1
|
Huang J, Feng Y, Shi Y, Shao W, Li G, Chen G, Li Y, Yang Z, Yao Z. Telomeres and telomerase in Sarcoma disease and therapy. Int J Med Sci 2024; 21:2065-2080. [PMID: 39239547 PMCID: PMC11373546 DOI: 10.7150/ijms.97485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/24/2024] [Indexed: 09/07/2024] Open
Abstract
Sarcoma is a rare tumor derived from the mesenchymal tissue and mainly found in children and adolescents. The outcome for patients with sarcoma is relatively poor compared with that for many other solid malignant tumors. Sarcomas have a highly heterogeneous pathogenesis, histopathology and biological behavior. Dysregulated signaling pathways and various gene mutations are frequently observed in sarcomas. The telomere maintenance mechanism (TMM) has recently been considered as a prognostic factor for patients with sarcomas, and alternative lengthening of telomeres (ALT) positivity has been correlated with poor outcomes in patients with several types of sarcomas. Therefore, telomeres and telomerases may be useful targets for treating sarcomas. This review aims to provide an overview of telomere and telomerase biology in sarcomas.
Collapse
Affiliation(s)
- Jin Huang
- Department of Cancer Research Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Yan Feng
- Department of Cancer Research Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - YangJing Shi
- Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Weilin Shao
- Department of Cancer Research Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Genshan Li
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Gangxian Chen
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Ying Li
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Zhihong Yao
- Department of Cancer Research Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| |
Collapse
|
2
|
Wang Y, Zhang X, Chen G, Shao M. Clinical research progress of telomerase targeted cancer immunotherapy: a literature review. Transl Cancer Res 2024; 13:3904-3921. [PMID: 39145070 PMCID: PMC11319969 DOI: 10.21037/tcr-24-196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/04/2024] [Indexed: 08/16/2024]
Abstract
Background and Objective Telomerase is activated or overexpressed in 85-90% of tumors, which maintains the length of telomere and has become an important anti-cancer target. Increasing clinical and preclinical data suggest that telomerase-targeted cancer immunotherapy could achieve effective killing of tumor cells in vivo. This article reviews the research progress of telomerase targeted cancer immunotherapy in clinical and pre-clinical trials, aiming to provide a reference for further clinical research and treatment of cancers. Methods We investigated the research progress of telomerase immunotherapy in the last 20 years from four electronic databases. Key Content and Findings Telomerase-targeted immunotherapies have been developed with the arising of a new era in immuno-oncology, including peptide vaccines, DNA vaccines, dendritic cells (DCs), adoptive cell transfer (ACT) therapies, antibodies, etc. Some of them have been approved for undergoing clinical trials by the Food and Drug Administration (FDA) for the treatment of various cancers, such as pancreatic cancer, non-small cell lung cancer, melanoma, leukaemia. Of all the treatment modalities, vaccines are the primary treatment methods, some of which have been even entered into phase III clinical trials. The main clinical application direction of telomerase vaccine is the combination with other drugs and treatment modalities, including combination with other vaccines targeting human telomerase reverse transcriptase (hTERT), traditional chemotherapy drugs and immunosuppressors. We also summarized the recent findings of immunotherapy targeting hTERT, focusing on various vaccines and the current status of associated clinical trials. We further discussed the advantages, disadvantages and potential developmental directions of various telomerase-targeted immunotherapies. Conclusions Telomerase-targeted cancer immunotherapy has promising prospects in improving patient survival expectancy. This review may provide data support and design ideas for all researchers and pharmaceutical enterprises in this field.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China
| | - Xiaoying Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China
| | - Guangming Chen
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China
| | - Mingzhe Shao
- Department of Vascular Surgery, Multidisciplinary Collaboration Group of Diabetic Foot, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
3
|
Waitkus MS, Erman EN, Reitman ZJ, Ashley DM. Mechanisms of telomere maintenance and associated therapeutic vulnerabilities in malignant gliomas. Neuro Oncol 2024; 26:1012-1024. [PMID: 38285162 PMCID: PMC11145458 DOI: 10.1093/neuonc/noae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Indexed: 01/30/2024] Open
Abstract
A majority of cancers (~85%) activate the enzyme telomerase to maintain telomere length over multiple rounds of cellular division. Telomerase-negative cancers activate a distinct, telomerase-independent mechanism of telomere maintenance termed alternative lengthening of telomeres (ALT). ALT uses homologous recombination to maintain telomere length and exhibits features of break-induced DNA replication. In malignant gliomas, the activation of either telomerase or ALT is nearly ubiquitous in pediatric and adult tumors, and the frequency with which these distinct telomere maintenance mechanisms (TMMs) is activated varies according to genetically defined glioma subtypes. In this review, we summarize the current state of the field of TMMs and their relevance to glioma biology and therapy. We review the genetic alterations and molecular mechanisms leading to telomerase activation or ALT induction in pediatric and adult gliomas. With this background, we review emerging evidence on strategies for targeting TMMs for glioma therapy. Finally, we comment on critical gaps and issues for moving the field forward to translate our improved understanding of glioma telomere maintenance into better therapeutic strategies for patients.
Collapse
Affiliation(s)
- Matthew S Waitkus
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Elise N Erman
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Zachary J Reitman
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - David M Ashley
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
4
|
Brandt A, Schultheiss C, Klinghammer K, Schafhausen P, Busch CJ, Blaurock M, Hinke A, Tometten M, Dietz A, Müller-Richter U, Hahn D, Alt J, Stein A, Binder M. Tolerability and efficacy of the cancer vaccine UV1 in patients with recurrent or metastatic PD-L1 positive head and neck squamous cell carcinoma planned for first-line treatment with pembrolizumab - the randomized phase 2 FOCUS trial. Front Oncol 2024; 14:1283266. [PMID: 38384801 PMCID: PMC10879422 DOI: 10.3389/fonc.2024.1283266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Background Globally, head and neck squamous cell carcinoma (HNSCC) is the seventh most common malignancy. Despite aggressive multimodal treatment approaches, recurrent and/or metastatic (R/M) disease develops in >50% of patients. In this setting, pembrolizumab was approved for patients with PD-L1 expression. However, response rates with checkpoint inhibitor monotherapy remain limited and strategies to strengthen tumor-directed immune responses are needed. Objective The FOCUS trial is designed to estimate the effectiveness of UV1 vaccination in combination with pembrolizumab versus pembrolizumab as a single agent in patients with R/M HNSCC. Methods and analysis The FOCUS trial is a two-armed, randomized, multicenter phase II study which was designed to evaluate the efficacy and feasibility of the hTERT-targeted cancer vaccine UV1 as add-on to pembrolizumab in the 1st line treatment of patients with R/M PD-L1 positive (combined positive score ≥1) HNSCC. Secondary objectives are the exploration of patient subgroups most likely deriving benefit from this novel combination and the establishment of liquid biopsy tumor monitoring in HNSCC. Ethics and dissemination This clinical study was designed and will be conducted in compliance with Good Clinical Practice and in accordance with the Declaration of Helsinki. It is intended to publish the results of this study in peer-reviewed scientific journals and to present its content at academic conferences. Conclusions A significant number of patients with R/M HNSCC are frail and may not tolerate chemotherapy, these patients may only be suitable for pembrolizumab monotherapy. However, long term disease stabilizations remain the exception and there is a need for the development of efficacious combination regimens for this patient population. The FOCUS study aims to optimize treatment of R/M HNSCC patients with this promising new treatment approach. Clinical Trial Registration https://clinicaltrials.gov/study/NCT05075122, identifier NCT05075122.
Collapse
Affiliation(s)
- Anna Brandt
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - Christoph Schultheiss
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Konrad Klinghammer
- Department of Hematology and Oncology, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Philippe Schafhausen
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chia-Jung Busch
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Markus Blaurock
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Axel Hinke
- Clinical Cancer Research Consulting (CCRC), Düsseldorf, Germany
| | - Mareike Tometten
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Andreas Dietz
- Department of Otolaryngology, Head and Neck Surgery, University of Leipzig, Leipzig, Germany
| | - Urs Müller-Richter
- University Hospital Würzburg, Bavarian Cancer Research Center (BZKF), Würzburg, Germany
| | - Dennis Hahn
- Department of Hematology, Oncology, Stem-Cell Transplantation and Palliative Care, Klinikum Stuttgart, Stuttgart, Germany
| | - Jürgen Alt
- Department of Internal Medicine III (Hematology, Oncology), University Medical Center Mainz, Mainz, Germany
| | - Alexander Stein
- Hematology-Oncology Practice Eppendorf (HOPE), Hamburg, Germany
| | - Mascha Binder
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| |
Collapse
|
5
|
Bright RK. Preclinical support for tumor protein D52 as a cancer vaccine antigen. Hum Vaccin Immunother 2023; 19:2273699. [PMID: 37904517 PMCID: PMC10760363 DOI: 10.1080/21645515.2023.2273699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
Overexpressed tumor-associated antigens (TAAs) are a large group that includes proteins found at increased levels in tumors compared to healthy cells. Universal tumor expression can be defined as overexpression in all cancers examined as has been shown for Tumor Protein D52. TPD52 is an over expressed TAA actively involved in transformation, leading to increased proliferation and metastasis. TPD52 overexpression has been demonstrated in many human adult and pediatric malignancies. The murine orthologue of TPD52 (mD52) parallels normal tissue expression patterns and known functions of human TPD52 (hD52). Here in we present our preclinical studies over the past 15 years which have demonstrated that vaccine induced immunity against mD52 is effective against multiple cancers in murine models, without inducing autoimmunity against healthy tissues and cells.
Collapse
Affiliation(s)
- Robert K. Bright
- Department of Immunology and Molecular Microbiology, School of Medicine and Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
6
|
Ellingsen EB, O'Day S, Mezheyeuski A, Gromadka A, Clancy T, Kristedja TS, Milhem M, Zakharia Y. Clinical Activity of Combined Telomerase Vaccination and Pembrolizumab in Advanced Melanoma: Results from a Phase I Trial. Clin Cancer Res 2023; 29:3026-3036. [PMID: 37378632 PMCID: PMC10425723 DOI: 10.1158/1078-0432.ccr-23-0416] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/27/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
PURPOSE Cancer vaccines represent a novel treatment modality with a complementary mode of action addressing a crucial bottleneck for checkpoint inhibitor (CPI) efficacy. CPIs are expected to release brakes in T-cell responses elicited by vaccination, leading to more robust immune responses. Increased antitumor T-cell responses may confer increased antitumor activity in patients with less immunogenic tumors, a subgroup expected to achieve reduced benefit from CPIs alone. In this trial, a telomerase-based vaccine was combined with pembrolizumab to assess the safety and clinical activity in patients with melanoma. PATIENTS AND METHODS Thirty treatment-naïve patients with advanced melanoma were enrolled. Patients received intradermal injections of UV1 with adjuvant GM-CSF at two dose levels, and pembrolizumab according to the label. Blood samples were assessed for vaccine-induced T-cell responses, and tumor tissues were collected for translational analyses. The primary endpoint was safety, with secondary objectives including progression-free survival (PFS), overall survival (OS), and objective response rate (ORR). RESULTS The combination was considered safe and well-tolerated. Grade 3 adverse events were observed in 20% of patients, with no grade 4 or 5 adverse events reported. Vaccination-related adverse events were mostly mild injection site reactions. The median PFS was 18.9 months, and the 1- and 2-year OS rates were 86.7% and 73.3%, respectively. The ORR was 56.7%, with 33.3% achieving complete responses. Vaccine-induced immune responses were observed in evaluable patients, and inflammatory changes were detected in posttreatment biopsies. CONCLUSIONS Encouraging safety and preliminary efficacy were observed. Randomized phase II trials are currently ongoing.
Collapse
Affiliation(s)
- Espen B. Ellingsen
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Ultimovacs ASA, Oslo, Norway
| | - Steven O'Day
- Providence Saint John's Cancer Institute, Santa Monica, California
| | | | | | | | | | | | - Yousef Zakharia
- University of Iowa and Holden Comprehensive Cancer Center, Iowa City, Iowa
| |
Collapse
|
7
|
Telomerase: A prominent oncological target for development of chemotherapeutic agents. Eur J Med Chem 2023; 249:115121. [PMID: 36669398 DOI: 10.1016/j.ejmech.2023.115121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/26/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Telomerase is a ribonucleoprotein (RNP) responsible for the maintenance of chromosomal integrity by stabilizing telomere length. Telomerase is a widely expressed hallmark responsible for replicative immortality in 80-90% of malignant tumors. Cancer cells produce telomerase which prevents telomere shortening by adding telomeres sequences beyond Hayflick's limit; which enables them to divide uncontrollably. The activity of telomerase is relatively low in somatic cells and absent in normal cells, but the re-activation of this RNP in normal cells suppresses p53 activity which leads to the avoidance of senescence causing malignancy. Here, we have focused explicitly on various anti-telomerase therapies and telomerase-inhibiting molecules for the treatment of cancer. We have covered molecules that are reported in developmental, preclinical, and clinical trial stages as potent telomerase inhibitors. Apart from chemotherapy, we have also included details of immunotherapy, gene therapy, G-quadruplex stabilizers, and HSP-90 inhibitors. The purpose of this work is to discuss the challenges behind the development of novel telomerase inhibitors and to identify various perspectives for designing anti-telomerase compounds.
Collapse
|
8
|
Ellingsen EB, Bjørheim J, Gaudernack G. Therapeutic cancer vaccination against telomerase: clinical developments in melanoma. Curr Opin Oncol 2023; 35:100-106. [PMID: 36700456 PMCID: PMC9894137 DOI: 10.1097/cco.0000000000000922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Checkpoint inhibitors (CPIs) have revolutionized treatment outcomes for patients with malignant melanoma. Long-term follow-up shows that a substantial subset of patients who exhibit clinical responses achieve extended overall survival. Nevertheless, most patients do not achieve durable benefit from CPIs, and improvements are urgently needed. The clinical efficacy of CPIs depends on highly variable preexisting spontaneous T-cell immune responses. Cancer vaccines represent an independent treatment modality uniquely capable of expanding the repertoire of tumor-specific T cells in cancer patients and thus have the capacity to compensate for the variability in spontaneous T-cell responses. Vaccines are, therefore, considered attractive components in a CPI-combination strategy. RECENT FINDINGS Here we discuss recent results obtained through therapeutic vaccination against telomerase human telomerase reverse transcriptase (hTERT). Recent publications on translational research and clinical results from phase I trials indicate that vaccination against telomerase in combination with CPIs provides relevant immune responses, negligible added toxicity, and signals of clinical efficacy. CONCLUSION In the near future, randomized data from clinical trials involving therapeutic cancer vaccines and checkpoint inhibitors will be available. Positive readout may spark broad development and allow cancer vaccines to find their place in the clinic as an important component in multiple future CPI combinations.
Collapse
|
9
|
Yeh TJ, Luo CW, Du JS, Huang CT, Wang MH, Chuang TM, Gau YC, Cho SF, Liu YC, Hsiao HH, Chen LT, Pan MR, Wang HC, Moi SH. Deciphering the Functions of Telomerase Reverse Transcriptase in Head and Neck Cancer. Biomedicines 2023; 11:691. [PMID: 36979671 PMCID: PMC10044978 DOI: 10.3390/biomedicines11030691] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023] Open
Abstract
Head and neck cancers (HNCs) are among the ten leading malignancies worldwide. Despite significant progress in all therapeutic modalities, predictive biomarkers, and targeted therapies for HNCs are limited and the survival rate is unsatisfactory. The importance of telomere maintenance via telomerase reactivation in carcinogenesis has been demonstrated in recent decades. Several mechanisms could activate telomerase reverse transcriptase (TERT), the most common of which is promoter alternation. Two major hotspot TERT promoter mutations (C228T and C250T) have been reported in different malignancies such as melanoma, genitourinary cancers, CNS tumors, hepatocellular carcinoma, thyroid cancers, sarcomas, and HNCs. The frequencies of TERT promoter mutations vary widely across tumors and is quite high in HNCs (11.9-64.7%). These mutations have been reported to be more enriched in oral cavity SCCs and HPV-negative tumors. The association between TERT promoter mutations and poor survival has also been demonstrated. Till now, several therapeutic strategies targeting telomerase have been developed although only a few drugs have been used in clinical trials. Here, we briefly review and summarize our current understanding and evidence of TERT promoter mutations in HNC patients.
Collapse
Affiliation(s)
- Tsung-Jang Yeh
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chi-Wen Luo
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
| | - Jeng-Shiun Du
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chien-Tzu Huang
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Min-Hung Wang
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tzer-Ming Chuang
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yuh-Ching Gau
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shih-Feng Cho
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yi-Chang Liu
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hui-Hua Hsiao
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Li-Tzong Chen
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Hui-Ching Wang
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Sin-Hua Moi
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
10
|
Liu T, Li S, Xia C, Xu D. TERT promoter mutations and methylation for telomerase activation in urothelial carcinomas: New mechanistic insights and clinical significance. Front Immunol 2023; 13:1071390. [PMID: 36713366 PMCID: PMC9877314 DOI: 10.3389/fimmu.2022.1071390] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Telomerase, an RNA-dependent DNA polymerase synthesizing telomeric TTAGGG sequences, is primarily silent in normal human urothelial cells (NHUCs), but widely activated in urothelial cell-derived carcinomas or urothelial carcinomas (UCs) including UC of the bladder (UCB) and upper track UC (UTUC). Telomerase activation for telomere maintenance is required for the UC development and progression, and the key underlying mechanism is the transcriptional de-repression of the telomerase reverse transcriptase (TERT), a gene encoding the rate-limiting, telomerase catalytic component. Recent mechanistic explorations have revealed important roles for TERT promoter mutations and aberrant methylation in activation of TERT transcription and telomerase in UCs. Moreover, these TERT-featured genomic and epigenetic alterations have been evaluated for their usefulness in non-invasive UC diagnostics, recurrence monitoring, outcome prediction and response to treatments such as immunotherapy. Importantly, the detection of the mutated TERT promoter and TERT mRNA as urinary biomarkers holds great promise for urine-based UC liquid biopsy. In the present article, we review recent mechanistic insights into altered TERT promoter-mediated telomerase activation in UCs and discuss potential clinical implications. Specifically, we compare differences in senescence and transformation between NHUCs and other types of epithelial cells, address the interaction between TERT promoter mutations and other factors to affect UC progression and outcomes, evaluate the impact of TERT promoter mutations and TERT-mediated activation of human endogenous retrovirus genes on UC immunotherapy including Bacillus Calmette-Guérin therapy and immune checkpoint inhibitors. Finally, we suggest the standardization of a TERT assay and evaluation system for UC clinical practice.
Collapse
Affiliation(s)
- Tiantian Liu
- Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shihong Li
- Department of Pathology, Maternal and Child Health Hospital of Liaocheng, Liaocheng, China
| | - Chuanyou Xia
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China,*Correspondence: Chuanyou Xia, ; Dawei Xu,
| | - Dawei Xu
- Department of Medicine, Bioclinicum and Center for Molecular Medicine (CMM), Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden,*Correspondence: Chuanyou Xia, ; Dawei Xu,
| |
Collapse
|
11
|
Verma AK, Singh P, Al-Saeed FA, Ahmed AE, Kumar S, Kumar A, Dev K, Dohare R. Unravelling the role of telomere shortening with ageing and their potential association with diabetes, cancer, and related lifestyle factors. Tissue Cell 2022; 79:101925. [DOI: 10.1016/j.tice.2022.101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/18/2022] [Accepted: 09/10/2022] [Indexed: 11/26/2022]
|
12
|
de Lima MF, Freitas MO, Hamedani MK, Rangel-Pozzo A, Zhu XD, Mai S. Consecutive Inhibition of Telomerase and Alternative Lengthening Pathway Promotes Hodgkin's Lymphoma Cell Death. Biomedicines 2022; 10:2299. [PMID: 36140400 PMCID: PMC9496562 DOI: 10.3390/biomedicines10092299] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/19/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Telomere maintenance is key during cancer development. Malignant cells can either use telomerase or an alternative lengthening of telomere (ALT) pathway to maintain their telomere length. In Hodgkin's Lymphoma (HL), the presence of telomerase activation is established. The activation of ALT has been reported recently. Our data confirm this notion describing co-localization of the phosphorylated form of telomeric repeat-binding factor 1 (pT371-TRF1) with ALT-associated promyelocytic leukemia bodies. Surprisingly, to our knowledge, there are no published studies targeting both telomere maintenance pathways in HL. Consequently, we investigated, for the first time, the effects of both telomerase and ALT inhibition on HL cell viability: We inhibited telomerase and/or ALT, given either individually, simultaneously, or consecutively. We report that the inhibition of telomerase using BIBR1532 followed by ALT inhibition, using trabectedin, caused a decrease of greater than 90% in cell viability in three patient-derived HL cell lines. Our results suggest that HL cells are most vulnerable to the consecutive inhibition of telomerase followed by ALT inhibition.
Collapse
Affiliation(s)
- Matheus Fabiao de Lima
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Monique Oliveira Freitas
- Genetic Service, Institute of Paediatrics and Puericulture Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-912, Brazil
| | - Mohammad K. Hamedani
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Aline Rangel-Pozzo
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Xu-Dong Zhu
- Department of Biology, Faculty of Science, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Sabine Mai
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
13
|
Ellingsen EB, Bounova G, Kerzeli I, Anzar I, Simnica D, Aamdal E, Guren T, Clancy T, Mezheyeuski A, Inderberg EM, Mangsbo SM, Binder M, Hovig E, Gaudernack G. Characterization of the T cell receptor repertoire and melanoma tumor microenvironment upon combined treatment with ipilimumab and hTERT vaccination. Lab Invest 2022; 20:419. [PMID: 36089578 PMCID: PMC9465869 DOI: 10.1186/s12967-022-03624-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022]
Abstract
Background This clinical trial evaluated a novel telomerase-targeting therapeutic cancer vaccine, UV1, in combination with ipilimumab, in patients with metastatic melanoma. Translational research was conducted on patient-derived blood and tissue samples with the goal of elucidating the effects of treatment on the T cell receptor repertoire and tumor microenvironment. Methods The trial was an open-label, single-center phase I/IIa study. Eligible patients had unresectable metastatic melanoma. Patients received up to 9 UV1 vaccinations and four ipilimumab infusions. Clinical responses were assessed according to RECIST 1.1. Patients were followed up for progression-free survival (PFS) and overall survival (OS). Whole-exome and RNA sequencing, and multiplex immunofluorescence were performed on the biopsies. T cell receptor (TCR) sequencing was performed on the peripheral blood and tumor tissues. Results Twelve patients were enrolled in the study. Vaccine-specific immune responses were detected in 91% of evaluable patients. Clinical responses were observed in four patients. The mPFS was 6.7 months, and the mOS was 66.3 months. There was no association between baseline tumor mutational burden, neoantigen load, IFN-γ gene signature, tumor-infiltrating lymphocytes, and response to therapy. Tumor telomerase expression was confirmed in all available biopsies. Vaccine-enriched TCR clones were detected in blood and biopsy, and an increase in the tumor IFN-γ gene signature was detected in clinically responding patients. Conclusion Clinical responses were observed irrespective of established predictive biomarkers for checkpoint inhibitor efficacy, indicating an added benefit of the vaccine-induced T cells. The clinical and immunological read-out warrants further investigation of UV1 in combination with checkpoint inhibitors. Trial registration Clinicaltrials.gov identifier: NCT02275416. Registered October 27, 2014. https://clinicaltrials.gov/ct2/show/NCT02275416?term=uv1&draw=2&rank=6 Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03624-z.
Collapse
|
14
|
Gao J, Pickett HA. Targeting telomeres: advances in telomere maintenance mechanism-specific cancer therapies. Nat Rev Cancer 2022; 22:515-532. [PMID: 35790854 DOI: 10.1038/s41568-022-00490-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 12/31/2022]
Abstract
Cancer cells establish replicative immortality by activating a telomere-maintenance mechanism (TMM), be it telomerase or the alternative lengthening of telomeres (ALT) pathway. Targeting telomere maintenance represents an intriguing opportunity to treat the vast majority of all cancer types. Whilst telomerase inhibitors have historically been heralded as promising anticancer agents, the reality has been more challenging, and there are currently no therapeutic options for cancer types that use ALT despite their aggressive nature and poor prognosis. In this Review, we discuss the mechanistic differences between telomere maintenance by telomerase and ALT, the current methods used to detect each mechanism, the utility of these tests for clinical diagnosis, and recent developments in the therapeutic strategies being employed to target both telomerase and ALT. We present notable developments in repurposing established therapeutic agents and new avenues that are emerging to target cancer types according to which TMM they employ. These opportunities extend beyond inhibition of telomere maintenance, by finding and exploiting inherent weaknesses in the telomeres themselves to trigger rapid cellular effects that lead to cell death.
Collapse
Affiliation(s)
- Jixuan Gao
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
15
|
Ellingsen EB, Aamdal E, Guren T, Lilleby W, Brunsvig PF, Mangsbo SM, Aamdal S, Hovig E, Mensali N, Gaudernack G, Inderberg EM. Durable and dynamic hTERT immune responses following vaccination with the long-peptide cancer vaccine UV1: long-term follow-up of three phase I clinical trials. J Immunother Cancer 2022; 10:e004345. [PMID: 35613827 PMCID: PMC9134181 DOI: 10.1136/jitc-2021-004345] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Therapeutic cancer vaccines represent a promising approach to improve clinical outcomes with immune checkpoint inhibition. UV1 is a second generation telomerase-targeting therapeutic cancer vaccine being investigated across multiple indications. Although telomerase is a near-universal tumor target, different treatment combinations applied across indications may affect the induced immune response. Three phase I/IIa clinical trials covering malignant melanoma, non-small cell lung cancer, and prostate cancer have been completed, with patients in follow-up for up to 8 years. METHODS 52 patients were enrolled across the three trials. UV1 was given as monotherapy in the lung cancer trial and concurrent with combined androgen blockade in the prostate cancer trial. In the melanoma study, patients initiated ipilimumab treatment 1 week after the first vaccine dose. Patients were followed for UV1-specific immune responses at frequent intervals during vaccination, and every 6 months for up to 8 years in a follow-up period. Phenotypic and functional characterizations were performed on patient-derived vaccine-specific T cell responses. RESULTS In total, 78.4% of treated patients mounted a measurable vaccine-induced T cell response in blood. The immune responses in the malignant melanoma trial, where UV1 was combined with ipilimumab, occurred more rapidly and frequently than in the lung and prostate cancer trials. In several patients, immune responses peaked years after their last vaccination. An in-depth characterization of the immune responses revealed polyfunctional CD4+ T cells producing interferon-γ and tumor necrosis factor-α on interaction with their antigen. CONCLUSION Long-term immunomonitoring of patients showed highly dynamic and persistent telomerase peptide-specific immune responses lasting up to 7.5 years after the initial vaccination, suggesting a plausible functional role of these T cells in long-term survivors. The superior immune response kinetics observed in the melanoma study substantiate the rationale for future combinatorial treatment strategies with UV1 vaccination and checkpoint inhibition for rapid and frequent induction of anti-telomerase immune responses in patients with cancer.
Collapse
Affiliation(s)
- Espen Basmo Ellingsen
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Ultimovacs ASA, Oslo, Norway
| | - Elin Aamdal
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Tormod Guren
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | | | - Paal F Brunsvig
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Sara M Mangsbo
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Ultimovacs AB, Uppsala, Sweden
| | | | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Nadia Mensali
- Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | | | | |
Collapse
|
16
|
Jahangirian E, Jamal GA, Nouroozi M, Mohammadpour A. A Novel Multiepitope Vaccine Against Bladder Cancer Based on CTL and HTL Epitopes for Induction of Strong Immune Using Immunoinformatics Approaches. Int J Pept Res Ther 2022; 28:71. [PMID: 35228842 PMCID: PMC8867689 DOI: 10.1007/s10989-022-10380-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 11/24/2022]
Abstract
Bladder cancer is well-known cancer in two forms of muscle-invasive and non-muscle-invasive bladder cancer which is responsible for annual deaths worldwide. Common therapies methods are somewhat successful; however, these methods have the limitations such as the side effects of chemotherapy which necessitate the requirement for new preventive methods against bladder cancer. Hence, we explain a novel designed multi-epitope vaccine against bladder cancer using the immunoinformatics tool. Three well-known BLCAP, PRAM, and BAGE4 antigens were evaluated due to most repetitive CTL and HTL epitopes binding. IFNγ and IL10 inducer potential of selected epitopes were investigated, as well as liner and conformational B-cell epitopes. Human beta-defensin 3 and PADRE sequence were added to construct as adjuvants, along with EAAAK, AAY, and GGGS linkers to fuse CTL and HTL epitopes. Results showed this construct encodes a soluble, non-toxic, and non-allergic protein with 70 kDa molecular weight. Modeled 3D structure of vaccine was docked whit Toll-Like Receptors (TLR) of 7/8. Docking, molecular dynamics simulation and MMBPSA analysis confirmed stability of vaccine-TLR complexes. The immunogenicity showed this construct could elicit humoral and cellular immune responses. In silico and immunoinformatics evaluations suggest that this construct is a recombinant candidate vaccine against bladder cancer.
Collapse
Affiliation(s)
- Ehsan Jahangirian
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ghadir A. Jamal
- Faculty of Allied Health Sciences, Kuwait University, Kuwait, Kuwait
| | - MohammadReza Nouroozi
- Department of Animal Science and Food Technology, Agriculture Science and Natural Resources University Khouzestan, Ahwaz, Iran
| | - Alemeh Mohammadpour
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|