ASCT). We explored the efficacy and safety of an optimized BEAC (adjusted-dose, intermediate-dose cytarabine and reduced-dose cyclophosphamide, AD-BEAC) conditioning regimen for non-Hodgkin lymphoma (NHL). A total of 141 NHL patients received AD-BEAC or a standard-dose BEAC (SD-BEAC) conditioning regimen from January 2007 to December 2017, and 104 patients were included in the study after 1:1 propensity matching. The 5-year overall survival (OS) and progression free survival (PFS) rates were significantly higher with AD-BEAC than with SD-BEAC (82.7% vs. 67.3%, P = 0.039; 76.9% vs. 57.7%, P = 0.039). Transplant-related mortality (TRM) was 3.8% in both the AD-BEAC and SD-BEAC groups. The AD-BEAC group had lower incidence of oral ulcers and cardiotoxicity than the SD-BEAC group. An optimized BEAC conditioning regimen is an effective conditioning regimen for ASCT in NHL with acceptable toxicity, that is more effective and safer than a standard BEAC conditioning regimen.
Collapse
Affiliation(s)
- Sha Zhou
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
| | - Jun Rao
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiangyu Ma
- Department of Epidemiology, Army Medical University, Chongqing, China
| | - Yunjing Zeng
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
| | - Xixi Xiang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
| | - Jiali Li
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
| | - Hongyun Liu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
| | - Shijia Lin
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
| | - Song Dong
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
| | - Fu Li
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Li Gao
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China.
| |
Collapse
|
6
|
Sani F, Shojaei S, Tabatabaei SA, Khorraminejad-Shirazi M, Latifi M, Sani M, Azarpira N. CAR-T cell-derived exosomes: a new perspective for cancer therapy. Stem Cell Res Ther 2024; 15:174. [PMID: 38886844 PMCID: PMC11184895 DOI: 10.1186/s13287-024-03783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell adoptive immunotherapy is a promising cancer treatment that uses genetically engineered T cells to attack tumors. However, this therapy can have some adverse effects. CAR-T cell-derived exosomes are a potential alternative to CAR-T cells that may overcome some limitations. Exosomes are small vesicles released by cells and can carry a variety of molecules, including proteins, RNA, and DNA. They play an important role in intercellular communication and can be used to deliver therapeutic agents to cancer cells. The application of CAR-T cell-derived exosomes could make CAR-T cell therapy more clinically controllable and effective. Exosomes are cell-free, which means that they are less likely to cause adverse reactions than CAR-T cells. The combination of CAR-T cells and exosomes may be a more effective way to treat cancer than either therapy alone. Exosomes can deliver therapeutic agents to cancer cells where CAR-T cells cannot reach. The appropriate application of both cellular and exosomal platforms could make CAR-T cell therapy a more practicable treatment for cancer. This combination therapy could offer a safe and effective way to treat a variety of cancers.
Collapse
Affiliation(s)
- Farnaz Sani
- Shiraz Institute for Stem Cell & Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shabnam Shojaei
- School of Medicine, Shiraz Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammadhossein Khorraminejad-Shirazi
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pathology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mona Latifi
- Department of Physiological Science, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Mahsa Sani
- Shiraz Institute for Stem Cell & Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Negar Azarpira
- Shiraz Institute for Stem Cell & Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Transplant Research Center, Shiraz University of Medical Sciences, Khalili Street, P.O. Box: 7193711351, Shiraz, Iran.
| |
Collapse
|
7
|
Gagelmann N, Bishop M, Ayuk F, Bethge W, Glass B, Sureda A, Pasquini MC, Kröger N. Axicabtagene Ciloleucel versus Tisagenlecleucel for Relapsed or Refractory Large B Cell Lymphoma: A Systematic Review and Meta-Analysis. Transplant Cell Ther 2024; 30:584.e1-584.e13. [PMID: 38281590 DOI: 10.1016/j.jtct.2024.01.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/28/2023] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Axicabtagene ciloleucel (axi-cel) and tisagenlecleucel (tisa-cel) are CD19-directed chimeric antigen receptor T cell (CAR-T) therapies approved for relapsed/refractory aggressive large B cell lymphoma (LBCL). Significant costs and complex manufacturing underscore the importance of evidence-based counseling regarding the outcomes of these treatments. With the aim of examining the efficacy and safety of axi-cel versus tisa-cel in patients with relapsed/refractory aggressive LBCL, we performed a systematic literature search of comparative studies evaluating outcomes in relapsed/refractory aggressive LBCL after treatment with axi-cel or tisa-cel. We calculated odds ratios (ORs) and 95% confidence intervals (CIs) for response, progression-free survival (PFS), overall survival (OS), cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and hematotoxicity. Meta-analysis and meta-regression were used to generate summary statistics. A total of 2372 participants were included in the 8 studies in our analysis. The dropout rate between apheresis and infusion was 13% for axi-cel versus 18% for tisa-cel, and the median time from apheresis to infusion was 32 days versus 45 days. Axi-cel showed higher odds for a complete response (OR, 1.65; P < .001) and was associated with higher odds for PFS at 1 year after infusion (OR, .60; P < .001). OS appeared to be improved with axi-cel (OR, .84; 95% CI, .68 to 1.02; P = .08), whereas the cumulative incidence of nonrelapse mortality (NRM) was 11.5% for axi-cel versus 3.7% for tisa-cel (P = .002). The main predictors for survival were lactate dehydrogenase level, Eastern Cooperative Oncology Group Performance Status, and response to bridging, and axi-cel maintained superior efficacy even in elderly patients. In terms of safety, axi-cel was associated with significantly higher odds of any-grade CRS (OR, 3.23; P < .001), but not of grade ≥3 CRS (P = .92). Axi-cel was associated with significantly higher odds of severe ICANS grade ≥3 (OR, 4.03; P < .001). In terms of hematotoxicity, axi-cel was significantly associated with higher odds of severe neutropenia at 1 month after infusion (OR, 2.06; P = .003). As a result, axi-cel was associated with significantly greater resource utilization, including prolonged hospital stay, more frequent intensive care admission, and use of agents such as tocilizumab for toxicity management. We provide strong evidence of the greater efficacy of axi-cel versus tisa-cel in relapsed/refractory aggressive LBCL. The higher toxicity and NRM seen with axi-cel might not counterbalance the overall results, highlighting the need for timely intervention and careful selection of patients, balancing resource utilization and clinical benefit.
Collapse
Affiliation(s)
- Nico Gagelmann
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Michael Bishop
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, Illinois
| | - Francis Ayuk
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wolfgang Bethge
- Department of Hematology and Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Bertram Glass
- Department of Hematology and Cell Therapy, Helios Klinikum Berlin-Buch, Berlin, Germany
| | - Anna Sureda
- Bellvitge Institute for Biomedical Research, Universitat de Barcelona, Hematology Department, Institut Català d'Oncologia-Hospitalet, Barcelona, Spain
| | - Marcelo C Pasquini
- Department of Medicine, Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
8
|
Zhou J, Xiao H, Wang Z, Wang H, Liang X, Zhai Z, Hong J. CD14 -CD10 -CD45 +HLA-DR -SSC + neutrophils may be granulocytic myeloid-derived suppressor cell-like cells and relate to disease progression in non-Hodgkin's lymphoma patients. Immunol Cell Biol 2024; 102:256-268. [PMID: 38361210 DOI: 10.1111/imcb.12728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/31/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024]
Abstract
We explored the frequency of CD14-CD10-CD45+HLA-DR-SSC++ neutrophils (CD10- neutrophils) in patients with non-Hodgkin's lymphoma (NHL), and their immunologic characteristics and clinical significance. Patients with NHL who were newly diagnosed (NDP; n = 33), in remission (RMP; n = 28) and relapsed (RLP; n = 29) were included, and 47 volunteers were recruited as healthy controls (HCs). The frequency of CD10- neutrophils in the peripheral blood from HC and patients with NHL was detected. CD10- and CD10+ neutrophils were sorted, and their cytology was analyzed. CD3+ T cells were also isolated and cultured with the autologous CD10- or CD10+ neutrophils, after which the proliferation and death rates of T cells were determined. The levels of arginase-1 (Arg-1) and reactive oxygen species (ROS) in CD10+ or CD10- neutrophils were examined. Few CD10- neutrophils were detected in HCs but were significantly elevated in patients with NHL, especially in NDP and RLP. In addition, CD10- neutrophils in NDP with advanced stage and high risk were markedly higher than those in NDP with limited stage and low risk. In RMP and RLP, the relapse-free survival and overall survival in patients with high CD10- neutrophils were shorter than those with low CD10- neutrophils. CD10- neutrophils from patients with NHL, which mainly consist of immature neutrophils, inhibit T-cell proliferation and facilitate T-cell death. Furthermore, a significant increase was observed in Arg-1 expression, along with an increase to a certain extent in ROS. CD10- neutrophils in patients with NHL have characteristics of myeloid-derived suppressor cells and may be related to disease progression and poor prognosis.
Collapse
Affiliation(s)
- Ji Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- School of Nursing, Anhui Medical University, Hefei, China
- Nursing International Collaboration Research Center of Anhui Province, Hefei, China
| | - Hao Xiao
- Hematologic Diseases Research Center of Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Hematologic Department of Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhitao Wang
- Hematologic Diseases Research Center of Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Hematologic Department of Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huiping Wang
- Hematologic Diseases Research Center of Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Hematologic Department of Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xue Liang
- Hematologic Diseases Research Center of Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Hematologic Department of Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhimin Zhai
- Hematologic Diseases Research Center of Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Hematologic Department of Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jingfang Hong
- School of Nursing, Anhui Medical University, Hefei, China
- Nursing International Collaboration Research Center of Anhui Province, Hefei, China
| |
Collapse
|
9
|
Giraudo MF, Jackson Z, Das I, Abiona OM, Wald DN. Chimeric Antigen Receptor (CAR)-T Cell Therapy for Non-Hodgkin's Lymphoma. Pathog Immun 2024; 9:1-17. [PMID: 38550613 PMCID: PMC10972674 DOI: 10.20411/pai.v9i1.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/28/2024] [Indexed: 04/15/2024] Open
Abstract
This review focuses on the use of chimeric antigen receptor (CAR)-T cell therapy to treat non-Hodgkin's lymphoma (NHL), a classification of heterogeneous malignant neoplasms of the lymphoid tissue. Despite various conventional and multidrug chemotherapies, the poor prognosis for NHL patients remains and has prompted the utilization of groundbreaking personalized therapies such as CAR-T cells. CAR-T cells are T cells engineered to express a CAR that enables T cells to specifically lyse tumor cells with extracellular expression of a tumor antigen of choice. A CAR is composed of an extracellular antibody fragment or target protein binding domain that is conjugated to activating intracellular signaling motifs common to T cells. In general, CAR-T cell therapies for NHL are designed to recognize cellular markers ubiquitously expressed on B cells such as CD19+, CD20+, and CD22+. Clinical trials using CAR-T cells such as ZUMA-7 and TRANSFORM demonstrated promising results compared to standard of care and ultimately led to FDA approval for the treatment of relapsed/refractory NHL. Despite the success of CAR-T therapy for NHL, challenges include adverse side effects as well as extrinsic and intrinsic mechanisms of tumor resistance that lead to suboptimal outcomes. Overall, CAR-T cell therapies have improved clinical outcomes in NHL patients and generated optimism around their future applications.
Collapse
Affiliation(s)
| | - Zachary Jackson
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Indrani Das
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | | | - David N. Wald
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
- Department of Pathology, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio
| |
Collapse
|
10
|
Wang H, Wan X, Zhang Y, Guo J, Bai O. Advances in the treatment of relapsed/refractory marginal zone lymphoma. Front Oncol 2024; 14:1327309. [PMID: 38333686 PMCID: PMC10850340 DOI: 10.3389/fonc.2024.1327309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024] Open
Abstract
Marginal zone lymphoma (MZL) is the second most common subtype of inert B-cell non-Hodgkin's lymphoma, accounting for 5-15% of non-Hodgkin's lymphoma cases. Patients with MZL have a long survival period, with a median survival of >10 years, and patients treated with a combination of anti-CD20 monoclonal antibody can achieve an overall effective rate of 81%. However, 20% of patients with MZL show relapse or experience disease progression within 2 years, with a median survival of only 3-5 years. Currently, the treatment options for patients with relapsed/refractory (R/R) MZL are limited, underscoring the pressing need for novel therapeutic drugs. The advent of novel anti-CD20 monoclonal antibodies, small molecule kinase inhibitors, immunomodulators, and other therapeutic strategies has ushered in a new era in the treatment of R/R MZL. Our objective is to summarize the existing treatment strategies, including immunotherapy and the emergent targeted therapies, and to evaluate their effectiveness and safety in the management of R/R MZL. By doing so, we aim to provide a clear understanding of the therapeutic landscape for R/R MZL, and to guide future research directions toward improving the prognosis and quality of life for patients afflicted with this challenging disease.
Collapse
Affiliation(s)
| | | | | | | | - Ou Bai
- Department of Hematology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
11
|
Liu S, Xu M, Zhong L, Tong X, Qian S. Recent Advances in Nanobiotechnology for the Treatment of Non-Hodgkin's Lymphoma. Mini Rev Med Chem 2024; 24:895-907. [PMID: 37724679 DOI: 10.2174/1389557523666230915103121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/20/2023] [Accepted: 07/25/2023] [Indexed: 09/21/2023]
Abstract
Lymphoma is the eighth most common type of cancer worldwide. Currently, lymphoma is mainly classified into two main groups: Hodgkin's lymphoma (HL) and non-Hodgkin's lymphoma (NHL), with NHL accounting for 80% to 90% of the cases. NHL is primarily divided into B, T, and natural killer (NK) cell lymphoma. Nanotechnology is developing rapidly and has made significant contributions to the field of medicine. This review summarizes the advancements of nanobiotechnology in recent years and its applications in the treatment of NHL, especially in diffuse large B cell lymphoma (DLBCL), primary central nervous system lymphoma (PCNSL), and follicular lymphoma (FL). The technologies discussed include clinical imaging, targeted drug delivery, photodynamic therapy (PDT), and thermodynamic therapy (TDT) for lymphoma. This review aims to provide a better understanding of the use of nanotechnology in the treatment of non-Hodgkin's lymphoma.
Collapse
Affiliation(s)
- Shuxian Liu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Minghao Xu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Lei Zhong
- Tongxiang Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Xiangmin Tong
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Suying Qian
- Department of Hematology and Oncology, Ningbo No. 2 Hospital, China
| |
Collapse
|
12
|
He J, Li J, Feng LN, Feng LX, Qiang W, Wang W, Dong L. Oncology nurse competency in chimeric antigen receptor T-cell therapy: A qualitative study. NURSE EDUCATION TODAY 2024; 132:106040. [PMID: 37956569 DOI: 10.1016/j.nedt.2023.106040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T-cell therapy is a promising therapeutic method in the field of tumor immunotherapy. An increasing number of patients are beginning to select CAR T-cell therapy in mainland China. It is characterized by a complex process, a long period of treatment, high individualization, quick disease status changes and unique side effects. Oncology nurses play a crucial role in the provision of CAR T-cell therapy. OBJECTIVE To explore oncology nurses' competency in CAR T-cell therapy with guidance from the iceberg model. DESIGN A descriptive qualitative study. SETTINGS This study was conducted with nurses on lymphoma wards in three tertiary hospitals in China. PARTICIPANTS A total of 13 nurses and 2 nursing managers were approached, and all of them took part in this study. METHODS Data were collected face-to-face or via online video using a semistructured interview guide between November 2022 and February 2023 by the first author. The study was performed and reported following the Consolidated Criteria for Reporting Qualitative Research. Content analysis was used to analyze the data. RESULTS Nursing competency in CAR T-cell therapy was identified as including four main categories encompassing 12 subcategories and 40 codes. The main categories were theoretical knowledge, operation skills, personality traits and motives. The subcategories were basic knowledge of chemotherapy, professional knowledge of CAR T-cell therapy, basic skills, professional skills, relevant discipline skills, communication/coordination ability, critical thinking, basic traits, professional personality, enthusiasm for the nursing profession, empathy with patients and motivation to promote professional development. CONCLUSIONS Medical staff can develop a competency-based nurse training program to improve the professional competencies of oncology nurses in CAR T-cell therapy and meet patients' supportive needs for optimal care. Additionally, the findings may be helpful for building measurement standards to assess oncology nurses' performance.
Collapse
Affiliation(s)
- Jin He
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jing Li
- Tianjin Medical College, Tianjin, China
| | - Li Na Feng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Li Xia Feng
- Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Wanmin Qiang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wen Wang
- Institute of Hematology, Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Lei Dong
- The First Affiliated Hospital of Zhengzhou University, Henan, China
| |
Collapse
|
13
|
Ou L, Su C, Liang L, Duan Q, Li Y, Zang H, He Y, Zeng R, Li Y, Zhou H, Xiao L. Current status and future prospects of chimeric antigen receptor-T cell therapy in lymphoma research: A bibliometric analysis. Hum Vaccin Immunother 2023; 19:2267865. [PMID: 37846106 PMCID: PMC10583622 DOI: 10.1080/21645515.2023.2267865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
CAR-T cell therapy, a novel therapeutic approach that has attracted much attention in the field of cancer treatment at present, has become the subject of many studies and has shown great potential in the treatment of hematological malignancies, such as leukemia and lymphoma. This study aims to analyze the characteristics of articles published on CAR-T cell therapy in the lymphoma field and explore the existing hotspots and frontiers. The relevant articles published from 2013 to 2022 were retrieved from the Web of Science Core Collection. CiteSpace, VOSviewer, Bibliometric online analysis platform, Microsoft Excel, and R software were used for bibliometric analysis and visualization. The number of publications related to the research has been increasing year by year, including 1023 articles and 760 reviews from 62 countries and regions, 2092 institutions, 1040 journals, and 8727 authors. The United States, China, and Germany are the main publishing countries in this research field. The top 10 institutions are all from the United States, the journal with the highest impact factor is BLOOD, the author with the most publications is Frederick L Locke, and the most influential author is Carl H June. The top three keywords are "Lymphoma," "Immunotherapy," and "Therapy." "Maude (2014)" is the most cited and strongest burstiness reference over the past decade. This study provides a comprehensive bibliometric analysis of CAR-T cell therapy in lymphoma, which can help researchers understand the current research hotspots in this field, explore potential research directions, and identify future development trends.
Collapse
Affiliation(s)
- Lijia Ou
- Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Chang Su
- Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Liang Liang
- Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
- Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qintong Duan
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yufeng Li
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Zang
- Department of Human Anatomy and Histoembryology of School of Basic Medical Sciences, Yiyang Medical College, Yiyang, Hunan, China
| | - Yizi He
- Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Ruolan Zeng
- Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Yajun Li
- Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Hui Zhou
- Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Ling Xiao
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
14
|
Olejarz W, Basak G. Emerging Therapeutic Targets and Drug Resistance Mechanisms in Immunotherapy of Hematological Malignancies. Cancers (Basel) 2023; 15:5765. [PMID: 38136311 PMCID: PMC10741639 DOI: 10.3390/cancers15245765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
CAR-T cell therapy has revolutionized the treatment of hematological malignancies with high remission rates in the case of ALL and NHL. This therapy has some limitations such as long manufacturing periods, persistent restricted cell sources and high costs. Moreover, combination regimens increase the risk of immune-related adverse events, so the identification new therapeutic targets is important to minimize the risk of toxicities and to guide more effective approaches. Cancer cells employ several mechanisms to evade immunosurveillance, which causes resistance to immunotherapy; therefore, a very important therapeutic approach is to focus on the development of rational combinations of targeted therapies with non-overlapping toxicities. Recent progress in the development of new inhibitory clusters of differentiation (CDs), signaling pathway molecules, checkpoint inhibitors, and immunosuppressive cell subsets and factors in the tumor microenvironment (TME) has significantly improved anticancer responses. Novel strategies regarding combination immunotherapies with CAR-T cells are the most promising approach to cure cancer.
Collapse
Affiliation(s)
- Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Grzegorz Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland;
| |
Collapse
|
15
|
Ostojska M, Nowak E, Twardowska J, Lejman M, Zawitkowska J. CAR-T Cell Therapy in the Treatment of Pediatric Non-Hodgkin Lymphoma. J Pers Med 2023; 13:1595. [PMID: 38003910 PMCID: PMC10672004 DOI: 10.3390/jpm13111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Non-Hodgkin lymphomas (NHL) are a group of cancers that originate in the lymphatic system, especially from progenitor or mature B-cells, T-cells, or natural killer (NK) cells. NHL is the most common hematological malignancy worldwide and also the fourth most frequent type of cancer among pediatric patients. This cancer can occur in children of any age, but it is quite rare under the age of 5 years. In recent decades, available medicines and therapies have significantly improved the prognosis of patients with this cancer. However, some cases of NHL are treatment resistant. For this reason, immunotherapy, as a more targeted and personalized treatment strategy, is becoming increasingly important in the treatment of NHL in pediatric patients. The objective of the following review is to gather the latest available research results, conducted among pediatric and/or adult patients with NHL, regarding one immunotherapy method, i.e., chimeric antigen receptor (CAR) T cell therapy. We focus on assessing the effectiveness of CAR-T cell therapy, which mainly targets B cell markers, CD19, CD20, and CD22, their connections with one another, sequential treatment, or connections with co-stimulatory molecules. In addition, we also evaluate the safety, aftermath (especially neurotoxicities) and limitations of CAR-T cell therapy.
Collapse
Affiliation(s)
- Magdalena Ostojska
- Student’s Scientific Association of the Department of Pediatric Hematology, Oncology and Transplantation, Medical University of Lublin, 20-093 Lublin, Poland; (M.O.); (E.N.); (J.T.)
| | - Emilia Nowak
- Student’s Scientific Association of the Department of Pediatric Hematology, Oncology and Transplantation, Medical University of Lublin, 20-093 Lublin, Poland; (M.O.); (E.N.); (J.T.)
| | - Julia Twardowska
- Student’s Scientific Association of the Department of Pediatric Hematology, Oncology and Transplantation, Medical University of Lublin, 20-093 Lublin, Poland; (M.O.); (E.N.); (J.T.)
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Faculty of Medicine, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantation, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
16
|
Lu Y, Liu H, Ye SG, Zhou LL, Luo X, Dang XY, Yuan XG, Qian WB, Liang AB, Li P. [Efficacy and safety analysis of the zanubrutinib-based bridging regimen in chimeric antigen receptor T-cell therapy for relapsed/refractory diffuse large B-cell lymphoma]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:813-819. [PMID: 38049332 PMCID: PMC10694070 DOI: 10.3760/cma.j.issn.0253-2727.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Indexed: 12/06/2023]
Abstract
Objective: To further elucidate the clinical efficacy and safety of a combination regimen based on the BTK inhibitor zebutanil bridging CD19 Chimeric antigen receptor T cells (CAR-T cells) in the treatment of relapsed/refractory diffuse large B-cell lymphoma (r/r DLBCL) . Methods: Twenty-one patients with high-risk r/r DLBCL were treated with a zanubrutinib-based regimen bridging CAR-T between June 2020 and June 2023 at the Department of Hematology, Tongji Hospital, Tongji University and the Second Affiliated Hospital of Zhejiang University, and the efficacy and safety were retrospectively analyzed. Results: All 21 patients were enrolled, and the median age was 57 years (range: 38-76). Fourteen patients (66.7%) had an eastern cooperative oncology group performance status score (ECOG score) of ≥2. Eighteen patients (85.7%) had an international prognostic index (IPI) score of ≥3. Three patients (14.3%) had an IPI score of 2 but had extranodal infiltration. Fourteen patients (66.7%) had double-expression of DLBCL and seven (33.3%) had TP53 mutations. With a median follow-up of 24.8 (95% CI 17.0-31.6) months, the objective response rate was 81.0%, and 11 patients (52.4%) achieved complete remission. The median progression-free survival (PFS) was 12.8 months, and the median overall survival (OS) was not reached. The 1-year PFS rate was 52.4% (95% CI 29.8% -74.3%), and the 1-year OS rate was 80.1% (95% CI 58.1% -94.6%). Moreover, 18 patients (85.7%) had grade 1-2 cytokine-release syndrome, and two patients (9.5%) had grade 1 immune effector cell-associated neurotoxicity syndrome. Conclusion: Zanubrutinib-based combination bridging regimen of CAR-T therapy for r/r DLBCL has high efficacy and demonstrated a good safety profile.
Collapse
Affiliation(s)
- Y Lu
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - H Liu
- Department of Hematology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - S G Ye
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - L L Zhou
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - X Luo
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - X Y Dang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - X G Yuan
- Department of Hematology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - W B Qian
- Department of Hematology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - A B Liang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - P Li
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
17
|
Omer MH, Shafqat A, Ahmad O, Alkattan K, Yaqinuddin A, Damlaj M. Bispecific Antibodies in Hematological Malignancies: A Scoping Review. Cancers (Basel) 2023; 15:4550. [PMID: 37760519 PMCID: PMC10526328 DOI: 10.3390/cancers15184550] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Bispecific T-cell engagers (BiTEs) and bispecific antibodies (BiAbs) have revolutionized the treatment landscape of hematological malignancies. By directing T cells towards specific tumor antigens, BiTEs and BiAbs facilitate the T-cell-mediated lysis of neoplastic cells. The success of blinatumomab, a CD19xCD3 BiTE, in acute lymphoblastic leukemia spearheaded the expansive development of BiTEs/BiAbs in the context of hematological neoplasms. Nearly a decade later, numerous BiTEs/BiAbs targeting a range of tumor-associated antigens have transpired in the treatment of multiple myeloma, non-Hodgkin's lymphoma, acute myelogenous leukemia, and acute lymphoblastic leukemia. However, despite their generally favorable safety profiles, particular toxicities such as infections, cytokine release syndrome, myelosuppression, and neurotoxicity after BiAb/BiTE therapy raise valid concerns. Moreover, target antigen loss and the immunosuppressive microenvironment of hematological neoplasms facilitate resistance towards BiTEs/BiAbs. This review aims to highlight the most recent evidence from clinical trials evaluating the safety and efficacy of BiAbs/BiTEs. Additionally, the review will provide mechanistic insights into the limitations of BiAbs whilst outlining practical applications and strategies to overcome these limitations.
Collapse
Affiliation(s)
- Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff CF14 4YS, UK
| | - Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (O.A.); (K.A.); (A.Y.)
| | - Omar Ahmad
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (O.A.); (K.A.); (A.Y.)
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (O.A.); (K.A.); (A.Y.)
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (O.A.); (K.A.); (A.Y.)
| | - Moussab Damlaj
- Department of Hematology & Oncology, Sheikh Shakhbout Medical City, Abu Dhabi P.O. Box 11001, United Arab Emirates;
- College of Medicine, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
18
|
Shahabifard H, Zarei M, Kookli K, Esmalian Afyouni N, Soltani N, Maghsoodi S, Adili A, Mahmoudi J, Shomali N, Sandoghchian Shotorbani S. An updated overview of the application of CAR-T cell therapy in neurological diseases. Biotechnol Prog 2023; 39:e3356. [PMID: 37198722 DOI: 10.1002/btpr.3356] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023]
Abstract
Genetically modified immune cells, especially CAR-T cells, have captured the attention of scientists over the past 10 years. In the fight against cancer, these cells have a special place. Treatment for hematological cancers, autoimmune disorders, and cancers must include CAR-T cell therapy. Determining the therapeutic targets, side effects, and use of CAR-T cells in neurological disorders, including cancer and neurodegenerative diseases, is the goal of this study. Due to advancements in genetic engineering, CAR-T cells have become crucial in treating some neurological disorders. CAR-T cells have demonstrated a positive role in treating neurological cancers like Glioblastoma and Neuroblastoma due to their ability to cross the blood-brain barrier and use diverse targets. However, CAR-T cell therapy for MS diseases is being researched and could be a potential treatment option. This study aimed to access the most recent studies and scientific articles in the field of CAR-T cells in neurological diseases and/or disorders.
Collapse
Affiliation(s)
- Hesam Shahabifard
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Zarei
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Keihan Kookli
- International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Nazgol Esmalian Afyouni
- Isfahan Neurosciences Research Center, Alzahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Narges Soltani
- School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Sairan Maghsoodi
- Department of Laboratory Sciences, Faculty of Paramedical Sciences, Kurdistan University of Medical Sciences (MUK), Sanandaj, Iran
| | - Ali Adili
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
19
|
Wang YW, Zuo JC, Chen C, Li XH. Post-translational modifications and immune responses in liver cancer. Front Immunol 2023; 14:1230465. [PMID: 37609076 PMCID: PMC10441662 DOI: 10.3389/fimmu.2023.1230465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/26/2023] [Indexed: 08/24/2023] Open
Abstract
Post-translational modification (PTM) refers to the covalent attachment of functional groups to protein substrates, resulting in structural and functional changes. PTMs not only regulate the development and progression of liver cancer, but also play a crucial role in the immune response against cancer. Cancer immunity encompasses the combined efforts of innate and adaptive immune surveillance against tumor antigens, tumor cells, and tumorigenic microenvironments. Increasing evidence suggests that immunotherapies, which harness the immune system's potential to combat cancer, can effectively improve cancer patient prognosis and prolong the survival. This review presents a comprehensive summary of the current understanding of key PTMs such as phosphorylation, ubiquitination, SUMOylation, and glycosylation in the context of immune cancer surveillance against liver cancer. Additionally, it highlights potential targets associated with these modifications to enhance the response to immunotherapies in the treatment of liver cancer.
Collapse
Affiliation(s)
| | | | - Chong Chen
- Academy of Medical Engineering and Translational Medicine, Medical College of Tianjin University, Tianjin, China
| | - Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Medical College of Tianjin University, Tianjin, China
| |
Collapse
|
20
|
Cytokine Release Syndrome in the Pediatric Population and Implications for Intensive Care Management. Crit Care Clin 2023; 39:277-285. [PMID: 36898773 DOI: 10.1016/j.ccc.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytokine release syndrome represents a spectrum of disease varying from fever alone to multiorgan system failure. Most commonly seen following treatment with chimeric antigen receptor T cell therapy, it is increasingly being described with other immunotherapies as well as following hematopoietic stem cell transplant. As its symptoms are nonspecific, awareness is key to timely diagnosis and initiation of treatment. Given the high risk of cardiopulmonary involvement, critical care providers must be familiar with the cause, symptoms, and therapeutic options. Current treatment modalities focus on immunosuppression and targeted cytokine therapy.
Collapse
|
21
|
Vagal Nerve Activity Predicts Prognosis in Diffused Large B-Cell Lymphoma and Multiple Myeloma. J Clin Med 2023; 12:jcm12030908. [PMID: 36769556 PMCID: PMC9917757 DOI: 10.3390/jcm12030908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
This study examined the prognostic role of vagal nerve activity in patients with relapsed/refractory diffused large B-cell lymphoma (R/R-DLBCL) treated with chimeric antigen receptor cell therapy (CAR-T) and in patients with multiple myeloma (MM) undergoing an autologous hematopoietic cell transplantation (AutoHCT). Participants included 29 patients with R/R-DLBCL and 37 patients with MM. Inclusion criteria were: (1) age over 18; (2) diagnosed with DLBCL or MM; (3) being treated with CAR-T or AutoHCT; and (4) having an ECG prior to cell transfusion. The predictor was vagal nerve activity indexed by heart rate variability (HRV) and obtained retroactively from 10 s ECGs. The main endpoint for R/R-DLBCL was overall survival (OS), and for MM the endpoint was progression-free survival (PFS). Data of 122 patients were obtained, 66 of whom were included in the study. In DLBCL, HRV significantly predicted OS independently of confounders (e.g., performance status, disease status at cell therapy), hazard ratio (HR), and 95% confidence interval (HR = 0.20; 95%CI: 0.06-0.69). The prognostic role of disease severity was moderated by HRV: among severely disease patients, 100% died with low HRV, while only 37.5% died with high HRV. In MM, HRV significantly predicted PFS (HR = 0.19; 95%CI: 0.04-0.90) independently of confounders. Vagal nerve activity independently predicts prognosis in patients with R/R-DLBCL and with MM undergoing cell therapy. High vagal activity overrides the prognostic role of disease severity. Testing the effects of vagal nerve activation on prognosis in blood cancers is recommended.
Collapse
|
22
|
St-Pierre F, Gordon LI. Lisocabtagene maraleucel in the treatment of relapsed/refractory large B-cell lymphoma. Future Oncol 2023; 19:19-28. [PMID: 36651471 DOI: 10.2217/fon-2022-0774] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Lisocabtagene maraleucel (liso-cel) is one of the three US FDA-approved chimeric antigen receptor T-cell therapies for the treatment of relapsed/refractory (R/R) large B-cell lymphoma (LBCL). TRANSCEND is the landmark trial that led to the approval of liso-cel in the third-line setting for R/R diffuse LBCL, primary mediastinal B-cell lymphoma, follicular lymphoma grade 3B and transformed lymphoma. The TRANSFORM and PILOT studies evaluated the use of liso-cel in the second-line treatment of R/R LBCL. This review details the structure and manufacturing process of liso-cel that make it distinct from other approved chimeric antigen receptor constructs, outlines results from landmark trials of liso-cel in LBCL and discusses liso-cel toxicity.
Collapse
Affiliation(s)
- Frédérique St-Pierre
- Department of Medicine, Division of Hematology/Oncology & the Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60208, USA
| | - Leo I Gordon
- Department of Medicine, Division of Hematology/Oncology & the Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60208, USA
| |
Collapse
|
23
|
Lambert C, Ntrivalas E, Sack U. A new story for an old challenge: Would flow cytometry beat molecular biology in monitoring chimeric antigen receptor T cell pharmacokinetics? Cytometry A 2023; 103:8-11. [PMID: 36196578 PMCID: PMC10092526 DOI: 10.1002/cyto.a.24695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 01/20/2023]
Affiliation(s)
- Claude Lambert
- Immunology Laboratory, Pole de Biologie-Pathologie, University Hospital, Saint Etienne, France
| | | | - Ulrich Sack
- Institute of Clinical Immunology, Medical Faculty, Universität Leipzig, Leipzig, Germany
| | | |
Collapse
|
24
|
Kamijo K, Shimomura Y, Shinohara A, Mizuno S, Kanaya M, Usui Y, Kim SW, Ara T, Mizuno I, Kuriyama T, Nakazawa H, Matsuoka KI, Kusumoto S, Maseki N, Yamaguchi M, Ashida T, Onizuka M, Fukuda T, Atsuta Y, Kondo E. Fludarabine plus reduced-intensity busulfan versus fludarabine plus myeloablative busulfan in patients with non-Hodgkin lymphoma undergoing allogeneic hematopoietic cell transplantation. Ann Hematol 2023; 102:651-661. [PMID: 36631705 PMCID: PMC9977852 DOI: 10.1007/s00277-023-05084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/01/2023] [Indexed: 01/13/2023]
Abstract
Allogeneic hematopoietic cell transplantation (HCT) offers a possible cure for patients with relapsed and refractory non-Hodgkin lymphoma (NHL) through potentially beneficial graft versus lymphoma effects. However, allogeneic HCT is associated with high nonrelapse mortality (NRM). Fludarabine with reduced-intensity busulfan (Flu/Bu2) and myeloablative busulfan (Flu/Bu4) are commonly used in conditioning regimens for allogeneic HCT; however, data on their use in patients with NHL is limited. We investigated the effect of busulfan dose on outcomes by comparing Flu/Bu2 and Flu/Bu4 in patients with NHL who underwent allogeneic HCT. Our study included 415 adult patients with NHL who received Flu/Bu2 (315 patients) or Flu/Bu4 (100 patients) between January 2008 and December 2019. All patients were enrolled in the Transplant Registry Unified Management Program 2 of the Japanese Data Center for Hematopoietic Cell Transplantation. The primary endpoint was the 5-year overall survival (OS). To minimize potential confounding factors that may influence outcomes, we performed propensity score matching. The 5-year OS was 50.6% (95% confidence interval (CI), 39.4%-60.8%) and 32.2% (95% CI, 22.4-42.4%) in the Flu/Bu2 and Flu/Bu4 groups, respectively (p = 0.006). The hazard ratio comparing the two groups was 2.13 (95% CI, 1.30-3.50; p = 0.003). Both groups had a similar 5-year cumulative incidence of relapse (38.2% vs 41.3%; p = 0.581), and the Flu/Bu4 group had a higher cumulative incidence of 5-year NRM (15.7% vs 31.9%; p = 0.043). In this study, Flu/Bu4 was associated with worse OS compared with Flu/Bu2 because of high NRM in patients with NHL.
Collapse
Affiliation(s)
- Kimimori Kamijo
- Department of Hematology, Kobe City Hospital Organization Kobe City Medical Center General Hospital, 2-1-1 Minatojima-Minamimachi, Kobe, Chuo-Ku, 650-0047, Japan.
| | - Yoshimitsu Shimomura
- Department of Hematology, Kobe City Hospital Organization Kobe City Medical Center General Hospital, 2-1-1 Minatojima-Minamimachi, Kobe, Chuo-Ku, 650-0047, Japan
- Department of Environmental Medicine and Population Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Akihito Shinohara
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Shohei Mizuno
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Japan
| | - Minoru Kanaya
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Hematology, Hokkaido University Hospital, Sapporo, Japan
| | - Yoshiaki Usui
- Division of Cancer Information and Control, Department of Preventive Medicine, Aichi Cancer Center, Nagoya, Japan
| | - Sung-Won Kim
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Takahide Ara
- Department of Hematology, Hokkaido University Hospital, Sapporo, Japan
| | - Ishikazu Mizuno
- Department of Hematology, Hyogo Cancer Center, Akashi, Japan
| | - Takuro Kuriyama
- Department of Hematology, Hamanomachi Hospital, Fukuoka, Japan
| | - Hideyuki Nakazawa
- Department of Hematology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ken-Ichi Matsuoka
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Shigeru Kusumoto
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Nobuo Maseki
- Department of Hematology, Saitama Cancer Center, Saitama, Japan
| | - Masaki Yamaguchi
- Department of Hematology, Ishikawa Prefectural Central Hospital, Kanazawa, Japan
| | - Takashi Ashida
- Division of Hematology and Rheumatology, Department of Internal Medicine, Kindai University Hospital, Osakasayama, Japan
| | - Makoto Onizuka
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Takahiro Fukuda
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagakute, Japan
- Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Eisei Kondo
- Department of Hematology, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|
25
|
Hanel W, Herrera AF, Epperla N. Management of classical Hodgkin lymphoma: a look at up to date evidence and current treatment approaches. Exp Hematol Oncol 2022; 11:108. [PMID: 36575540 PMCID: PMC9793517 DOI: 10.1186/s40164-022-00360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
The treatment landscape of classical Hodgkin lymphoma (cHL) has undergone significant changes over the past 20 years. Gradual improvements have been made in the management of cHL patients, particularly in prolonging the survival rate for those in the relapsed setting. Most of these improvements came with the addition of brentuximab vedotin and PD1 blockade (nivolumab and pembrolizumab) into the current cHL treatment algorithms. On the other hand, the treatment approach to cHL has become more complex than ever before, with multiple ways to add and sequence therapies to achieve long-term remission. In this review, we will discuss the most up-to-date evidence on the management of cHL patients with the inclusion of ongoing clinical trials in cHL. We will provide a general overview of the current therapeutic landscape of cHL in light of these most recent data. We conclude with our perspective on how the approach to cHL treatment may evolve in the future.
Collapse
Affiliation(s)
- Walter Hanel
- Division of Hematology, Department of Medicine, The James Cancer Hospital and Solove Research Institute, The Ohio State University, 460 W 10th Ave, Columbus, OH, 43210, USA
| | - Alex F Herrera
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, 1500 E Duarte Rd, Duarte, CA, 91010, USA
| | - Narendranath Epperla
- Division of Hematology, Department of Medicine, The James Cancer Hospital and Solove Research Institute, The Ohio State University, 460 W 10th Ave, Columbus, OH, 43210, USA.
- The Ohio State University Comprehensive Cancer Center, 1110E Lincoln Tower, 1800 Cannon Drive, Columbus, OH, 43210, USA.
| |
Collapse
|
26
|
Seifert R, Kersting D, Rischpler C, Sandach P, Ferdinandus J, Fendler WP, Rahbar K, Weckesser M, Umutlu L, Hanoun C, Hüttmann A, Reinhardt HC, von Tresckow B, Herrmann K, Dührsen U, Schäfers M. Interim FDG-PET analysis to identify patients with aggressive non-Hodgkin lymphoma who benefit from treatment intensification: a post-hoc analysis of the PETAL trial. Leukemia 2022; 36:2845-2852. [PMID: 36241697 PMCID: PMC9712103 DOI: 10.1038/s41375-022-01713-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/13/2022] [Accepted: 09/16/2022] [Indexed: 11/08/2022]
Abstract
The randomized PETAL trial failed to demonstrate a benefit of interim FDG-PET (iPET)-based treatment intensification over continued standard therapy with CHOP (plus rituximab (R) in CD20-positive lymphomas). We hypothesized that PET analysis of all lymphoma manifestations may identify patients who benefitted from treatment intensification. A previously developed neural network was employed for iPET analysis to identify the highest pathological FDG uptake (max-SUVAI) and the mean FDG uptake of all lymphoma manifestations (mean-SUVAI). High mean-SUVAI uptake was determined separately for iPET-positive and iPET-negative patients. The endpoint was time-to-progression (TTP). There was a significant interaction of additional rituximab and mean-SUVAI in the iPET-negative group (HR = 0.6, p < 0.05). Patients with high mean-SUVAI had significantly prolonged TTP when treated with 6xR-CHOP + 2 R (not reached versus 52 months, p < 0.05), whereas max-SUVmanual failed to show an impact of additional rituximab. In the iPET-positive group, patients with high mean-SUVAI had a significantly longer TTP with (R-)CHOP than with the Burkitt protocol (14 versus 4 months, p < 0.01). Comprehensive iPET evaluation may provide new prognosticators in aggressive lymphoma. Additional application of rituximab was associated with prolonged TTP in iPET-negative patients with high mean-SUVAI. Comprehensive iPET interpretation could identify high-risk patients who benefit from study-specific interventions.
Collapse
Affiliation(s)
- Robert Seifert
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany.
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany.
- German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany.
- West German Cancer Center, University Hospital Essen, Essen, Germany.
| | - David Kersting
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Christoph Rischpler
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Patrick Sandach
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Justin Ferdinandus
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen, Essen, Germany
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Kambiz Rahbar
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Matthias Weckesser
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Lale Umutlu
- German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen, Essen, Germany
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Christine Hanoun
- German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen, Essen, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreas Hüttmann
- German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen, Essen, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hans Christian Reinhardt
- German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen, Essen, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bastian von Tresckow
- German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen, Essen, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Ulrich Dührsen
- German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
- West German Cancer Center, University Hospital Essen, Essen, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael Schäfers
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| |
Collapse
|
27
|
Chen Z, Liu Y, Chen N, Xing H, Tian Z, Tang K, Rao Q, Xu Y, Wang Y, Wang M, Wang J. Loop CD20/CD19 CAR-T cells eradicate B-cell malignancies efficiently. SCIENCE CHINA LIFE SCIENCES 2022; 66:754-770. [PMID: 36251156 DOI: 10.1007/s11427-022-2173-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022]
Abstract
CD19 chimeric antigen receptor (CAR) T cells have shown robust efficacy in relapsed and refractory acute lymphoblastic leukemia (R/R ALL), but compromising result in chronic lymphoblastic leukemia (CLL) and non-Hodgkin's lymphoma (NHL). CD19 relapse and the lack of CAR-T cell persistence which result in treatment failure are considerable obstacles to overcome. CAR-T targeting CD20 is an option for salvaging CD19 CAR-T failure. Previous studies have established variant structures of bispecific CAR-T which could avoid antigen-loss and immune escape. Here, we constructed tandem and loop CAR structures targeting both CD19 and CD20 antigen. Bispecific CAR-T cells could eliminate either CD19 or CD20 negative lymphoma cells, suggesting they exhibited dual antigen targeting of CD19 and CD20. By comparing the efficiency of four bispecific CAR modified T cells, it was found that loop2019 CAR was the best structure among them to eradicate lymphoma cell lines and patients' primary lymphoma or CLL cells in a very low dose in vitro and prolong the survival time dramatically in lymphoma xenograft mice model. These data highlighted the potential of loop2019 CAR-T in clinical treatment.
Collapse
|
28
|
Nikoo M, Rudiansyah M, Bokov DO, Jainakbaev N, Suksatan W, Ansari MJ, Thangavelu L, Chupradit S, Zamani A, Adili A, Shomali N, Akbari M. Potential of chimeric antigen receptor (CAR)-redirected immune cells in breast cancer therapies: Recent advances. J Cell Mol Med 2022; 26:4137-4156. [PMID: 35762299 PMCID: PMC9344815 DOI: 10.1111/jcmm.17465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/16/2022] [Accepted: 05/28/2022] [Indexed: 11/29/2022] Open
Abstract
Despite substantial developments in conventional treatments such as surgery, chemotherapy, radiotherapy, endocrine therapy, and molecular-targeted therapy, breast cancer remains the leading cause of cancer mortality in women. Currently, chimeric antigen receptor (CAR)-redirected immune cell therapy has emerged as an innovative immunotherapeutic approach to ameliorate survival rates of breast cancer patients by eliciting cytotoxic activity against cognate tumour-associated antigens expressing tumour cells. As a crucial component of adaptive immunity, T cells and NK cells, as the central innate immune cells, are two types of pivotal candidates for CAR engineering in treating solid malignancies. However, the biological distinctions between NK cells- and T cells lead to differences in cancer immunotherapy outcomes. Likewise, optimal breast cancer removal via CAR-redirected immune cells requires detecting safe target antigens, improving CAR structure for ideal immune cell functions, promoting CAR-redirected immune cells filtration to the tumour microenvironment (TME), and increasing the ability of these engineered cells to persist and retain within the immunosuppressive TME. This review provides a concise overview of breast cancer pathogenesis and its hostile TME. We focus on the CAR-T and CAR-NK cells and discuss their significant differences. Finally, we deliver a summary based on recent advancements in the therapeutic capability of CAR-T and CAR-NK cells in treating breast cancer.
Collapse
Affiliation(s)
- Marzieh Nikoo
- Department of Immunology, School of MedicineKermanshah University of Medical SciencesKermanshahIran
| | - Mohammad Rudiansyah
- Division of Nephrology & Hypertension, Department of Internal Medicine, Faculty of MedicineUniversitas Lambung Mangkurat / Ulin HospitalBanjarmasinIndonesia
| | - Dmitry Olegovich Bokov
- Institute of PharmacySechenov First Moscow State Medical UniversityMoscowRussian Federation
- Laboratory of Food ChemistryFederal Research Center of Nutrition, Biotechnology and Food SafetyMoscowRussian Federation
| | | | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical ScienceChulabhorn Royal AcademyBangkokThailand
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl‐kharjSaudi Arabia
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical ScienceSaveetha UniversityChennaiIndia
| | - Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical SciencesChiang Mai UniversityChiang MaiThailand
| | - Amir Zamani
- Shiraz Transplant Center, Abu Ali Sina HospitalShiraz University of Medical SciencesShirazIran
| | - Ali Adili
- Department of OncologyTabriz University of Medical SciencesTabrizIran
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South FloridaTampaFloridaUSA
| | - Navid Shomali
- Department of ImmunologyTabriz University of Medical SciencesTabrizIran
| | - Morteza Akbari
- Department of ImmunologyTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
29
|
Cioccarelli C, Molon B. MDSCs and T cells in solid tumors and non-Hodgkin lymphomas: an immunosuppressive speech. Clin Exp Immunol 2022; 208:147-157. [PMID: 35348617 PMCID: PMC9188344 DOI: 10.1093/cei/uxac025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous subset of cells expanded during multiple pathological settings, including cancers. In tumors, MDSCs are dominant drivers of T-cell immunosuppression. To accomplish their job, they exploit multiple mechanisms ultimately leading to the paralysis of anti-tumor immunity. Among the variety of MDSC-ways of working within the tumor microenvironment, the generation of reactive species and the metabolic reprogramming have emerged as pivotal determinants of their immunosuppressive power. In this review we will overview integral mechanisms of MDSC-mediated immunosuppression in solid tumors, with a particular focus on Non-Hodgkin lymphoma.
Collapse
Affiliation(s)
- Chiara Cioccarelli
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, Padova, Italy
| | - Barbara Molon
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, Padova, Italy
| |
Collapse
|
30
|
Denizot Y, Braza MS, Amin R. Editorial: B Cell Non-Hodgkin’s Lymphoma & Tumor Microenvironment Crosstalk: An Epigenetic Matter? Front Genet 2022; 13:912737. [PMID: 35664310 PMCID: PMC9161633 DOI: 10.3389/fgene.2022.912737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Y Denizot
- UMR CNRS 7276, INSERM U1262, Equipe Labellise LIGUE 2018, Universite de Limoges, CBRS, Limoges, France
| | - MS Braza
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - R Amin
- Department of Biochemistry, University of Nebraska at Lincoln, Lincoln, NE, United States
- *Correspondence: R Amin,
| |
Collapse
|
31
|
Amhaz G, Bazarbachi A, El-Cheikh J. Immunotherapy in indolent Non-Hodgkin's Lymphoma. Leuk Res Rep 2022; 17:100325. [PMID: 35663281 PMCID: PMC9160834 DOI: 10.1016/j.lrr.2022.100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 12/01/2022] Open
Abstract
Treatment of non-Hodgkin lymphoma (NHL) in general has improved over the years with the emergence of the monoclonal antibodies (MAB) therapy. NHL is divided into B cell NHL and T cell NHL. Treatment of NHL was based on the subtype of NHL and its staging. NHL is divided into aggressive and indolent NHL (iNHL). Subtypes of iNHL include: Follicular lymphoma (FL), Marginal zone lymphoma (MZL), Chronic lymphocytic leukemia/small-cell lymphocytic lymphoma (CLL/SLL), Gastric mucosa-associated lymphoid tissue (MALT) lymphoma, Lymphoplasmacytic lymphoma, Waldenström macroglobulinemia, Nodal marginal zone lymphoma (NMZL), Splenic marginal zone lymphoma (SMZL). Chemotherapy was the main stay treatment of iNHL until the emergence of Rituximab, anti-CD20 MAB targeting CD-20 surface cell antigens that are present on B-cells lymphoma and not on precursor cells, mainly efficacious in B cell iNHL, It became the mainstay treatment in follicular lymphoma (FL) as a single agent modality or in combination with chemotherapy. The anti-CD20 Rituximab played an important role in the development of the treatment of iNHL to become FDA approved in 1997. It was also proven effective in multiple other types of lymphoma. MAB through targeting the cell surface antigen leads to a direct or immune mediated cytotoxicity. This carries few side effects, including allergic reactions. Other than that, a resistance mechanism to rituximab emerged by inducing a failure in the apoptosis mechanism. Alternative mechanisms of resistance included the presence of soluble antigens that could act by binding to the antibody present before the drug itself can bind the lymphoma cell. Thus, the interest in immunotherapy grew further to explore the possibility of conjugating an immune mediated drug to a radio-sensitizing agent in order to enhance the selectivity of the drug. Here came the development of 90Y-ibritumomab tiuxetan and 131I-tositumomab. After it, humanized anti-CD20 emerged ofatumumab, IMMU106 (veltuzumab) in 2005, and ocrelizumab which are considered as second generation anti-CD20 and 3rd generation anti-CD20 include AME-133v (ocaratuzumab), PRO131921 and GA101 (obinutuzumab). Also multiple other agents emerged targeting different surface cell antigens like CD52 (alemtuzumab), CD22 (unconjugated epratuzumab and calicheamicin conjugated CMC-544 [inotuzumab ozogamicin]), CD80 (galiximab), CD2 (MEDI-507 [siplizumab]), CD30 (SGN-30 and MDX-060 [iratumumab], Brentuximab vedotin), CD40 (SGN-40), and CD79b (Polatuzumab). Other agents include MAB targeting T-Cells like mogamulizumab, Denileukin Diftitox and BiTEs or bispecific T cell engagers like Mosunetuzumab, Glofitamab, and Epcoritamab. Moreover, further studies came up to evaluate the role of immunotherapy in combination chemotherapy as a pathway to evade the resistance mechanisms. Side effects of the treatment were mainly infusion related adverse reactions, myelosuppression in conjugated forms leading to immunosuppression and subsequently to infectious complications. Another important aspect in immunotherapy is the half-lives of the medication which is an important factor that can influence the evaluation of the response. The MAB treatment showed important benefit in the treatment of iNHL and it continuously shows how rapidly it can develop to provide optimum care and benefit to patients with iNHL.
Collapse
Affiliation(s)
- Ghid Amhaz
- Division of hematology-oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali Bazarbachi
- Division of hematology-oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Jean El-Cheikh
- Division of hematology-oncology, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
32
|
Miao L, Zhang J, Zhang Z, Wang S, Tang F, Teng M, Li Y. A Bibliometric and Knowledge-Map Analysis of CAR-T Cells From 2009 to 2021. Front Immunol 2022; 13:840956. [PMID: 35371087 PMCID: PMC8971369 DOI: 10.3389/fimmu.2022.840956] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
ObjectivesA bibliometric and knowledge-map analysis is used to explore hotspots’ evolution and development trends in the CAR-T cell field. By looking for research hotspots and new topics, we can provide new clues and ideas for researchers in this field.MethodsThe articles and reviews regarding CAR-T cells were retrieved and obtained from the Web of Science Core Collection (WOSCC) on October 28th, 2021. CtieSpace [version 5.8.R3 (64-bit)] and VOSviewer (version 1.6.17) were used to conduct the bibliometric and knowledge-map analysis.Results660 authors from 488 institutions in 104 countries/regions published 6,867 papers in 1,212 academic journals. The United States was absolutely in the leading position in this research field. The institution that contributed the most publications was the University of Pennsylvania. Carl H June published the most articles, while Shannon L Maude had the most co-citations. However, there was little cooperation between countries. After 2012, cooperation among various institutions was also small. The journals that published the most CAR-T cell-related papers were Frontiers in immunology and Cancers. Nevertheless, Blood and The New England Journal of Medicine were the most commonly co-cited journals. The most influential research hotspots were the research of CAR-T cells in hematological malignancies, the related research of cytokine release syndrome (CRS), CD19, and the anti-tumor activity and efficacy of CAR-T cells. The latest hotspots and topics included the study of CAR-T cells in solid tumors, universal CAR-T cells, CAR-NK cells, CD22, and anakinra (the IL-1 receptor antagonist). The research of CAR-T cells in solid tumors was a rapidly developing hot field. Emerging topics in this field mainly included the study of CAR-T cells in glioblastoma (related targets: IL13Rα2, EGFRvIII, and HER2), neuroblastoma (related target: GD2), sarcoma (related target: HER2), and pancreatic cancer (related target: mesothelin), especially glioblastoma.ConclusionAs an anti-tumor therapy with great potential and clinical application prospects, CAR-T cell therapy is still in a stage of rapid development. The related field of CAR-T cells will remain a research hotspot in the future.
Collapse
Affiliation(s)
- Lele Miao
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, China
| | - Juan Zhang
- Department of Hematology, Fifth Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhengchao Zhang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, China
| | - Song Wang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, China
| | - Futian Tang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, China
| | - Muzhou Teng
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, China
- Lanzhou University, Lanzhou, China
- *Correspondence: Yumin Li, ; Muzhou Teng,
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, China
- Lanzhou University, Lanzhou, China
- *Correspondence: Yumin Li, ; Muzhou Teng,
| |
Collapse
|
33
|
The New Treatment Methods for Non-Hodgkin Lymphoma in Pediatric Patients. Cancers (Basel) 2022; 14:cancers14061569. [PMID: 35326719 PMCID: PMC8945992 DOI: 10.3390/cancers14061569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
One of the most common cancer malignancies is non-Hodgkin lymphoma, whose incidence is nearly 3% of all 36 cancers combined. It is the fourth highest cancer occurrence in children and accounts for 7% of cancers in patients under 20 years of age. Today, the survivability of individuals diagnosed with non-Hodgkin lymphoma varies by about 70%. Chemotherapy, radiation, stem cell transplantation, and immunotherapy have been the main methods of treatment, which have improved outcomes for many oncological patients. However, there is still the need for creation of novel medications for those who are treatment resistant. Additionally, more effective drugs are necessary. This review gathers the latest findings on non-Hodgkin lymphoma treatment options for pediatric patients. Attention will be focused on the most prominent therapies such as monoclonal antibodies, antibody–drug conjugates, chimeric antigen receptor T cell therapy and others.
Collapse
|
34
|
Pal A, Mohapatra D, Tripathy P, Mohanty S. Primary sacral activated B-Cell like diffuse large B-Cell lymphoma, triple expressor type: A case report with literature review. J Microsc Ultrastruct 2022. [DOI: 10.4103/jmau.jmau_64_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
|
35
|
Etxebeste-Mitxeltorena M, Del Rincón-Loza I, Martín-Antonio B. Tumor Secretome to Adoptive Cellular Immunotherapy: Reduce Me Before I Make You My Partner. Front Immunol 2021; 12:717850. [PMID: 34447383 PMCID: PMC8382692 DOI: 10.3389/fimmu.2021.717850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Adoptive cellular immunotherapy using chimeric antigen receptor (CAR)-modified T cells and Natural Killer (NK) cells are common immune cell sources administered to treat cancer patients. In detail, whereas CAR-T cells induce outstanding responses in a subset of hematological malignancies, responses are much more deficient in solid tumors. Moreover, NK cells have not shown remarkable results up to date. In general, immune cells present high plasticity to change their activity and phenotype depending on the stimuli they receive from molecules secreted in the tumor microenvironment (TME). Consequently, immune cells will also secrete molecules that will shape the activities of other neighboring immune and tumor cells. Specifically, NK cells can polarize to activities as diverse as angiogenic ones instead of their killer activity. In addition, tumor cell phagocytosis by macrophages, which is required to remove dying tumor cells after the attack of NK cells or CAR-T cells, can be avoided in the TME. In addition, chemotherapy or radiotherapy treatments can induce senescence in tumor cells modifying their secretome to a known as “senescence-associated secretory phenotype” (SASP) that will also impact the immune response. Whereas the SASP initially attracts immune cells to eliminate senescent tumor cells, at high numbers of senescent cells, the SASP becomes detrimental, impacting negatively in the immune response. Last, CAR-T cells are an attractive option to overcome these events. Here, we review how molecules secreted in the TME by either tumor cells or even by immune cells impact the anti-tumor activity of surrounding immune cells.
Collapse
Affiliation(s)
- Mikel Etxebeste-Mitxeltorena
- Department of Experimental Hematology, Instituto de Investigación Sanitaria-Fundación Jiménez Diaz, UAM, Madrid, Spain
| | - Inés Del Rincón-Loza
- Department of Experimental Hematology, Instituto de Investigación Sanitaria-Fundación Jiménez Diaz, UAM, Madrid, Spain
| | - Beatriz Martín-Antonio
- Department of Experimental Hematology, Instituto de Investigación Sanitaria-Fundación Jiménez Diaz, UAM, Madrid, Spain
| |
Collapse
|
36
|
Messéant O, Houot R, Manson G. T-cell Redirecting Therapies for the Treatment of B-cell Lymphomas: Recent Advances. Cancers (Basel) 2021; 13:cancers13174274. [PMID: 34503084 PMCID: PMC8428367 DOI: 10.3390/cancers13174274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary B-cell non-Hodgkin lymphomas (NHL) include many diseases with distincts pathogenic mechanisms, prognoses and management. Most patients benefit generally from efficient therapies allowing cure or prolonged remission. However, when they are refractory or relapse after standard therapy, they harbor a poor prognosis. In last decades, numerous novel immunotherapies have been developed with the aim of redirecting T-cell specificity against tumor antigens. Latest data on CAR T-cells confirm their efficacy and their safety in this setting. In addition, trials with bispecific antibodies are also ongoing for these patients, with encouraging premiminary findings, whether before or after CAR T-cells treatment. Here, we review the main results of CAR T-cells and bispecific T-cell engagers studies in the B-cell non-Hodgkin lymphomas setting. These advances in immunotherapies have transformed diffuse large B-cell lymphomas prognosis and will process indolent NHL’s future. Results with such treatments could lead to a new standard of care for those patients who are often heavily pretreated. Abstract T-cell specificity can be redirected against tumor antigens either ex vivo using engineered chimeric antigen receptor (CAR) T-cells or in vivo by bridging natural T-cells and tumor cells with bispecific T-cell engager (TCE) antibodies. Currently, four CAR T-cells have been approved by the FDA for the treatment of B-cell lymphomas, including diffuse large B cell lymphomas (DLBCL), mantle cell lymphoma (MCL), and follicular lymphoma (FL). No TCE have yet been approved for the treatment of B-cell lymphomas. However, at least four of them are in clinical development and show promising activity. Here, we review the most recent advances of CAR T-cells and TCE in the treatment of B-cell lymphomas.
Collapse
|