1
|
Bolouri N, Mansouri R, Farhadi E, Soltani S, Akhtari M, Madreseh E, Faezi ST, Jafarinejad-Farsangi S, Jamshidi A, Mahmoudi M. Evaluation of survivin expression and regulating miRNAs of survivin expression in peripheral blood mononuclear cells in systemic lupus erythematous patients. Lupus 2024; 33:1203-1211. [PMID: 39162618 DOI: 10.1177/09612033241276280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
BACKGROUND Systemic lupus erythematosus is a multisystemic rheumatic disease with different clinical features. Disturbance in apoptosis regulation seems to be a major factor in SLE development. OBJECTIVE Survivin plays a key role in mitosis and inhibiting apoptosis. A study was conducted to examine the expression level of survivin and miRNAs that affect survivin transcript levels in patients with SLE. METHODS We isolated peripheral blood mononuclear cells from 50 inactive SLE patients and 50 healthy controls. RNA is extracted and converted to cDNA. The quantitative real-time polymerase chain reaction is conducted to assess the expression levels of survivin total and its variants with effective miRNAs in PBMCs. RESULTS Expression levels of miR-34a-5p (fold change = 1.5, p++ = 0.027), and 218-5p (fold change = 1.5, p++ = 0.020) were significantly increased. While miR-150-5p (fold change = 0.56, p++ = 0.003) was significantly decreased. The mRNA expression of survivin-WT (fold change = 0.63, p++ = 0.002) was significantly downregulated in SLE patients compared to the healthy controls. Survivin total and its two major variants (survivin-2B, and survivin-ΔEx3) did not differ significantly between SLE patients and controls. CONCLUSION Although survivin-TS and its two variants (survivin-2B, and survivin-ΔEx3) were not differently expressed in SLE patients, survivin-WT had altered expression. Despite aberrant miRNA expression in PBMCs from SLE patients, survivin and miRNA expression were not associated with leukopenia. The pathogenesis of SLE disorder might be linked to survivin's other roles in the immune system aside from anti-apoptotic functions.
Collapse
Affiliation(s)
- Nasim Bolouri
- Immunology Department, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Mansouri
- Immunology Department, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Soltani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Akhtari
- Tobacco Prevention and Control Research Center (TPCRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Madreseh
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Geng T, Yang D, Lin T, Harrison AG, Wang B, Cao Z, Torrance B, Fan Z, Wang K, Wang Y, Yang L, Haynes L, Cheng G, Vella AT, Flavell RA, Pereira JP, Fikrig E, Wang P. UBXN3B is crucial for B lymphopoiesis. EBioMedicine 2024; 106:105248. [PMID: 39018756 PMCID: PMC11287013 DOI: 10.1016/j.ebiom.2024.105248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/29/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND The ubiquitin regulatory X (UBX) domain-containing proteins (UBXNs) are putative adaptors for ubiquitin ligases and valosin-containing protein; however, their in vivo physiological functions remain poorly characterised. We recently showed that UBXN3B is essential for activating innate immunity to DNA viruses and controlling DNA/RNA virus infection. Herein, we investigate its role in adaptive immunity. METHODS We evaluated the antibody responses to multiple viruses and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza in tamoxifen-inducible global and constitutive B cell-specific Ubxn3b knockout mice; quantified various immune populations, B lineage progenitors/precursors, B cell receptor (BCR) signalling and apoptosis by flow cytometry, immunoblotting and immunofluorescence microscopy. We also performed bone marrow transfer, single-cell and bulk RNA sequencing. FINDINGS Both global and B cell-specific Ubxn3b knockout mice present a marked reduction in small precursor B-II (>60%), immature (>70%) and mature B (>95%) cell numbers. Transfer of wildtype bone marrow to irradiated global Ubxn3b knockouts restores normal B lymphopoiesis, while reverse transplantation does not. The mature B population shrinks rapidly with apoptosis and higher pro and activated caspase-3 protein levels were observed following induction of Ubxn3b knockout. Mechanistically, Ubxn3b deficiency leads to impaired pre-BCR signalling and cell cycle arrest. Ubxn3b knockout mice are highly vulnerable to respiratory viruses, with increased viral loads and prolonged immunopathology in the lung, and reduced production of virus-specific IgM/IgG. INTERPRETATION UBXN3B is essential for B lymphopoiesis by maintaining constitutive pre-BCR signalling and cell survival in a cell-intrinsic manner. FUNDING United States National Institutes of Health grants, R01AI132526 and R21AI155820.
Collapse
Affiliation(s)
- Tingting Geng
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Duomeng Yang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Tao Lin
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Andrew G Harrison
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Binsheng Wang
- Center on Aging and Department of Genetics and Genome Sciences, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Ziming Cao
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Blake Torrance
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Kepeng Wang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Yanlin Wang
- Department of Medicine, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Long Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Laura Haynes
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Gong Cheng
- Department of Basic Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Anthony T Vella
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Joao P Pereira
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Penghua Wang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA.
| |
Collapse
|
3
|
Daneels W, Van Parys A, Huyghe L, Rogge E, De Rouck S, Christiaen R, Zabeau L, Taveirne S, Van Dorpe J, Kley N, Cauwels A, Depla E, Tavernier J, Offner F. High efficacy of huCD20-targeted AcTaferon in humanized patient derived xenograft models of aggressive B cell lymphoma. Exp Hematol Oncol 2024; 13:59. [PMID: 38831452 PMCID: PMC11145843 DOI: 10.1186/s40164-024-00524-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 05/13/2024] [Indexed: 06/05/2024] Open
Abstract
Type I interferon (IFN) is a potent antitumoral drug, with an important history in the treatment of hematologic malignancies. However, its pleiotropic nature leads to severe dose-limiting toxicities that blunt its therapeutic potential. To achieve selective targeting of specific immune or tumor cells, AcTakines (Activity-on-Target Cytokines), i.e., immunocytokines utilizing attenuated cytokines, and clinically optimized A-Kines™ were developed. In syngeneic murine models, the CD20-targeted murine IFNα2-based AcTaferons (AFNs) have demonstrated clear antitumoral effects, with excellent tolerability. The current study explores the antitumoral potential of the humanized huCD20-Fc-AFN in 5 different humanized patient derived xenograft (PDX) models of huCD20+ aggressive B non-Hodgkin lymphomas (B-NHLs). The huCD20-Fc-AFN consists of a huCD20-specific single-domain antibody (VHH) linked through a heterodimeric 'knob-in-hole' human IgG1 Fc molecule to an attenuated huIFNα2 sequence. An in vitro targeting efficacy of up to 1.000-fold could be obtained, without detectable in vivo toxicities, except for selective (on-target) and reversible B cell depletion. Treatment with huCD20-Fc-AFN significantly increased the median overall survival (mOS) in both non-humanized (mOS 31 to 45 days; HR = 0.26; p = 0.001), and humanized NSG/NOG mice (mOS 34 to 80 days; HR = 0.37; p < 0.0001). In humanized mice, there was a trend for increased survival when compared to equimolar rituximab (mOS 49 to 80 days; HR = 0.73; p = 0.09). The antitumoral effects of huCD20-Fc-AFN were partly due to direct effects of type I IFN on the tumor cells, but additional effects via the human immune system are essential to obtain long-term remissions. To conclude, huCD20-Fc-AFN could provide a novel therapeutic strategy for huCD20-expressing aggressive B-NHLs.
Collapse
Affiliation(s)
- Willem Daneels
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
- Department of Hematology, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.
| | - Alexander Van Parys
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences BV, Ghent, Belgium
| | - Leander Huyghe
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences BV, Ghent, Belgium
| | - Elke Rogge
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences BV, Ghent, Belgium
| | - Steffi De Rouck
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences BV, Ghent, Belgium
| | | | | | | | - Jo Van Dorpe
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Niko Kley
- Orionis Biosciences BV, Ghent, Belgium
| | - Anje Cauwels
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences BV, Ghent, Belgium
| | | | - Jan Tavernier
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences BV, Ghent, Belgium
| | - Fritz Offner
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Hematology, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Simpson MJ, Newen AM, McNees C, Sharma S, Pfannenstiel D, Moyer T, Stephany D, Douagi I, Wang Q, Mayer CT. Peripheral apoptosis and limited clonal deletion during physiologic murine B lymphocyte development. Nat Commun 2024; 15:4691. [PMID: 38824171 PMCID: PMC11144239 DOI: 10.1038/s41467-024-49062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
Self-reactive and polyreactive B cells generated during B cell development are silenced by either apoptosis, clonal deletion, receptor editing or anergy to avoid autoimmunity. The specific contribution of apoptosis to normal B cell development and self-tolerance is incompletely understood. Here, we quantify self-reactivity, polyreactivity and apoptosis during physiologic B lymphocyte development. Self-reactivity and polyreactivity are most abundant in early immature B cells and diminish significantly during maturation within the bone marrow. Minimal apoptosis still occurs at this site, however B cell receptors cloned from apoptotic B cells show comparable self-reactivity to that of viable cells. Apoptosis increases dramatically only following immature B cells leaving the bone marrow sinusoids, but above 90% of cloned apoptotic transitional B cells are not self-reactive/polyreactive. Our data suggests that an apoptosis-independent mechanism, such as receptor editing, removes most self-reactive B cells in the bone marrow. Mechanistically, lack of survival signaling rather than clonal deletion appears to be the underpinning cause of apoptosis in most transitional B cells in the periphery.
Collapse
Affiliation(s)
- Mikala JoAnn Simpson
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anna Minh Newen
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher McNees
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sukriti Sharma
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dylan Pfannenstiel
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Moyer
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David Stephany
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Iyadh Douagi
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Christian Thomas Mayer
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Ren W, Yue C, Liu L, Du L, Xu K, Zhou Y. Overexpression of Bruton Tyrosine Kinase Inhibits the Proliferation, Migration, and Invasion of Non-Small Cell Lung Cancer Cells. Anal Cell Pathol (Amst) 2023; 2023:3377316. [PMID: 37638060 PMCID: PMC10457169 DOI: 10.1155/2023/3377316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/07/2023] [Accepted: 07/22/2023] [Indexed: 08/29/2023] Open
Abstract
Lung cancer is one of the most lethal malignant tumors in the world. Non-small cell lung cancer (NSCLC) is the most common pathological subtype. However, the molecular mechanism of NSCLC progress is still unclear. We extracted the expression data of the Bruton's tyrosine kinase (BTK) gene in NSCLC tissues from the TCGA database. The results of paired t-test showed that the BTK gene was significantly underexpressed in NSCLC tissues. To further verify the above results, we detected the expression of the BTK gene in NSCLC cell lines A549, H1299, and H1650 at the RNA and protein levels by real-time fluorescent quantitative polymerase chain reaction and Western Blot analysis, respectively. The results showed that BTK was low expressed in NSCLC tissues and cells. More importantly, the expression of the BTK gene is also significantly related to the patient's age, gender, tumor range (T), lymph node invasion (N), tumor stage, and prognosis, and its expression level gradually decreases with the progress of the disease. It is speculated that BTK may be an independent prognostic factor of NSCLC. Our experimental results are consistent with the above clinical correlation analysis results. Overexpression of BTK can significantly inhibit the proliferation, migration, and invasion of NSCLC cells and can block the G0/G1 tumor cell cycle, indicating that overexpression of BTK can inhibit the growth, migration, and invasion of NSCLC cells.
Collapse
Affiliation(s)
- Wenjia Ren
- Department of Biotechnology, College of Life Science and Chemistry, Beijing University of Technology, Chaoyang, Beijing, China
| | - Cheng Yue
- Department of Biotechnology, College of Life Science and Chemistry, Beijing University of Technology, Chaoyang, Beijing, China
| | - Linjun Liu
- Department of Biotechnology, College of Life Science and Chemistry, Beijing University of Technology, Chaoyang, Beijing, China
| | - Licheng Du
- Department of Biotechnology, College of Life Science and Chemistry, Beijing University of Technology, Chaoyang, Beijing, China
| | - Ke Xu
- NHC Key Laboratory of biosafety, National Institute for Viral Disease Control and Prevention, Changping, Beijing, China
| | - Yubai Zhou
- Department of Biotechnology, College of Life Science and Chemistry, Beijing University of Technology, Chaoyang, Beijing, China
| |
Collapse
|
6
|
McNitt DH, Joosse BA, Thomas JW, Bonami RH. Productive Germinal Center Responses Depend on the Nature of Stimuli Received by Anti-Insulin B Cells in Type 1 Diabetes-Prone Mice. Immunohorizons 2023; 7:384-397. [PMID: 37261716 PMCID: PMC10448785 DOI: 10.4049/immunohorizons.2300036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023] Open
Abstract
Islet autoantibodies, including those directed at insulin, predict type 1 diabetes (T1D) in mice and humans and signal immune tolerance breach by B lymphocytes. High-affinity insulin autoantibodies and T follicular helper cell involvement implicate germinal centers (GCs) in T1D. The VH125SD BCR transgenic model, in which 1-2% of peripheral B lymphocytes recognize insulin, enables direct study of insulin-binding B cells. Our prior studies showed that anti-insulin B cell receptor transgene site-directed to H chain locus mice fail to generate insulin Ab following T-dependent immunization, but it was unclear whether anti-insulin B cells were blocked for GC initiation, survival, or differentiation into Ab-secreting cells. Here, we show that insulin-binding B cells in T1D-prone anti-insulin B cell receptor transgene site-directed to H chain locus mice can spontaneously adopt a GC phenotype and undergo class switching to the IgG1 isotype, with little if any switching to IgG2b. T-dependent immunizations with insulin SRBC or insulin CFA drove anti-insulin B lymphocytes to adopt a GC phenotype, despite blunted insulin Ab production. Dual immunization against self (insulin) and foreign (4-hydroxy-3-nitrophenylacetyl hapten conjugated to keyhole limpet hemocyanin) Ags showed an anti-insulin (but not anti-4-hydroxy-3-nitrophenylacetyl) Ab block that tracked with increased expression of the apoptosis marker, activated caspase 3, in self-reactive GC B cells. Finally, T-independent immunization with insulin conjugated to Brucella abortus ring test Ag released immune tolerance to allow robust expansion of anti-insulin GC B cells and IgG-switched insulin Ab production. Overall, these data pinpoint GC survival and Ab-secreting cell differentiation as immune tolerance blocks that limit T-dependent, but not T-independent, stimulation of anti-insulin B cell responses.
Collapse
Affiliation(s)
- Dudley H. McNitt
- Division of Rheumatology and Immunology, Department of
Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Bryan A. Joosse
- Division of Rheumatology and Immunology, Department of
Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - James W. Thomas
- Division of Rheumatology and Immunology, Department of
Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and
Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Rachel H. Bonami
- Division of Rheumatology and Immunology, Department of
Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and
Immunology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
7
|
Yang Y, Li M, Zhu Y, Liu K, Liu M, Liu Y, Zhu G, Luo H, Zuo X, Zhang H, Guo M. EZH2 inhibition dampens autoantibody production in lupus by restoring B cell immune tolerance. Int Immunopharmacol 2023; 119:110155. [PMID: 37044035 DOI: 10.1016/j.intimp.2023.110155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
OBJECTIVE The aim of this study was to elucidate the role of enhancer of zeste homolog 2 (EZH2) in the breakdown of B cell immune tolerance and production of autoantibodies in systemic lupus erythematosus (SLE), and to explore the therapeutic effects of EZH2 inhibition on lupus. METHODS Peripheral blood mononuclear cells (PBMCs) were collected from new-onset SLE patients for flow cytometric analysis. Pristane-induced lupus mice were constructed, and the EZH2 inhibitor was administrated by intraperitoneal injection to treat lupus mice. Blood and urine were collected from lupus mice to detect autoantibodies and proteinuria, and renal pathology scores were assessed. Mouse spleen B cells were sorted with magnetic beads and subjected to flow cytometric apoptosis detection, real time quantitative PCR (RT-qPCR), and western blotting (WB). RESULTS EZH2 expression was elevated in diverse B-cell subsets in both SLE patients and pristane-induced lupus mice. The EZH2 inhibitor attenuated lupus-like symptoms and dampened autoantibody production in pristane-induced lupus mice. Inhibition of EZH2 also reduced autoantibody secretion by plasma cells from lupus patients. Mechanistically, EZH2 mediated the impaired apoptosis of autoreactive B cells and the differentiation of autoantibody producing plasma cells by inhibiting multiple cyclin-dependent kinase inhibitor (CKI) genes. CONCLUSION EZH2 mediated the breakdown of B-cell peripheral immune tolerance by inhibiting CKI genes and participated in the generation of autoantibodies in SLE. EZH2 inhibition could serve as a promising drug intervention for the treatment of SLE.
Collapse
Affiliation(s)
- Yiying Yang
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China
| | - Muyuan Li
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Yaxi Zhu
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China
| | - Ke Liu
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China
| | - Meidong Liu
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China
| | - Yanjuan Liu
- Institute of Emergency Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Ganqian Zhu
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
| | - Hui Luo
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Xiaoxia Zuo
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Huali Zhang
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China.
| | - Muyao Guo
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
| |
Collapse
|
8
|
Chernova I, Song W, Steach H, Hafez O, Al Souz J, Chen PM, Chandra N, Cantley L, Veselits M, Clark MR, Craft J. The ion transporter Na +-K +-ATPase enables pathological B cell survival in the kidney microenvironment of lupus nephritis. SCIENCE ADVANCES 2023; 9:eadf8156. [PMID: 36724234 PMCID: PMC9891690 DOI: 10.1126/sciadv.adf8156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The kidney is a comparatively hostile microenvironment characterized by highsodium concentrations; however, lymphocytes infiltrate and survive therein in autoimmune diseases such as lupus. The effects of sodium-lymphocyte interactions on tissue injury in autoimmune diseases and the mechanisms used by infiltrating lymphocytes to survive the highsodium environment of the kidney are not known. Here, we show that kidney-infiltrating B cells in lupus adapt to elevated sodium concentrations and that expression of sodium potassium adenosine triphosphatase (Na+-K+-ATPase) correlates with the ability of infiltrating cells to survive. Pharmacological inhibition of Na+-K+-ATPase and genetic knockout of Na+-K+-ATPase γ subunit resulted in reduced B cell infiltration into kidneys and amelioration of proteinuria. B cells in human lupus nephritis biopsies also had high expression of Na+-K+-ATPase. Our study reveals that kidney-infiltrating B cells in lupus initiate a tissue adaption program in response to sodium stress and identifies Na+-K+-ATPase as an organ-specific therapeutic target.
Collapse
Affiliation(s)
- Irene Chernova
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Corresponding author. (I.C.); (J.C.)
| | - Wenzhi Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Holly Steach
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Omeed Hafez
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Jafar Al Souz
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ping-Min Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Nisha Chandra
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Lloyd Cantley
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Margaret Veselits
- Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, Departments of Medicine and Pathology, University of Chicago, Chicago, IL, USA
| | - Marcus R. Clark
- Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, Departments of Medicine and Pathology, University of Chicago, Chicago, IL, USA
| | - Joe Craft
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Corresponding author. (I.C.); (J.C.)
| |
Collapse
|
9
|
Harley ITW, Allison K, Scofield RH. Polygenic autoimmune disease risk alleles impacting B cell tolerance act in concert across shared molecular networks in mouse and in humans. Front Immunol 2022; 13:953439. [PMID: 36090990 PMCID: PMC9450536 DOI: 10.3389/fimmu.2022.953439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Most B cells produced in the bone marrow have some level of autoreactivity. Despite efforts of central tolerance to eliminate these cells, many escape to periphery, where in healthy individuals, they are rendered functionally non-responsive to restimulation through their antigen receptor via a process termed anergy. Broad repertoire autoreactivity may reflect the chances of generating autoreactivity by stochastic use of germline immunoglobulin gene segments or active mechanisms may select autoreactive cells during egress to the naïve peripheral B cell pool. Likewise, it is unclear why in some individuals autoreactive B cell clones become activated and drive pathophysiologic changes in autoimmune diseases. Both of these remain central questions in the study of the immune system(s). In most individuals, autoimmune diseases arise from complex interplay of genetic risk factors and environmental influences. Advances in genome sequencing and increased statistical power from large autoimmune disease cohorts has led to identification of more than 200 autoimmune disease risk loci. It has been observed that autoantibodies are detectable in the serum years to decades prior to the diagnosis of autoimmune disease. Thus, current models hold that genetic defects in the pathways that control autoreactive B cell tolerance set genetic liability thresholds across multiple autoimmune diseases. Despite the fact these seminal concepts were developed in animal (especially murine) models of autoimmune disease, some perceive a disconnect between human risk alleles and those identified in murine models of autoimmune disease. Here, we synthesize the current state of the art in our understanding of human risk alleles in two prototypical autoimmune diseases - systemic lupus erythematosus (SLE) and type 1 diabetes (T1D) along with spontaneous murine disease models. We compare these risk networks to those reported in murine models of these diseases, focusing on pathways relevant to anergy and central tolerance. We highlight some differences between murine and human environmental and genetic factors that may impact autoimmune disease development and expression and may, in turn, explain some of this discrepancy. Finally, we show that there is substantial overlap between the molecular networks that define these disease states across species. Our synthesis and analysis of the current state of the field are consistent with the idea that the same molecular networks are perturbed in murine and human autoimmune disease. Based on these analyses, we anticipate that murine autoimmune disease models will continue to yield novel insights into how best to diagnose, prognose, prevent and treat human autoimmune diseases.
Collapse
Affiliation(s)
- Isaac T. W. Harley
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
- Rheumatology Section, Medicine Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Kristen Allison
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
| | - R. Hal Scofield
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Medical/Research Service, US Department of Veterans Affairs Medical Center, Oklahoma City, OK, United States
| |
Collapse
|
10
|
Hui CW, Wu WC, Leung SO. Interleukins 4 and 21 Protect Anti-IgM Induced Cell Death in Ramos B Cells: Implication for Autoimmune Diseases. Front Immunol 2022; 13:919854. [PMID: 35911775 PMCID: PMC9326153 DOI: 10.3389/fimmu.2022.919854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/20/2022] [Indexed: 01/11/2023] Open
Abstract
Interleukins 4 (IL-4) and 21 (IL-21) belong to the common gamma chain cytokine family which are highly involved in the progression of autoimmune diseases. While IL-4 is well known to be involved in the suppression of apoptosis of autoreactive B cells, the role played by IL-21 remains unclear. In the current study, we activated the human Burkitt’s lymphoma Ramos B cells with anti-IgM to mimic B cell hyperactivation observed in patients of autoimmune diseases. Consistent with other reported findings, anti-IgM led to the downregulation of proteins involved in B cell survival and proliferation, as well as the activation of caspase 3 activity and DNA damage, resulting in apoptotic cell death after 48-hour treatment. Although both IL-4 and IL-21 reversed anti-IgM-induced apoptosis and cell cycle arrest, they did so via different mechanisms: while IL-4 could directly suppress anti-IgM-induced caspase 3 activation and marker indicative of DNA damage, IL-21 could induce B cell proliferation in the presence of anti-IgM. Importantly, IL-21 also suppressed activation induced cell death in human primary B cells. Pre-treatment with clinically validated JAK inhibitors completely reversed the effects of IL-4 and IL-21 to rescue anti-IgM induced cell death and DNA damage. The results indicate the underlying mechanisms of how IL-4 and IL-21 differentially promote survival of hyperactivated B cells and provide hints to treat autoimmune diseases.
Collapse
|