1
|
Huang F, Zhang J, Zhou H, Qu T, Wang Y, Jiang K, Liu Y, Xu Y, Chen M, Chen L. B cell subsets contribute to myocardial protection by inducing neutrophil apoptosis after ischemia and reperfusion. JCI Insight 2024; 9:e167201. [PMID: 38290007 DOI: 10.1172/jci.insight.167201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/17/2024] [Indexed: 02/01/2024] Open
Abstract
A robust, sterile inflammation underlies myocardial ischemia and reperfusion injury (MIRI). Several subsets of B cells possess the immunoregulatory capacity that limits tissue damage, yet the role of B cells in MIRI remains elusive. Here, we sought to elucidate the contribution of B cells to MIRI by transient ligation of the left anterior descending coronary artery in B cell-depleted or -deficient mice. Following ischemia and reperfusion (I/R), regulatory B cells are rapidly recruited to the heart. B cell-depleted or -deficient mice exhibited exacerbated tissue damage, adverse cardiac remodeling, and an augmented inflammatory response after I/R. Rescue and chimeric experiments indicated that the cardioprotective effect of B cells was not solely dependent on IL-10. Coculture experiments demonstrated that B cells induced neutrophil apoptosis through contact-dependent interactions, subsequently promoting reparative macrophage polarization by facilitating the phagocytosis of neutrophils by macrophages. The in vivo cardioprotective effect of B cells was undetectable in the absence of neutrophils after I/R. Mechanistically, ligand-receptor imputation identified FCER2A as a potential mediator of interactions between B cells and neutrophils. Blocking FCER2A on B cells resulted in a reduction in the percentage of apoptotic neutrophils, contributing to the deterioration of cardiac remodeling. Our findings unveil a potential cardioprotective role of B cells in MIRI through mechanisms involving FCER2A, neutrophils, and macrophages.
Collapse
Affiliation(s)
- Fangyang Huang
- Department of Cardiology
- State Key Laboratory of Biotherapy and Cancer Center
- Laboratory of Heart Valve Disease
| | - Jialiang Zhang
- Department of Cardiology
- Laboratory of Heart Valve Disease
| | - Hao Zhou
- Laboratory of Heart Valve Disease
| | | | - Yan Wang
- Department of Cardiology
- Laboratory of Heart Valve Disease
| | - Kexin Jiang
- Department of Cardiology
- West China School of Medicine, and
| | | | | | - Mao Chen
- Department of Cardiology
- Laboratory of Heart Valve Disease
| | - Li Chen
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Liu A, Li Z, Zeng J, Peng Y, Wang S, Bi X, Zhao Z, Zhou S, Zhao AZ, Mu Y, Li F. ω-3 polyunsaturated fatty acid alleviates systemic lupus erythematosus by suppressing autoimmunity in a murine model. Int Immunopharmacol 2024; 126:111299. [PMID: 38043268 DOI: 10.1016/j.intimp.2023.111299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune inflammatory disease that damages multiple organs by the production of autoantibodies. Numerous research studies have demonstrated the anti-inflammatory effects of ω-3 polyunsaturated fatty acids (PUFAs). A diet rich in ω-3 PUFAs reduces chronic inflammatory and autoimmune conditions. Herein, we investigated the protective effect of ω-3 PUFAs against autoimmune injury in SLE. In a TMPD-induced mouse model of SLE, supplementation with eicosapentaenoic acid (EPA)-rich (97%) fish oil was found to alleviate systemic autoimmune phenotypes such as ascites, lipogranulomas and serum dsDNA levels. In addition, EPA also significantly improved renal manifestations, reducing proteinuria, glomerulonephritis, and immune complex deposition. Mechanistically, ω-3 PUFAs were shown to modulate the differentiation of B lymphocyte subsets of primary splenic lymphocytes in the spontaneous murine lupus model MRL/MpJ-Faslpr in vitro, specifically that both EPA and DHA suppressed the number of total B cells, B1B2 cells and plasma cells. Concurrently, they were also found to promote the secretion of the anti-inflammatory cytokine IL10, mainly produced by Breg and Treg cells. Thus, nutritional supplementation with ω-3 PUFAs can regulate B cell's differentiation and anti-inflammatory function and strongly prevent autoimmune responses and lupus nephritis. The diets balance between ω-6 and ω-3 PUFAs intake may represent a promising treatment strategy to prevent or delay the onset of SLE.
Collapse
Affiliation(s)
- Aolu Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhuang Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jingwen Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuerong Peng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuai Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinyun Bi
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenggang Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Sujin Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Allan Zijian Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yunping Mu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Fanghong Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Qu L, Jiao B. The Interplay between Immune and Metabolic Pathways in Kidney Disease. Cells 2023; 12:1584. [PMID: 37371054 PMCID: PMC10296595 DOI: 10.3390/cells12121584] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Kidney disease is a significant health problem worldwide, affecting an estimated 10% of the global population. Kidney disease encompasses a diverse group of disorders that vary in their underlying pathophysiology, clinical presentation, and outcomes. These disorders include acute kidney injury (AKI), chronic kidney disease (CKD), glomerulonephritis, nephrotic syndrome, polycystic kidney disease, diabetic kidney disease, and many others. Despite their distinct etiologies, these disorders share a common feature of immune system dysregulation and metabolic disturbances. The immune system and metabolic pathways are intimately connected and interact to modulate the pathogenesis of kidney diseases. The dysregulation of immune responses in kidney diseases includes a complex interplay between various immune cell types, including resident and infiltrating immune cells, cytokines, chemokines, and complement factors. These immune factors can trigger and perpetuate kidney inflammation, causing renal tissue injury and progressive fibrosis. In addition, metabolic pathways play critical roles in the pathogenesis of kidney diseases, including glucose and lipid metabolism, oxidative stress, mitochondrial dysfunction, and altered nutrient sensing. Dysregulation of these metabolic pathways contributes to the progression of kidney disease by inducing renal tubular injury, apoptosis, and fibrosis. Recent studies have provided insights into the intricate interplay between immune and metabolic pathways in kidney diseases, revealing novel therapeutic targets for the prevention and treatment of kidney diseases. Potential therapeutic strategies include modulating immune responses through targeting key immune factors or inhibiting pro-inflammatory signaling pathways, improving mitochondrial function, and targeting nutrient-sensing pathways, such as mTOR, AMPK, and SIRT1. This review highlights the importance of the interplay between immune and metabolic pathways in kidney diseases and the potential therapeutic implications of targeting these pathways.
Collapse
Affiliation(s)
- Lili Qu
- Division of Nephrology, Department of Medicine, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030-1405, USA
| | - Baihai Jiao
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030-1405, USA
| |
Collapse
|
4
|
Mai HL, Degauque N, Lorent M, Rimbert M, Renaudin K, Danger R, Kerleau C, Tilly G, Vivet A, Le Bot S, Delbos F, Walencik A, Giral M, Brouard S. Kidney allograft rejection is associated with an imbalance of B cells, regulatory T cells and differentiated CD28-CD8+ T cells: analysis of a cohort of 1095 graft biopsies. Front Immunol 2023; 14:1151127. [PMID: 37168864 PMCID: PMC10164960 DOI: 10.3389/fimmu.2023.1151127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction The human immune system contains cells with either effector/memory or regulatory functions. Besides the well-established CD4+CD25hiCD127lo regulatory T cells (Tregs), we and others have shown that B cells can also have regulatory functions since their frequency and number are increased in kidney graft tolerance and B cell depletion as induction therapy may lead to acute rejection. On the other hand, we have shown that CD28-CD8+ T cells represent a subpopulation with potent effector/memory functions. In the current study, we tested the hypothesis that kidney allograft rejection may be linked to an imbalance of effector/memory and regulatory immune cells. Methods Based on a large cohort of more than 1000 kidney graft biopsies with concomitant peripheral blood lymphocyte phenotyping, we investigated the association between kidney graft rejection and the percentage and absolute number of circulating B cells, Tregs, as well as the ratio of B cells to CD28-CD8+ T cells and the ratio of CD28-CD8+ T cells to Tregs. Kidney graft biopsies were interpreted according to the Banff classification and divided into 5 biopsies groups: 1) normal/subnormal, 2) interstitial fibrosis and tubular atrophy grade 2/3 (IFTA), 3) antibody-mediated rejection (ABMR), 4) T cell mediated-rejection (TCMR), and 5) borderline rejection. We compared group 1 with the other groups as well as with a combined group 3, 4, and 5 (rejection of all types) using multivariable linear mixed models. Results and discussion We found that compared to normal/subnormal biopsies, rejection of all types was marginally associated with a decrease in the percentage of circulating B cells (p=0.06) and significantly associated with an increase in the ratio of CD28-CD8+ T cells to Tregs (p=0.01). Moreover, ABMR, TCMR (p=0.007), and rejection of all types (p=0.0003) were significantly associated with a decrease in the ratio of B cells to CD28-CD8+ T cells compared to normal/subnormal biopsies. Taken together, our results show that kidney allograft rejection is associated with an imbalance between immune cells with effector/memory functions and those with regulatory properties.
Collapse
Affiliation(s)
- Hoa Le Mai
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Nicolas Degauque
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Marine Lorent
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Marie Rimbert
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
- Laboratoire d’Immunologie, Centre d’ImmunoMonitorage Nantes-Atlantique (CIMNA), CHU Nantes, Nantes, France
| | - Karine Renaudin
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
- Service d’Anatomie et Cytologie Pathologiques, CHU Nantes, Nantes, France
| | - Richard Danger
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Clarisse Kerleau
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Gaelle Tilly
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Anaïs Vivet
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Sabine Le Bot
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
- Service de Néphrologie et Immunologie Clinique, CHU Nantes, Nantes, France
| | | | | | - Magali Giral
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
- Service de Néphrologie et Immunologie Clinique, CHU Nantes, Nantes, France
- Fondation Centaure (RTRS), Nantes, France
- *Correspondence: Magali Giral, ; Sophie Brouard,
| | - Sophie Brouard
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
- Fondation Centaure (RTRS), Nantes, France
- *Correspondence: Magali Giral, ; Sophie Brouard,
| |
Collapse
|
5
|
Metabolic signatures of immune cells in chronic kidney disease. Expert Rev Mol Med 2022; 24:e40. [PMID: 36268748 PMCID: PMC9884772 DOI: 10.1017/erm.2022.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Immune cells play a key role in maintaining renal dynamic balance and dealing with renal injury. The physiological and pathological functions of immune cells are intricately connected to their metabolic characteristics. However, immunometabolism in chronic kidney disease (CKD) is not fully understood. Pathophysiologically, disruption of kidney immune cells homeostasis causes inflammation and tissue damage via triggering metabolic reprogramming. The diverse metabolic characteristics of immune cells at different stages of CKD are strongly associated with their different pathological effect. In this work, we reviewed the metabolic characteristics of immune cells (macrophages, natural killer cells, T cells, natural killer T cells and B cells) and several non-immune cells, as well as potential treatments targeting immunometabolism in CKD. We attempt to elaborate on the metabolic signatures of immune cells and their intimate correlation with non-immune cells in CKD.
Collapse
|
6
|
Garcia SG, Sandoval-Hellín N, Clos-Sansalvador M, Carreras-Planella L, Morón-Font M, Guerrero D, Borràs FE, Franquesa M. Mesenchymal stromal cells induced regulatory B cells are enriched in extracellular matrix genes and IL-10 independent modulators. Front Immunol 2022; 13:957797. [PMID: 36189264 PMCID: PMC9515545 DOI: 10.3389/fimmu.2022.957797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Regulatory B cells (Breg) are essential players in tolerance and immune homeostasis. However, lack of specific Breg markers limit their potential in clinical settings. Mesenchymal stromal cells (MSC) modulate B cell responses and are described to induce Breg in vitro. The aim of this work was to characterize MSC induced Breg (iBreg) and identify specific Breg biomarkers by RNAseq. After 7-day coculture with adipose tissue-derived MSC, B cells were enriched in transitional B cell populations, with increased expression and secretion of IL-10 and no TNFα. In addition, iBreg showed potential to modulate T cell proliferation at 2 to 1 cell ratios and their phenotype remained stable for 72h. RNAseq analysis of sorted IL-10 positive and negative iBreg populations identified over 1500 differentially expressed genes (DEG) among both populations. Analysis of biological processes of DEG highlighted an enrichment of immune regulation and extracellular matrix genes in IL-10- iBreg populations, while IL-10+ iBreg DEG were mostly associated with cell activation. This was supported by T cells modulation assays performed in the presence of anti-IL-10 neutralizing antibodies showing the non-essential role of IL-10 in the immunomodulatory capacity of iBregs on T cells. However, based on RNAseq results we explored the role of TGF-β and found out that it plays a major role on iBreg induction and iBreg immunomodulatory properties. Therefore, we report that MSC induce B cell populations characterized by the generation of extracellular matrix and immune modulation independently of IL-10.
Collapse
Affiliation(s)
- Sergio G. Garcia
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Noelia Sandoval-Hellín
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| | - Marta Clos-Sansalvador
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Laura Carreras-Planella
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| | - Miriam Morón-Font
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| | - Dolores Guerrero
- Otorhinolaryngology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Francesc E. Borràs
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
- *Correspondence: Marcella Franquesa, ; Francesc E. Borràs,
| | - Marcella Franquesa
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
- *Correspondence: Marcella Franquesa, ; Francesc E. Borràs,
| |
Collapse
|
7
|
Fu Y, Xiang Y, Li H, Chen A, Dong Z. Inflammation in kidney repair: Mechanism and therapeutic potential. Pharmacol Ther 2022; 237:108240. [PMID: 35803367 DOI: 10.1016/j.pharmthera.2022.108240] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
Abstract
The kidney has a remarkable ability of repair after acute kidney injury (AKI). However, when injury is severe or persistent, the repair is incomplete or maladaptive and may lead to chronic kidney disease (CKD). Maladaptive kidney repair involves multiple cell types and multifactorial processes, of which inflammation is a key component. In the process of inflammation, there is a bidirectional interplay between kidney parenchymal cells and the immune system. The extensive and complex crosstalk between renal tubular epithelial cells and interstitial cells, including immune cells, fibroblasts, and endothelial cells, governs the repair and recovery of the injured kidney. Further research in this field is imperative for the discovery of biomarkers and promising therapeutic targets for kidney repair. In this review, we summarize the latest progress in the immune response and inflammation during maladaptive kidney repair, analyzing the interaction between immune cells and intrinsic kidney cells, pointing out the potentialities of inflammation-related pathways as therapeutic targets, and discussing the challenges and future research prospects in this field.
Collapse
Affiliation(s)
- Ying Fu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410011, China
| | - Yu Xiang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410011, China
| | - Honglin Li
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410011, China
| | - Anqun Chen
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410011, China
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410011, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
8
|
Spagnolo P, Tonelli R, Samarelli AV, Castelli G, Cocconcelli E, Petrarulo S, Cerri S, Bernardinello N, Clini E, Saetta M, Balestro E. The role of immune response in the pathogenesis of idiopathic pulmonary fibrosis: far beyond the Th1/Th2 imbalance. Expert Opin Ther Targets 2022; 26:617-631. [PMID: 35983984 DOI: 10.1080/14728222.2022.2114897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION . Idiopathic pulmonary fibrosis (IPF) is a chronic disease of unknown origin characterized by progressive scarring of the lung leading to irreversible loss of function. Despite the availability of two drugs that are able to slow down disease progression, IPF remains a deadly disease. The pathogenesis of IPF is poorly understood, but a dysregulated wound healing response following recurrent alveolar epithelial injury is thought to be crucial. Areas covered. In the last few years, the role of the immune system in IPF pathobiology has been reconsidered; indeed, recent data suggest that a dysfunctional immune system may promote and unfavorable interplay with pro-fibrotic pathways thus acting as a cofactor in disease development and progression. In this article, we review and critically discuss the role of T cells in the pathogenesis and progression of IPF in the attempt to highlight ways in which further research in this area may enable the development of targeted immunomodulatory therapies for this dreadful disease. EXPERT OPINION A better understanding of T cells interactions has the potential to facilitate the development of immune modulators targeting multiple T cell-mediated pathways thus halting disease initiation and progression.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Roberto Tonelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Modena, Italy.,University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Valeria Samarelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Modena, Italy.,University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Gioele Castelli
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Elisabetta Cocconcelli
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Simone Petrarulo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Stefania Cerri
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Modena, Italy.,University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicol Bernardinello
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Enrico Clini
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Modena, Italy.,University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marina Saetta
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Elisabetta Balestro
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| |
Collapse
|
9
|
Revisited Cyclophosphamide in the Treatment of Lupus Nephritis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8345737. [PMID: 35707391 PMCID: PMC9192236 DOI: 10.1155/2022/8345737] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
Abstract
Lupus nephritis (LN) is the most common serious complication of systemic lupus erythematosus (SLE). The pathogenesis of LN is complex, and the majority causes of LN are the renal deposition of circulating or/and in situ-formed immune complexes. These immune complexes trigger glomerular and tubulointerstitial inflammation, which finally leads to proteinuria and loss of renal function. Despite the emergence of new biological agents, cyclophosphamide (CY), an alkylating agent, is still the first-line drug widely used to treat patients with severe LN. In this review, we outline the application history, molecular structure, and pharmacokinetics of CY in the treatment of LN. We also detail its latest known immunopharmacological mechanisms, with a focus on supplemental regulation and inhibition of CD4 and CD8 positive T cells, differences in the use of various guidelines, and the combination with other drugs. The side effects of CY are also mentioned in this review.
Collapse
|
10
|
Garcia SG, Sandoval-Hellín N, Franquesa M. Regulatory B Cell Therapy in Kidney Transplantation. Front Pharmacol 2021; 12:791450. [PMID: 34950041 PMCID: PMC8689004 DOI: 10.3389/fphar.2021.791450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023] Open
Abstract
In the context of kidney injury, the role of Bregs is gaining interest. In a number of autoimmune diseases, the number and/or the function of Bregs has been shown to be impaired or downregulated, therefore restoring their balance might be a potential therapeutic tool. Moreover, in the context of kidney transplantation their upregulation has been linked to tolerance. However, a specific marker or set of markers that define Bregs as a unique cell subset has not been found and otherwise multiple phenotypes of Bregs have been studied. A quest on the proper markers and induction mechanisms is now the goal of many researchers. Here we summarize the most recent evidence on the role of Bregs in kidney disease by describing the relevance of in vitro and in vivo Bregs induction as well as the potential use of Bregs as cell therapy agents in kidney transplantation.
Collapse
Affiliation(s)
- Sergio G Garcia
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) and Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain.,Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Noelia Sandoval-Hellín
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) and Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| | - Marcella Franquesa
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) and Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| |
Collapse
|