1
|
Majety N, Ahmed R, Al-Hallaf R, Paul P, Giwa A, Heinemann J, Agha Z, Choong C, Donner T, Jie C, Hamad ARA. Invariant VD and DJ Motifs Define a Novel Class of Human Antibodies and TCRs Prototyped by antigen receptors of Dual-Expresser Lymphocytes. Immunol Invest 2024; 53:1125-1140. [PMID: 39268869 DOI: 10.1080/08820139.2024.2383736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
INTRODUCTION Dual-expressing lymphocytes (DEs) are unique immune cells that express both B cell receptors (BCRs, surface antibody) and T cell receptors (TCRs). In type 1 diabetes, DE antibodies are predominated by one antibody (x-mAb), an IgM monoclonal antibody with a germline-encoded CDR3 that recognizes self-reactive TCRs. We explored if x-mAb and its interacting TCRs have distinct structural features. METHODS Using bioinformatics, we compared x-mAb and its most common interacting TCRαβ to billions of antigen receptor sequences to determine if they were unique or randomly generated. RESULTS X-mAb represents a unique class of human antibodies with a conserved CDR3 sequence (CARx1-4DTAMVYYFYDW), consisting of a fixed DJH motif (DTAMVYYFDYW) paired with various VH genes. A public TCRβ clonotype (CASSPGTEAFF) associated with x-mAb on DEs features two invariant segments, VβD (CASSPGT) and DJβ (PGTEAFF), key to two large families of public TCRβ clonotypes-CASSPGT-Jβx and CASSPGT-Jβx-formed by recombining the VβD motif with Jβ genes and the DJβ motif with Vβ genes. B cells also use CASSPGT as a VHD motif for public IGH clonotypes (CASSPGT-Jβx). DISCUSSION DEs, unlike conventional T and B cells, use invariant motifs to create public antibodies and TCRs, a trait previously seen only in cartilaginous fish.
Collapse
MESH Headings
- Humans
- Antibodies, Monoclonal/immunology
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/immunology
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/genetics
- Computational Biology/methods
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Amino Acid Motifs
- Immunoglobulin M/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Amino Acid Sequence
Collapse
Affiliation(s)
- Neha Majety
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rizwan Ahmed
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rafid Al-Hallaf
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Prajita Paul
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Adebola Giwa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph Heinemann
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zainab Agha
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cherry Choong
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas Donner
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chunfa Jie
- Department of Biochemistry and Nutrition, Des Moines University, Des Moines, Iowa, USA
| | - Abdel Rahim A Hamad
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Samer S, Chowdhury A, Wiche Salinas TR, Estrada PMDR, Reuter M, Tharp G, Bosinger S, Cervasi B, Auger J, Gill K, Ablanedo-Terrazas Y, Reyes-Teran G, Estes JD, Betts MR, Silvestri G, Paiardini M. Lymph-Node-Based CD3 + CD20 + Cells Emerge from Membrane Exchange between T Follicular Helper Cells and B Cells and Increase Their Frequency following Simian Immunodeficiency Virus Infection. J Virol 2023; 97:e0176022. [PMID: 37223960 PMCID: PMC10308947 DOI: 10.1128/jvi.01760-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/06/2023] [Indexed: 05/25/2023] Open
Abstract
CD4+ T follicular helper (TFH) cells are key targets for human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) replication and contribute to the virus reservoir under antiretroviral therapy (ART). Here, we describe a novel CD3+ CD20+ double-positive (DP) lymphocyte subset, resident in secondary lymphoid organs of humans and rhesus macaques (RMs), that appear predominantly after membrane exchange between TFH and B cells. DP lymphocytes are enriched in cells displaying a TFH phenotype (CD4+ PD1hi CXCR5hi), function (interleukin 21 positive [IL-21+]), and gene expression profile. Importantly, expression of CD40L upon brief in vitro mitogen stimulation identifies, by specific gene-expression signatures, DP cells of TFH-cell origin versus those of B-cell origin. Analysis of 56 RMs showed that DP cells (i) significantly increase following SIV infection, (ii) are reduced after 12 months of ART in comparison to pre-ART levels, and (iii) expand to a significantly higher frequency following ART interruption. Quantification of total SIV-gag DNA on sorted DP cells from chronically infected RMs showed that these cells are susceptible to SIV infection. These data reinforce earlier observations that CD20+ T cells are infected and expanded by HIV infection, while suggesting that these cells phenotypically overlap activated CD4+ TFH cells that acquire CD20 expression via trogocytosis and can be targeted as part of therapeutic strategies aimed at HIV remission. IMPORTANCE The HIV reservoir is largely composed of latently infected memory CD4+ T cells that persist during antiretroviral therapy and constitute a major barrier toward HIV eradication. In particular, CD4+ T follicular helper cells have been demonstrated as key targets for viral replication and persistence under ART. In lymph nodes from HIV-infected humans and SIV-infected rhesus macaques, we show that CD3+ CD20+ lymphocytes emerge after membrane exchange between T cells and B cells and are enriched in phenotypic, functional, and gene expression profiles found in T follicular helper cells. Furthermore, in SIV-infected rhesus macaques, these cells expand following experimental infection and after interruption of ART and harbor SIV DNA at levels similar to those found in CD4+ T cells; thus, CD3+ CD20+ lymphocytes are susceptible to SIV infection and can contribute to SIV persistence.
Collapse
Grants
- P30 AI050409 NIAID NIH HHS
- 75N91019D00024 NCI NIH HHS
- P51 OD011132 NIH HHS
- HHSN261200800001C NCI NIH HHS
- U24 OD011023 NIH HHS
- U42 OD011023 NIH HHS
- P01 AI131338 NIAID NIH HHS
- HHSN261200800001E NCI NIH HHS
- UM1 AI164562 NIAID NIH HHS
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (DIR, NIAID)
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institute on Drug Abuse, National Institute of Diabetes and Digestive and Kidney Diseases, National Heart Lung and Blood Institute, National Institute of Neurological Disorders and Stroke (DIR, NIAID, NIDA, NIDDK, NHLBI, NINDS)
- HHS | NIH | National Cancer Institute (NCI)
- HHS | NIH | Office of Research Infrastructure Programs, National Institutes of Health (ORIP)
Collapse
Affiliation(s)
- Sadia Samer
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Ankita Chowdhury
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | | | | | - Morgan Reuter
- Department of Microbiology and Center for AIDS Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gregory Tharp
- Emory NHP Genomics Core Laboratory, Emory University, Atlanta, Georgia, USA
| | - Steven Bosinger
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Emory NHP Genomics Core Laboratory, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Barbara Cervasi
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - James Auger
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Kiran Gill
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Yuria Ablanedo-Terrazas
- Práctica Médica Grupal en Otorrinolaringología, Centro Médico ABC Santa Fe, Mexico City, Mexico
| | - Gustavo Reyes-Teran
- Comisión Coordinadora de los Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Mexico City, Mexico
| | - Jacob D. Estes
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Michael R. Betts
- Department of Microbiology and Center for AIDS Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Guido Silvestri
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mirko Paiardini
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Yao CY, Hu ZS, Yuan RL, Jin J, Chen ZX. CD32 Expression by CD4 + T and CD8 + T Lymphocytes Is Increased in Patients with Chronic Hepatitis B Virus Infection. Viral Immunol 2023; 36:351-359. [PMID: 37289774 DOI: 10.1089/vim.2022.0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
FcγR is expressed by many immune cells and plays an important role in the immune response to hepatitis B virus (HBV) infection. CD32 belongs to the FcγR family. This study aimed to observe changes in CD32 expression by CD4+ T and CD8+ T lymphocytes in chronic HBV infection patients and evaluate the clinical utility of CD4+ T and CD8+ T CD32 expression to assess the severity of liver injury in chronic HBV-infected patients. A total of 68 chronic HBV patients and 40 healthy individuals were recruited, and the median fluorescence intensity (MFI) of CD32 expression on CD4+ T, CD8+ T lymphocytes was measured using flow cytometry and the CD4+ T, CD8+ T CD32 index was calculated. The reactivity of the healthy individual lymphocytes to mixed patients' plasma containing HBV was observed. Finally, the correlation between CD4+ T, CD8+ T lymphocytes CD32 MFI and liver function indicator levels was analyzed. The CD4+ T, CD8+ T CD32 MFI and index were significantly elevated in HBV patient groups than in normal control group (p < 0.001, for all). Furthermore, the CD32 MFI of healthy persons' CD4+ T and CD8+ T lymphocytes were remarkably increased when stimulated with mixed patients' plasma containing high HBV copies (p < 0.001; P < 0.001). More importantly, in HBV patients, there was a significant positive correlation between CD4+ T, CD8+ T CD32 MFI and the level of serum aspartate aminotransferase (p < 0.05, p < 0.05). In conclusion, the increased expression of CD32 on CD4+ T and CD8+ T lymphocytes might be potential promising biomarkers for the severity of liver function impairment in chronic HBV patients.
Collapse
Affiliation(s)
- Chun-Yan Yao
- Department of Clinical Laboratory, the Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Zhao-Suo Hu
- Department of Clinical Laboratory, the Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Run-Lin Yuan
- Department of Clinical Laboratory, the Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Juan Jin
- Department of Clinical Laboratory, the Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Zheng-Xu Chen
- Department of Clinical Laboratory, the Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Lee AYS. CD20 + T cells: an emerging T cell subset in human pathology. Inflamm Res 2022; 71:1181-1189. [PMID: 35951029 PMCID: PMC9616751 DOI: 10.1007/s00011-022-01622-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Although CD20 is classically a B cell marker, in the last three decades, dim expression has been noted on a subset of T cells as well that has been independently verified by a number of groups. Our understanding of these cells and their function is not well established. Methods A thorough review of original articles on CD20+T cells was undertaken of Pubmed by using combination of phrases including “CD20+”, “CD20-positive” and “T cells”. Articles in English were considered, and there was no time restriction. Results CD20+T cells express the standard T cell markers and, in comparison to CD20¯ T cells, appear to express greater inflammatory cytokines and markers of effector function. Although the ontogeny of these cells is still being established, the current theory is that CD20 may be acquired by trogocytosis from B cells. CD20+T cells may be found in healthy controls and in a wide range of pathologies including autoimmune diseases, haematological and non-haematological malignancies and human immunodeficiency virus (HIV) infections. One of the best studied diseases where these cells are found is multiple sclerosis (MS) where a number of therapeutic interventions, including anti-CD20 depletion, have been shown to effectively deplete these cells. Conclusion This review summarises the latest understanding of CD20+T cells, their presence in various diseases, their putative function and how they may be an ongoing target of CD20-depleting agents. Unfortunately, our understanding of these cells is still at its infancy and ongoing study in a wider range of pathologies is required.
Collapse
Affiliation(s)
- Adrian Y S Lee
- Department of Clinical Immunology, Westmead Hospital, Hawkesbury Road, Westmead, NSW, 2145, Australia. .,Department of Immunopathology, ICPMR and NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia. .,Department of Medicine, Westmead Clinical School, The University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
5
|
Astorga-Gamaza A, Grau-Expósito J, Burgos J, Navarro J, Curran A, Planas B, Suanzes P, Falcó V, Genescà M, Buzon M. Identification of HIV-reservoir cells with reduced susceptibility to antibody-dependent immune response. eLife 2022; 11:78294. [PMID: 35616530 PMCID: PMC9177146 DOI: 10.7554/elife.78294] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
HIV establishes a persistent infection in heterogeneous cell reservoirs, which can be maintained by different mechanisms including cellular proliferation, and represent the main obstacle to curing the infection. The expression of the Fcγ receptor CD32 has been identified as a marker of the active cell reservoirs in people on antiretroviral therapy, but if its expression has any role in conferring advantage for viral persistence is unknown. Here, we report that HIV-infected cells expressing CD32 have reduced susceptibility to natural killer (NK) antibody-dependent cell cytotoxicity (ADCC) by a mechanism compatible with the suboptimal binding of HIV-specific antibodies. Infected CD32 cells have increased proliferative capacity in the presence of immune complexes, and are more resistant to strategies directed to potentiate NK function. Remarkably, reactivation of the latent reservoir from antiretroviral-treated people living with HIV increases the pool of infected CD32 cells, which are largely resistant to the ADCC immune mechanism. Thus, we report the existence of reservoir cells that evade part of the NK immune response through the expression of CD32.
Collapse
Affiliation(s)
| | | | - Joaquín Burgos
- Infectious Disease Department, Vall d'Hebron Research Institute (VHIR)
| | - Jordi Navarro
- Infectious Disease Department, Vall d'Hebron Research Institute (VHIR)
| | - Adrià Curran
- Infectious Disease Department, Vall d'Hebron Research Institute (VHIR)
| | - Bibiana Planas
- Infectious Disease Department, Vall d'Hebron Research Institute (VHIR)
| | - Paula Suanzes
- Infectious Disease Department, Vall d'Hebron Research Institute (VHIR)
| | - Vicenç Falcó
- Infectious Disease Department, Vall d'Hebron Research Institute (VHIR)
| | - Meritxell Genescà
- Infectious Disease Department, Vall d'Hebron Research Institute (VHIR)
| | - Maria Buzon
- Infectious Disease Department, Vall d'Hebron Research Institute (VHIR)
| |
Collapse
|
6
|
Jie C, Ahmed R, Hamad ARA. Expression of unique gene signature distinguishes
TCRαβ
+/
BCR
+ dual expressers from
CD3
+
CD14
+
doublets. Cytometry A 2022; 101:283-289. [DOI: 10.1002/cyto.a.24542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/25/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Chunfa Jie
- Department of Biochemistry and Nutrition Des Moines University College of Osteopathic Medicine Des Moines IA
| | - Rizwan Ahmed
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD
| | - Abdel Rahim A. Hamad
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD
| |
Collapse
|
7
|
Interests of the Non-Human Primate Models for HIV Cure Research. Vaccines (Basel) 2021; 9:vaccines9090958. [PMID: 34579195 PMCID: PMC8472852 DOI: 10.3390/vaccines9090958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Non-human primate (NHP) models are important for vaccine development and also contribute to HIV cure research. Although none of the animal models are perfect, NHPs enable the exploration of important questions about tissue viral reservoirs and the development of intervention strategies. In this review, we describe recent advances in the use of these models for HIV cure research and highlight the progress that has been made as well as limitations using these models. The main NHP models used are (i) the macaque, in which simian immunodeficiency virus (SIVmac) infection displays similar replication profiles as to HIV in humans, and (ii) the macaque infected by a recombinant virus (SHIV) consisting of SIVmac expressing the HIV envelope gene serving for studies analyzing the impact of anti-HIV Env broadly neutralizing antibodies. Lessons for HIV cure that can be learned from studying the natural host of SIV are also presented here. An overview of the most promising and less well explored HIV cure strategies tested in NHP models will be given.
Collapse
|