1
|
Liang J, Yang F, Li Z, Li Q. Epigenetic regulation of the inflammatory response in stroke. Neural Regen Res 2025; 20:3045-3062. [PMID: 39589183 DOI: 10.4103/nrr.nrr-d-24-00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/20/2024] [Indexed: 11/27/2024] Open
Abstract
Stroke is classified as ischemic or hemorrhagic, and there are few effective treatments for either type. Immunologic mechanisms play a critical role in secondary brain injury following a stroke, which manifests as cytokine release, blood-brain barrier disruption, neuronal cell death, and ultimately behavioral impairment. Suppressing the inflammatory response has been shown to mitigate this cascade of events in experimental stroke models. However, in clinical trials of anti-inflammatory agents, long-term immunosuppression has not demonstrated significant clinical benefits for patients. This may be attributable to the dichotomous roles of inflammation in both tissue injury and repair, as well as the complex pathophysiologic inflammatory processes in stroke. Inhibiting acute harmful inflammatory responses or inducing a phenotypic shift from a pro-inflammatory to an anti-inflammatory state at specific time points after a stroke are alternative and promising therapeutic strategies. Identifying agents that can modulate inflammation requires a detailed understanding of the inflammatory processes of stroke. Furthermore, epigenetic reprogramming plays a crucial role in modulating post-stroke inflammation and can potentially be exploited for stroke management. In this review, we summarize current findings on the epigenetic regulation of the inflammatory response in stroke, focusing on key signaling pathways including nuclear factor-kappa B, Janus kinase/signal transducer and activator of transcription, and mitogen-activated protein kinase as well as inflammasome activation. We also discuss promising molecular targets for stroke treatment. The evidence to date indicates that therapeutic targeting of the epigenetic regulation of inflammation can shift the balance from inflammation-induced tissue injury to repair following stroke, leading to improved post-stroke outcomes.
Collapse
Affiliation(s)
- Jingyi Liang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fei Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, China
| | - Qian Li
- Laboratory for Clinical Medicine, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Fernández-Pérez I, Jiménez-Balado J, Macias-Gómez A, Suárez-Pérez A, Vallverdú-Prats M, Pérez-Giraldo A, Viles-García M, Peris-Subiza J, Vidal-Notari S, Giralt-Steinhauer E, Guisado-Alonso D, Esteller M, Rodriguez-Campello A, Jiménez-Conde J, Ois A, Cuadrado-Godia E. Blood DNA Methylation Analysis Reveals a Distinctive Epigenetic Signature of Vasospasm in Aneurysmal Subarachnoid Hemorrhage. Transl Stroke Res 2024:10.1007/s12975-024-01252-x. [PMID: 38649590 DOI: 10.1007/s12975-024-01252-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/28/2024] [Accepted: 04/06/2024] [Indexed: 04/25/2024]
Abstract
Vasospasm is a potentially preventable cause of poor prognosis in patients with aneurysmal subarachnoid hemorrhage (aSAH). Epigenetics might provide insight on its molecular mechanisms. We aimed to analyze the association between differential DNA methylation (DNAm) and development of vasospasm. We conducted an epigenome-wide association study in 282 patients with aSAH admitted to our hospital. DNAm was assessed with the EPIC Illumina chip (> 850 K CpG sites) in whole-blood samples collected at hospital admission. We identified differentially methylated positions (DMPs) at the CpG level using Cox regression models adjusted for potential confounders, and then we used the DMP results to find differentially methylated regions (DMRs) and enriched biological pathways. A total of 145 patients (51%) experienced vasospasm. In the DMP analysis, we identified 31 CpGs associated with vasospasm at p-value < 10-5. One of them (cg26189827) was significant at the genome-wide level (p-value < 10-8), being hypermethylated in patients with vasospasm and annotated to SUGCT gene, mainly expressed in arteries. Region analysis revealed 13 DMRs, some of them annotated to interesting genes such as POU5F1, HLA-DPA1, RUFY1, and CYP1A1. Functional enrichment analysis showed the involvement of biological processes related to immunity, inflammatory response, oxidative stress, endothelial nitric oxide, and apoptosis. Our findings show, for the first time, a distinctive epigenetic signature of vasospasm in aSAH, establishing novel links with essential biological pathways, including inflammation, immune responses, and oxidative stress. Although further validation is required, our results provide a foundation for future research into the complex pathophysiology of vasospasm.
Collapse
Affiliation(s)
- Isabel Fernández-Pérez
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
| | - Joan Jiménez-Balado
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain.
| | - Adrià Macias-Gómez
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
| | - Antoni Suárez-Pérez
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
| | - Marta Vallverdú-Prats
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
| | | | - Marc Viles-García
- Neuroradiology Department, Hospital del Mar, Barcelona, Catalunya, Spain
| | | | | | - Eva Giralt-Steinhauer
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
- Pompeu Fabra University, Barcelona, Catalunya, Spain
| | - Daniel Guisado-Alonso
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Research Institute Against Leukemia Josep Carreras, Badalona, Catalunya, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Catalunya, Spain
| | - Ana Rodriguez-Campello
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
- Pompeu Fabra University, Barcelona, Catalunya, Spain
| | - Jordi Jiménez-Conde
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
- Pompeu Fabra University, Barcelona, Catalunya, Spain
| | - Angel Ois
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
- Pompeu Fabra University, Barcelona, Catalunya, Spain
| | - Elisa Cuadrado-Godia
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
- Pompeu Fabra University, Barcelona, Catalunya, Spain
| |
Collapse
|
3
|
Kawai T, Kinoshita S, Takayama Y, Ohnishi E, Kamura H, Kojima K, Kikuchi H, Terao M, Sugawara T, Migita O, Kagami M, Isojima T, Yamaguchi Y, Wakui K, Ohashi H, Shimizu K, Mizuno S, Okamoto N, Fukushima Y, Takada F, Kosaki K, Takada S, Akutsu H, Ura K, Nakabayashi K, Hata K. Loss of function in NSD2 causes DNA methylation signature similar to that in Wolf-Hirschhorn syndrome. GENETICS IN MEDICINE OPEN 2024; 2:101838. [PMID: 39669601 PMCID: PMC11613750 DOI: 10.1016/j.gimo.2024.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 12/14/2024]
Abstract
Purpose Wolf-Hirschhorn syndrome (WHS), a contiguous gene syndrome caused by heterozygous deletions of the distal short arm of chromosome 4 that includes NSD2, reportedly causes specific DNA methylation signatures in peripheral blood cells. However, the genomic loci responsible for these signatures have not been elucidated. The present study aims to define the loci underlying WHS-related DNA methylation signatures and explore the role of NSD2 in these signatures. Methods We conducted genome-wide methylation analysis of individuals with WHS or NSD2 variants using an array method. We studied genome-edited knockin mice and induced pluripotent stem cells to explore the function of NSD2 variants. Results Three undiagnosed cases with NSD2 variants showed WHS-related DNA methylation signatures. In patient-derived induced pluripotent stem cells and genome-edited knockin mice, these variants cause NSD2 loss of function, respectively. The p.Pro905Leu variant caused decreased Nsd2 protein levels and altered histone H3-lysine 36 dimethylation levels similarly to what was observed in Nsd2 knockout mice. Nsd2 knockout and p.Pro905Leu knockin mice exhibited common DNA methylation changes. Conclusion These results revealed that WHS-related DNA methylation signatures are dependent on NSD2 dysfunction and could be useful in identifying NSD2 variants of uncertain significance.
Collapse
Affiliation(s)
- Tomoko Kawai
- Division of Fetal Development, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shiori Kinoshita
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yuka Takayama
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Eriko Ohnishi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiromi Kamura
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuaki Kojima
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroki Kikuchi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Miho Terao
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tohru Sugawara
- Department of Reproductive Medicine, Center for Regenerative Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Ohsuke Migita
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Laboratory Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsuyoshi Isojima
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
| | | | - Keiko Wakui
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hirofumi Ohashi
- Division of Medical Genetics, Saitama Children’s Medical Center, Saitama, Japan
| | - Kenji Shimizu
- Division of Medical Genetics, Saitama Children’s Medical Center, Saitama, Japan
| | - Seiji Mizuno
- Department of Pediatrics, Central Hospital, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Yoshimitsu Fukushima
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Fumio Takada
- Department of Medical Genetics and Genomics, Kitasato University Graduate School of Medical Sciences, Kanagawa, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hidenori Akutsu
- Department of Reproductive Medicine, Center for Regenerative Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kiyoe Ura
- Laboratory of Chromatin Metabolism and Epigenetics, Department of Biology, Chiba University, Chiba, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Human Molecular Genetics, Gunma University Graduate School of Medicine, Gunma, Japan
| |
Collapse
|
4
|
Xu S, Wu Q, Tang Z, Li P. Identification and Analysis of DNA Methylation Inflammation-Related Key Genes in Intracerebral Hemorrhage. Biochem Genet 2024; 62:395-412. [PMID: 37354351 DOI: 10.1007/s10528-023-10430-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
Inflammation and DNA methylation have been reported to play key roles in intracerebral hemorrhage (ICH). This study aimed to investigate new diagnostic biomarkers associated with inflammation and DNA methylation using a comprehensive bioinformatics approaches. GSE179759 and GSE125512 were collected from the Gene Expression Omnibus database, and 3222 inflammation-related genes (IFRGs) were downloaded from the Molecular Signatures Database. Key differentially expressed methylation-regulated and inflammation-related genes (DE-MIRGs) were identified by overlapping methylation-regulated differentially expressed genes (MeDEGs) between patients with ICH and control samples, module genes from weighted correlation network analysis, and IFRGs. Functional annotation of DE-MIRGs was performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). A protein-protein interaction (PPI) network was constructed to clarify the interrelationships between different DE-MIRGs. The key genes were categorized by least absolute shrinkage selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE), and gene set enrichment analysis (GSEA). A total of 22 DE-MIRGs were acquired from 451 MeDEGs, 3222 IFRGs, and 302 module genes, and were mainly enriched in the GO terms of wound healing, blood coagulation, and hemostasis; and the KEGG pathways of PI3K/Akt signaling, focal adhesion, and regulation of actin cytoskeleton. A PPI network with 22 nodes and 87 edges was constructed based on the 22 DE-MIRGs, 11 of which were selected for key gene selection. Two 2 key genes (SELP and S100A4) were identified using LASSO and SVM-RFE. Finally, SELP was mainly enriched in cell morphogenesis involved in differentiation, cytoplasmic translation, and actin binding of GO terms, and the KEGG pathway including endocytosis, focal adhesion, and platelet activation. S100A4 was mainly enriched in GO terms including mitochondrial inner membrane; mitochondrial respirasome and lysosomal membrane; and the KEGG pathway of oxidative phosphorylation, regulation of actin cytoskeleton, and chemical carcinogenesis-reactive oxygen species. Twenty-two DE-MIRGs-associated inflammation and DNA methylation were identified between patients with ICH and normal controls, and two key genes (SELP and S100A4) were identified and regarded as biomarkers for ICH, which could provide the research foundation for further investigation of the pathological mechanism of ICH.
Collapse
Affiliation(s)
- Sanpeng Xu
- Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Qiong Wu
- Xin Yang Central Hospital, Xinyang, China
| | - Zhe Tang
- Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Ping Li
- Changchun University of Traditional Chinese Medicine, Changchun, China.
| |
Collapse
|
5
|
Liu F, Zhou H, Peng Y, Qiao Y, Wang P, Si C, Wang X, Gong J, Chen K, Song F. Plasma One-Carbon Metabolism-Related Micronutrients and the Risk of Breast Cancer: Involvement of DNA Methylation. Nutrients 2023; 15:3621. [PMID: 37630812 PMCID: PMC10458034 DOI: 10.3390/nu15163621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/05/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Findings of epidemiologic studies focusing on the association between one-carbon metabolism-related micronutrients and breast cancer risk, along with the involvement of DNA methylation, have been inconsistent and incomprehensive. We conducted a case-control study in China including 107 paired participants and comprehensively detected 12 plasma one-carbon metabolism-related micronutrients. Genomic DNA methylation was measured using an 850 K chip and differential methylation probes (DMPs) were identified. Multivariate logistic regression was performed to estimate the associations between plasma micronutrients and the odds of breast cancer. The mediation of selected DMPs in micronutrient breast cancer associations was examined using mediation analyses. An inverse association of plasma folate, methionine cycling-related micronutrients (methionine, S-adenosylmethionine, and S-adenosylhomocysteine), and all micronutrients in the choline metabolism and enzymatic factor groups, and a positive association of methionine cycling-related cysteine with breast cancer risk were observed. Nine micronutrients (methionine, cysteine, SAM, folate, choline, betaine, P5P, vitamins B2, and B12) were related to global or probe-specific methylation levels (p < 0.05). The selected DMPs mediated the micronutrient breast cancer associations with an average mediation proportion of 36.43%. This study depicted comprehensive associations between circulating one-carbon metabolism-related micronutrients and breast cancer risk mediated by DNA methylation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China; (F.L.); (H.Z.); (Y.P.); (Y.Q.); (P.W.); (C.S.); (X.W.); (J.G.)
| | - Fangfang Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China; (F.L.); (H.Z.); (Y.P.); (Y.Q.); (P.W.); (C.S.); (X.W.); (J.G.)
| |
Collapse
|
6
|
Liu L, Zhang Y, Ma H, Cao H, Liu W. Integrating genome-wide methylation and transcriptome-wide analyses to reveal the genetic mechanism of milk traits in Kazakh horses. Gene 2023; 856:147143. [PMID: 36574934 DOI: 10.1016/j.gene.2022.147143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Horse Milk has important quantitative characteristics and high economic value. However, the DNA methylation regulators involved in horse milk traits have not been clarified. To explore the important role of genome-wide DNA methylation in regulating equine milk yield, this study systematically investigated the genome-wide DNA methylation profiles of Kazakh horse blood by comparing a high-production group (HP, average daily milk yield of 7.5 kg) and low-production group (LP, average daily milk yield of 3.2 kg) using deep whole-genome bisulfite sequencing. First, both groups showed similar proportions of methylation at CpG sites. Subsequently, we identified 26,677 differential methylated regions (DMRs) of CG, 15 DMRs of CHG, 480 DMRs of CHH and 8268 DMR-related genes (DMGs). GO and KEGG analyses revealed that some DMGs were involved in regulating milk and milk component formation. By combining the WGBS-seq and the previous RNA-seq data, a total of 94 overlapping genes were obtained. Finally, we found that 9 DMGs are likely involved in milk production by Kazakh horses.
Collapse
Affiliation(s)
- Lingling Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yunting Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Haiyu Ma
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Hang Cao
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Wujun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China.
| |
Collapse
|
7
|
Mohammadi-Shemirani P, Sood T, Paré G. From 'Omics to Multi-omics Technologies: the Discovery of Novel Causal Mediators. Curr Atheroscler Rep 2023; 25:55-65. [PMID: 36595202 PMCID: PMC9807989 DOI: 10.1007/s11883-022-01078-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2022] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW 'Omics studies provide a comprehensive characterisation of a biological entity, such as the genome, epigenome, transcriptome, proteome, metabolome, or microbiome. This review covers the unique properties of these types of 'omics and their roles as causal mediators in cardiovascular disease. Moreover, applications and challenges of integrating multiple types of 'omics data to increase predictive power, improve causal inference, and elucidate biological mechanisms are discussed. RECENT FINDINGS Multi-omics approaches are growing in adoption as they provide orthogonal evidence and overcome the limitations of individual types of 'omics data. Studies with multiple types of 'omics data have improved the diagnosis and prediction of disease states and afforded a deeper understanding of underlying pathophysiological mechanisms, beyond any single type of 'omics data. For instance, disease-associated loci in the genome can be supplemented with other 'omics to prioritise causal genes and understand the function of non-coding variants. Alternatively, techniques, such as Mendelian randomisation, can leverage genetics to provide evidence supporting a causal role for disease-associated molecules, and elucidate their role in disease pathogenesis. As technologies improve, costs for 'omics studies will continue to fall and datasets will become increasingly accessible to researchers. The intrinsically unbiased nature of 'omics data is well-suited to exploratory analyses that discover causal mediators of disease, and multi-omics is an emerging discipline that leverages the strengths of each type of 'omics data to provide insights greater than the sum of its parts.
Collapse
Affiliation(s)
- Pedrum Mohammadi-Shemirani
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, ON Canada
- Thrombosis and Atherosclerosis Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, ON Canada
| | - Tushar Sood
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Guillaume Paré
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, ON Canada
- Thrombosis and Atherosclerosis Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, ON Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON Canada
- Department of Pathology and Molecular Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON Canada
| |
Collapse
|
8
|
Morris-Blanco KC, Chokkalla AK, Arruri V, Jeong S, Probelsky SM, Vemuganti R. Epigenetic mechanisms and potential therapeutic targets in stroke. J Cereb Blood Flow Metab 2022; 42:2000-2016. [PMID: 35854641 PMCID: PMC9580166 DOI: 10.1177/0271678x221116192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Accumulating evidence indicates a central role for epigenetic modifications in the progression of stroke pathology. These epigenetic mechanisms are involved in complex and dynamic processes that modulate post-stroke gene expression, cellular injury response, motor function, and cognitive ability. Despite decades of research, stroke continues to be classified as a leading cause of death and disability worldwide with limited clinical interventions. Thus, technological advances in the field of epigenetics may provide innovative targets to develop new stroke therapies. This review presents the evidence on the impact of epigenomic readers, writers, and erasers in both ischemic and hemorrhagic stroke pathophysiology. We specifically explore the role of DNA methylation, DNA hydroxymethylation, histone modifications, and epigenomic regulation by long non-coding RNAs in modulating gene expression and functional outcome after stroke. Furthermore, we highlight promising pharmacological approaches and biomarkers in relation to epigenetics for translational therapeutic applications.
Collapse
Affiliation(s)
| | - Anil K Chokkalla
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Soomin Jeong
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Samantha M Probelsky
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA.,William S. Middleton Veterans Administration Hospital, Madison, WI, USA
| |
Collapse
|
9
|
Genetics and Epigenetics of Spontaneous Intracerebral Hemorrhage. Int J Mol Sci 2022; 23:ijms23126479. [PMID: 35742924 PMCID: PMC9223468 DOI: 10.3390/ijms23126479] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a complex and heterogeneous disease, and there is no effective treatment. Spontaneous ICH represents the final manifestation of different types of cerebral small vessel disease, usually categorized as: lobar (mostly related to cerebral amyloid angiopathy) and nonlobar (hypertension-related vasculopathy) ICH. Accurate phenotyping aims to reflect these biological differences in the underlying mechanisms and has been demonstrated to be crucial to the success of genetic studies in this field. This review summarizes how current knowledge on genetics and epigenetics of this devastating stroke subtype are contributing to improve the understanding of ICH pathophysiology and their potential role in developing therapeutic strategies.
Collapse
|
10
|
Ma X, Yang B, Li X, Miao Z. Tet Enzymes-Mediated DNA 5hmC Modification in Cerebral Ischemic and Hemorrhagic Injury. Neurotox Res 2022; 40:884-891. [PMID: 35394559 DOI: 10.1007/s12640-022-00505-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023]
Abstract
5-Hydroxymethylcytosine (5hmC) has recently been found that plays an important role in many diseases; however, there are still few studies in the field of stroke. The purpose of this review is to introduce the influence and function of 5hmC in stroke, in order for more people can study it. In this review, we introduced the role of 5hmC in ischemia and hemorrhage stroke, and summarized the possible therapeutic prospects of 5hmC in stroke. In conclusion, we suggest that 5hmC may serve as a biomarker or therapeutic target for the treatment of stroke.
Collapse
Affiliation(s)
- Xiaohua Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China
- Institute of Neuroscience of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Bo Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou City, China
| | - Xiaojing Li
- Gusu School, Suzhou Science & Technology Town Hospital, Nanjing Medical University, Suzhou, 215153, China.
| | - Zhigang Miao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China.
- Institute of Neuroscience of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China.
| |
Collapse
|
11
|
DNA methylation marker to estimate ovarian cancer cell fraction. Med Oncol 2022; 39:78. [PMID: 35195779 DOI: 10.1007/s12032-022-01679-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
Abstract
Evaluation of a cancer cell fraction is important for accurate molecular analysis, and pathological analysis is the gold standard for evaluation. Despite the potential convenience, no established molecular markers for evaluation are available. In this study, we aimed to identify ovarian cancer cell fraction markers using DNA methylation highly specific to ovarian cancer cells. Using genome-wide DNA methylation data, we screened candidate marker genes methylated in 30 ovarian cancer FFPE samples and 12 high-grade serous ovarian cancer cell lines, and unmethylated in two female leucocytes and two normal fallopian epithelial cell samples. Methylation levels of two genes, SIM1, and ZNF154, showed high correlation with pathological cancer cell fractions among the 30 ovarian cancer FFPE samples (R = 0.61 for SIM1, 0.71 for ZNF154). For cost-effective analysis of FFPE samples, pyrosequencing primers were designed, and successfully established for SIM1 and ZNF154. Correlation between a pathological cancer cell fraction and methylation levels obtained by pyrosequencing was confirmed to be high (R = 0.53 for SIM1, 0.64 for ZNF154). Finally, an independent validation cohort of 29 ovarian cancer FFPE samples was analyzed. ZNF154 methylation showed a high correlation with the pathological cancer cell fraction (R = 0.77, P < 0.0001). Therefore, the ZNF154 methylation level was considered to be useful for the estimation of ovarian cancer cell fraction, and is expected to help accurate molecular analysis.
Collapse
|