1
|
Wang H, Kim SJ, Lei Y, Wang S, Wang H, Huang H, Zhang H, Tsung A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther 2024; 9:235. [PMID: 39300084 DOI: 10.1038/s41392-024-01933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Neutrophil extracellular traps (NETs), crucial in immune defense mechanisms, are renowned for their propensity to expel decondensed chromatin embedded with inflammatory proteins. Our comprehension of NETs in pathogen clearance, immune regulation and disease pathogenesis, has grown significantly in recent years. NETs are not only pivotal in the context of infections but also exhibit significant involvement in sterile inflammation. Evidence suggests that excessive accumulation of NETs can result in vessel occlusion, tissue damage, and prolonged inflammatory responses, thereby contributing to the progression and exacerbation of various pathological states. Nevertheless, NETs exhibit dual functionalities in certain pathological contexts. While NETs may act as autoantigens, aggregated NET complexes can function as inflammatory mediators by degrading proinflammatory cytokines and chemokines. The delineation of molecules and signaling pathways governing NET formation aids in refining our appreciation of NETs' role in immune homeostasis, inflammation, autoimmune diseases, metabolic dysregulation, and cancer. In this comprehensive review, we delve into the multifaceted roles of NETs in both homeostasis and disease, whilst discussing their potential as therapeutic targets. Our aim is to enhance the understanding of the intricate functions of NETs across the spectrum from physiology to pathology.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Susan J Kim
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hongji Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
2
|
Zhu Y, Xia X, He Q, Xiao QA, Wang D, Huang M, Zhang X. Diabetes-associated neutrophil NETosis: pathogenesis and interventional target of diabetic complications. Front Endocrinol (Lausanne) 2023; 14:1202463. [PMID: 37600700 PMCID: PMC10435749 DOI: 10.3389/fendo.2023.1202463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are known as extracellular fibers networks consisting of antimicrobial proteins and decondensated chromatin DNA released by activated neutrophils. NETosis is a NETs-induced neutrophilic cell death which is unique from necrosis or apoptosis. Besides its neutralizing pathogen, NETosis plays a crucial role in diabetes and diabetes-related complications. In patients with diabetes, NETs-releasing products are significantly elevated in blood, and these findings confirm the association of NETosis and diabetic complications, including diabetic wound healing, diabetic retinopathy, and atherosclerosis. This article briefly summarizes the mechanisms of NETosis and discusses its contribution to the pathogenesis of diabetes-related complications and suggests new therapeutic targets by some small molecule compounds.
Collapse
Affiliation(s)
- Yuyan Zhu
- College of Basic Medical Science, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Xuan Xia
- College of Basic Medical Science, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- Department of Physiology and Pathophysiology, College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Qian He
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qing-Ao Xiao
- Department of Interventional Radiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
- Department of Interventional Radiology, Yichang Central People’s Hospital, Yichang, Hubei, China
| | - Decheng Wang
- College of Basic Medical Science, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Meirong Huang
- College of Basic Medical Science, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- Department of Physiology and Pathophysiology, College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Xiaolin Zhang
- Department of Interventional Radiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
- Department of Interventional Radiology, Yichang Central People’s Hospital, Yichang, Hubei, China
| |
Collapse
|
3
|
Bissenova S, Buitinga M, Boesch M, Korf H, Casteels K, Teunkens A, Mathieu C, Gysemans C. High-Throughput Analysis of Neutrophil Extracellular Trap Levels in Subtypes of People with Type 1 Diabetes. BIOLOGY 2023; 12:882. [PMID: 37372166 DOI: 10.3390/biology12060882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Neutrophils might play an important role in the pathogenesis of autoimmune diseases, including type 1 diabetes (T1D), by contributing to immune dysregulation via a highly inflammatory program called neutrophil extracellular trap (NET) formation or NETosis, involving the extrusion of chromatin entangled with anti-microbial proteins. However, numerous studies reported contradictory data on NET formation in T1D. This might in part be due to the inherent heterogeneity of the disease and the influence of the disease developmental stage on neutrophil behavior. Moreover, there is a lack of a standardized method to measure NETosis in an unbiased and robust manner. In this study, we employed the Incucyte® ZOOM live-cell imaging platform to study NETosis levels in various subtypes of adult and pediatric T1D donors compared to healthy controls (HC) at baseline and in response to phorbol-myristate acetate (PMA) and ionomycin. Firstly, we determined that the technique allows for an operator-independent and automated quantification of NET formation across multiple time points, which showed that PMA and ionomycin induced NETosis with distinct kinetic characteristics, confirmed by high-resolution microscopy. NETosis levels also showed a clear dose-response curve to increasing concentrations of both stimuli. Overall, using Incucyte® ZOOM, no aberrant NET formation was observed over time in the different subtypes of T1D populations, irrespective of age, compared to HC. These data were corroborated by the levels of peripheral NET markers in all study participants. The current study showed that live-cell imaging allows for a robust and unbiased analysis and quantification of NET formation in real-time. Peripheral neutrophil measures should be complemented with dynamic quantification of NETing neutrophils to make robust conclusions on NET formation in health and disease.
Collapse
Affiliation(s)
- Samal Bissenova
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Mijke Buitinga
- Department of Nutrition and Movement Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, 6211 LK Maastricht, The Netherlands
| | - Markus Boesch
- Laboratory of Hepatology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Hannelie Korf
- Laboratory of Hepatology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Kristina Casteels
- Woman and Child, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - An Teunkens
- Anesthesiology and Algology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
4
|
Bissenova S, Ellis D, Callebaut A, Eelen G, Derua R, Buitinga M, Mathieu C, Gysemans C, Overbergh L. NET Proteome in Established Type 1 Diabetes Is Enriched in Metabolic Proteins. Cells 2023; 12:cells12091319. [PMID: 37174719 PMCID: PMC10177393 DOI: 10.3390/cells12091319] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND AND AIMS Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by a T-cell-mediated destruction of the pancreatic insulin-producing beta cells. A growing body of evidence suggests that abnormalities in neutrophils and neutrophil extracellular trap (NET) formation (NETosis) are associated with T1D pathophysiology. However, little information is available on whether these changes are primary neutrophil defects or related to the environmental signals encountered during active disease. METHODS In the present work, the NET proteome (NETome) of phorbol 12-myristate 13-acetate (PMA)- and ionomycin-stimulated neutrophils from people with established T1D compared to healthy controls (HC) was studied by proteomic analysis. RESULTS Levels of NETosis, in addition to plasma levels of pro-inflammatory cytokines and NET markers, were comparable between T1D and HC subjects. However, the T1D NETome was distinct from that of HC in response to both stimuli. Quantitative analysis revealed that the T1D NETome was enriched in proteins belonging to metabolic pathways (i.e., phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase, and UTP-glucose-1-phosphate uridylyltransferase). Complementary metabolic profiling revealed that the rate of extracellular acidification, an approximate measure for glycolysis, and mitochondrial respiration were similar between T1D and HC neutrophils in response to both stimuli. CONCLUSION The NETome of people with established T1D was enriched in metabolic proteins without an apparent alteration in the bio-energetic profile or dysregulated NETosis. This may reflect an adaptation mechanism employed by activated T1D neutrophils to avoid impaired glycolysis and consequently excessive or suboptimal NETosis, pivotal in innate immune defence and the resolution of inflammation.
Collapse
Affiliation(s)
- Samal Bissenova
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Darcy Ellis
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Aïsha Callebaut
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Rita Derua
- Laboratory of Protein Phosphorylation & Proteomics, Department Cellular & Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
- SyBioMa, Proteomics Core Facility, KU Leuven, 3000 Leuven, Belgium
| | - Mijke Buitinga
- Department of Nutrition and Movement Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Lut Overbergh
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
5
|
Song YH, Wang ZJ, Kang L, He ZX, Zhao SB, Fang X, Li ZS, Wang SL, Bai Y. PADs and NETs in digestive system: From physiology to pathology. Front Immunol 2023; 14:1077041. [PMID: 36761761 PMCID: PMC9902375 DOI: 10.3389/fimmu.2023.1077041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Peptidylarginine deiminases (PADs) are the only enzyme class known to deiminate arginine residues into citrulline in proteins, a process known as citrullination. This is an important post-translational modification that functions in several physiological and pathological processes. Neutrophil extracellular traps (NETs) are generated by NETosis, a novel cell death in neutrophils and a double-edged sword in inflammation. Excessive activation of PADs and NETs is critically implicated in their transformation from a physiological to a pathological state. Herein, we review the physiological and pathological functions of PADs and NETs, in particular, the involvement of PAD2 and PAD4 in the digestive system, from inflammatory to oncological diseases, along with related therapeutic prospects.
Collapse
Affiliation(s)
- Yi-Hang Song
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhi-Jie Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Le Kang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zi-Xuan He
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sheng-Bing Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xue Fang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shu-Ling Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yu Bai
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Fidan K, Koçak S, Söylemezoğlu O, Atak Yücel A, Atak Yucel A. A Well-Intentioned Enemy in Autoimmune and Autoinflammatory Diseases: NETosis. Turk Arch Pediatr 2023; 58:10-19. [PMID: 36598206 PMCID: PMC9885828 DOI: 10.5152/turkarchpediatr.2022.22292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neutrophils are an essential member of the innate immune system derived from the myeloid stem cell series and develop in the bone marrow. The action of neutrophils defined in immune response includes phagocytosis, degranulation, cytokine production, and neutrophil extracellular traps. The success of the host immune defense depends on effective neutrophil activation. Recent studies have shown that neutrophils that have completed their task in the field of inflammation rejoin circulation. Uncontrolled inflammatory response and dysregulated immune responses to the host are important factors in the development of acute and chronic diseases. Neutrophils are the first cells to be drawn into the field at the time of inflammation. They have developed response strategies that produce proinflammatory cytokines and are known as neutrophil extracellular traps since they create mesh-like structures with their DNA contents into the external environment and release their granular proteins in this way. This article summarizes numerous recent studies and reviews the role of neutrophil extracellular traps in autoimmune and autoinflammatory diseases in the hope, that this will lead to the development of more effective treatments. In addition, in this review, the role of neutrophil extracellular trap formation in some pediatric autoimmune diseases is emphasized.
Collapse
Affiliation(s)
- Kibriya Fidan
- Department of Pediatric Nephrology, Gazi University, Faculty of Medicine, Ankara, Turkey,Corresponding author:Kibriya Fidan✉
| | - Senem Koçak
- Ankara University, Biotechnology Institute, Ankara, Turkey
| | - Oğuz Söylemezoğlu
- Department of Pediatric Nephrology, Gazi University, Faculty of Medicine, Ankara, Turkey
| | - Ayşegül Atak Yücel
- Department of Immunology, Gazi University, Faculty of Medicine, Ankara, Turkey
| | | | | | | | | |
Collapse
|
7
|
Bissenova S, Ellis D, Mathieu C, Gysemans C. Neutrophils in autoimmunity: when the hero becomes the villain. Clin Exp Immunol 2022; 210:128-140. [PMID: 36208466 PMCID: PMC9750832 DOI: 10.1093/cei/uxac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/20/2022] [Accepted: 10/06/2022] [Indexed: 01/25/2023] Open
Abstract
Neutrophils were long considered to be a short-lived homogenous cell population, limited to their role as first responders in anti-bacterial and -fungal immunity. While it is true that neutrophils are first to infiltrate the site of infection to eliminate pathogens, growing evidence suggests their functions could extend beyond those of basic innate immune cells. Along with their well-established role in pathogen elimination, utilizing effector functions such as phagocytosis, degranulation, and the deployment of neutrophil extracellular traps (NETs), neutrophils have recently been shown to possess antigen-presenting capabilities. Moreover, the identification of different subtypes of neutrophils points to a multifactorial heterogeneous cell population with great plasticity in which some subsets have enhanced pro-inflammatory characteristics, while others seem to behave as immunosuppressors. Interestingly, the aberrant presence of activated neutrophils with a pro-inflammatory profile in several systemic and organ-specific autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSc), multiple sclerosis (MS), and type 1 diabetes (T1D) could potentially be exploited in novel therapeutic strategies. The full extent of the involvement of neutrophils, and more specifically that of their various subtypes, in the pathophysiology of autoimmune diseases is yet to be elucidated.
Collapse
Affiliation(s)
- Samal Bissenova
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Darcy Ellis
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Gauer JS, Ajjan RA, Ariëns RAS. Platelet-Neutrophil Interaction and Thromboinflammation in Diabetes: Considerations for Novel Therapeutic Approaches. J Am Heart Assoc 2022; 11:e027071. [PMID: 36250653 DOI: 10.1161/jaha.122.027071] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thromboinflammation has become a topic of key interest in cardiovascular disease and the prevention of diabetes complications because of the interplay between thrombosis and inflammation in diabetes. Specifically, the significant risk of vascular thrombotic disease in diabetes highlights the need for new and better therapeutic targets to help manage and prevent vascular thrombo-occlusive disease in this condition. Similarly, the prominent role of inflammation in diabetes has sparked interest in anti-inflammatory agents to better prevent and control vascular disease. Investigations on the effects of anticoagulation and antiplatelet interventions in patients with diabetes and cardiovascular disease show a potential role for these agents in decreasing morbidity and mortality. Neutrophils and platelets are key players in inflammation and wound-healing response, respectively. The interaction between neutrophils and platelets is thought to be an important driver of thromboinflammation. Therefore, this review describes the mechanisms involved in platelet-neutrophil interactions that contribute to the development or exacerbation of thromboinflammation in the context of diabetes and its associated comorbidities. The effects observed by the antithrombotic/antidiabetic treatments and physical activity/dietary interventions on attenuating thromboinflammation are discussed. These data suggest that mechanisms involved in platelet-neutrophil interaction, platelet activation/aggregation, and the recruitment of neutrophils have a promising potential to become therapeutic targets to decrease thromboinflammation in patients with diabetes.
Collapse
Affiliation(s)
- Julia S Gauer
- Discovery and Translational Science Department Institute of Cardiovascular and Metabolic Medicine, University of Leeds Leeds United Kingdom
| | - Ramzi A Ajjan
- Discovery and Translational Science Department Institute of Cardiovascular and Metabolic Medicine, University of Leeds Leeds United Kingdom
| | - Robert A S Ariëns
- Discovery and Translational Science Department Institute of Cardiovascular and Metabolic Medicine, University of Leeds Leeds United Kingdom
| |
Collapse
|
9
|
Parackova Z, Zentsova I, Malcova H, Cebecauerova D, Sediva A, Horvath R. Increased histone citrullination in juvenile idiopathic arthritis. Front Med (Lausanne) 2022; 9:971121. [PMID: 36059852 PMCID: PMC9437311 DOI: 10.3389/fmed.2022.971121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Objective Posttranslational modifications (PTMs) of proteins are crucial for regulating various biological processes. However, protein alteration via PTMs, and consequently, the creation of new epitopes, can induce abnormal autoimmune responses in predisposed individuals. Immunopathogenesis of several rheumatic diseases, including the most common childhood form, juvenile idiopathic arthritis (JIA), is associated with the generation of autoantibodies against such modified proteins. Dysregulated generation of neutrophil extracellular traps (NETs) can be a source of post-translationally altered proteins. Thus, we investigated the role of PTMs and the presence of NET-associated markers in JIA patients. Methods We recruited 30 pediatric patients with JIA (20 with active disease and 10 in remission) and 30 healthy donors. The serum concentrations of citrullinated histone H3 (citH3), peptidyl arginine deiminases (PADs), and NET-related products were detected using ELISA, and the number of citH3+ neutrophils was assessed using flow cytometry. Results The serum levels of citH3 and PADs were higher in active as well as in remission JIA patients than in healthy donors. Similarly, the number of citH3+ neutrophils was higher in the peripheral blood of patients with JIA, implying an enhanced process of NETosis. This was effectively reflected by elevated serum levels of NET-associated products, such as neutrophil elastase, LL37, and cell-free DNA-histone complexes. Additionally, 16.7% of active JIA patients were seropositive for carbamylated autoantibodies, the levels of which declined sharply after initiation of anti-TNFα therapy. Conclusion Collectively, our data suggest that the accelerated process of NETosis and PTMs in JIA may result in the generation of anti-citrullinated/carbamylated autoantibodies against various epitopes later in life, which could be prevented by effectively regulating inflammation using immune therapy.
Collapse
Affiliation(s)
- Zuzana Parackova
- Department of Immunology, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czechia
- *Correspondence: Zuzana Parackova
| | - Irena Zentsova
- Department of Immunology, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czechia
| | - Hana Malcova
- Department of Paediatric and Adult Rheumatology, University Hospital Motol, Prague, Czechia
| | - Dita Cebecauerova
- Department of Paediatric and Adult Rheumatology, University Hospital Motol, Prague, Czechia
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czechia
| | - Rudolf Horvath
- Department of Paediatric and Adult Rheumatology, University Hospital Motol, Prague, Czechia
| |
Collapse
|
10
|
Shen Y, You Q, Wu Y, Wu J. Inhibition of PAD4-mediated NET formation by cl-amidine prevents diabetes development in nonobese diabetic mice. Eur J Pharmacol 2022; 916:174623. [PMID: 34767782 DOI: 10.1016/j.ejphar.2021.174623] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022]
Abstract
Many evidences indicated that neutrophil extracellular traps (NETs) play pathogenic roles in type 1 diabetes (T1D). Peptidylarginine deiminases 4 (PAD4) has been proved to be indispensable for generation of NETs. In the current study, we investigated whether oral administration of cl-amidine, an effective inhibitor of PAD4, protects non-obese diabetic (NOD) mice from T1D development. Female NOD mice were orally administrated with cl-amidine (5 μg/g body weight) from the age of 8 weeks up to 16 weeks. It showed that cl-amidine inhibit NET formation in vitro and in vivo. The onset of T1D was delayed nearly 8 weeks and the incidence of disease was significantly decreased in cl-amidine treated mice compared with the control group. Moreover, cl-amidine decreased the serum levels of anti-citrullinated peptide antibody (ACPA) and anti-neutrophil cytoplasmic antibodies (ANCA) in NOD mice. Also, it decreased generation of T1D autoantibodies such as glutamic acid decarboxylase antibody (GADA), tyrosine phosphatase-related islet antigen-2 antibody (IA2A) and zinc transporter 8 antibody (ZnT8A), which were strongly correlated with the reduced serum PAD4 and MPO-DNA levels. Furthermore, cl-amidine administration inhibited pancreatic inflammation and increased frequency of regulatory T cells in pancreatic lymph nodes (PLNs). In addition, cl-amidine improved gut barrier dysfunction and decreased the serum level of lipopolysaccharide (LPS), which was positively correlated with the NETs markers (PAD4 and MPO-DNA) and T1D autoantibody IA2A. In conclusion, our data showed that orally delivery of cl-amidine effectively prevent T1D development and suggested inhibition of PAD4-dependent NET formation as a potential way of clinical treatment in T1D.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Autoantibodies/blood
- Autoimmune Diseases/prevention & control
- Blood Glucose/drug effects
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/prevention & control
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/prevention & control
- Extracellular Traps/drug effects
- Female
- Inflammation/prevention & control
- Intestines/drug effects
- Mice, Inbred NOD
- Ornithine/administration & dosage
- Ornithine/analogs & derivatives
- Ornithine/pharmacology
- Protective Agents/administration & dosage
- Protective Agents/pharmacology
- Protein-Arginine Deiminase Type 4/antagonists & inhibitors
- Protein-Arginine Deiminase Type 4/blood
- Protein-Arginine Deiminase Type 4/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/metabolism
- Tight Junctions/drug effects
- Mice
Collapse
Affiliation(s)
- Yiming Shen
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qi You
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yiling Wu
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jie Wu
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|