1
|
Wang S, Huang Z, Nie S, Chen Y, Lei Y, Tu W, Luo M, Zhang ZG, Tian DA, Gong J, Liu M. Unveiling the interplay between hepatocyte SATB1 and innate immunity in autoimmune hepatitis. Int Immunopharmacol 2025; 144:113712. [PMID: 39626541 DOI: 10.1016/j.intimp.2024.113712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Investigating the function of SATB1 in hepatocytes is essential for developing therapeutic strategies for autoimmune hepatitis (AIH). Although SATB1 has been extensively studied in immune cells, its specific activity in hepatocytes within the context of AIH remains unclear. METHODS SATB1 expression in AIH hepatocytes was assessed by qRT-PCR, Western blotting, flow cytometry, and immunohistochemistry. In vivo modulation used RNA interference viruses and overexpression plasmids. SATB1's proinflammatory effects were analyzed with protein microarray, immunohistochemistry, and flow cytometry. Chemotactic effects on RAW264.7 macrophages were tested in vitro, with mechanisms explored by dual-luciferase assays and CUT&RUN qPCR. Liver injury was evaluated by histopathology and serum biochemistry. RESULTS SATB1 was significantly upregulated in hepatocytes of AIH patients and models, showing a stronger increase in hepatocytes than in CD45+ cells, and positively correlated with liver injury severity. In vivo RNAi-mediated SATB1 inhibition reduced liver inflammation, while SATB1 overexpression aggravated AIH progression. Both interference and overexpression experiments confirmed that SATB1 promotes liver injury by facilitating the infiltration of proinflammatory (Ly6Chigh) macrophage. In vitro, supernatant from SATB1-overexpressing hepatocytes enriched chemokine signaling pathways, leading to increased CCL2 expression and release, which attracted macrophages and drove their proinflammatory polarization. Mechanistically, SATB1 promoted CCL2 transcription by binding to its DNA and recruiting p300/CBP. CONCLUSIONS This study reveals that SATB1 is upregulated in hepatocytes in AIH. Elevated SATB1 levels in liver cells contribute to autoimmune hepatitis by increasing CCL2 expression, promoting the recruitment of inflammatory monocyte-derived macrophage, and reshaping the composition of the liver immune microenvironment.
Collapse
Affiliation(s)
- Shuhui Wang
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zheng Huang
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Shangshu Nie
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yu Chen
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wei Tu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Min Luo
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400000, China
| | - Zhen-Gang Zhang
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - De-An Tian
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Jin Gong
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
2
|
Reuveni D, Assi S, Gore Y, Brazowski E, Leung PSC, Shalit T, Gershwin ME, Zigmond E. Conventional type 1 dendritic cells are essential for the development of primary biliary cholangitis. Liver Int 2024; 44:2063-2074. [PMID: 38700427 DOI: 10.1111/liv.15961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/15/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND & AIMS Primary biliary cholangitis (PBC) is a progressive-cholestatic autoimmune liver disease. Dendritic cells (DC) are professional antigen-presenting cells and their prominent presence around damaged bile ducts of PBC patients are documented. cDC1 is a rare subset of DC known for its cross-presentation abilities and interleukin 12 production. Our aim was to assess the role of cDC1 in the pathogenesis of PBC. METHODS We utilized an inducible murine model of PBC and took advantage of the DC reporter mice Zbtb46gfp and the Batf3-/- mice that specifically lack the cDC1 subset. cDC1 cells were sorted from blood of PBC patients and healthy individuals and subjected to Bulk-MARS-seq transcriptome analysis. RESULTS Histopathology assessment demonstrated peri-portal inflammation in wild type (WT) mice, whereas only minor abnormalities were observed in Batf3-/- mice. Flow cytometry analysis revealed a two-fold reduction in hepatic CD8/CD4 T cells ratio in Batf3-/- mice, suggesting reduced intrahepatic CD8 T cells expansion. Histological evidence of portal fibrosis was detected only in the WT but not in Batf3-/- mice. This finding was supported by decreased expression levels of pro-fibrotic genes in the livers of Batf3-/- mice. Transcriptome analysis of human cDC1, revealed 78 differentially expressed genes between PBC patients and controls. Genes related to antigen presentation, TNF and IFN signalling and mitochondrial dysfunction were significantly increased in cDC1 isolated from PBC patients. CONCLUSION Our data illustrated the contribution the cDC1 subset in the pathogenesis of PBC and provides a novel direction for immune based cell-specific targeted therapeutic approach in PBC.
Collapse
Affiliation(s)
- Debby Reuveni
- The Research Center for Digestive Tract and Liver Diseases, Department of Gastroenterology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Center for Liver Diseases, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Siwar Assi
- The Research Center for Digestive Tract and Liver Diseases, Department of Gastroenterology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Gore
- The Research Center for Digestive Tract and Liver Diseases, Department of Gastroenterology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eli Brazowski
- Department of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Patrick S C Leung
- Division of Rheumatology, University of California at Davis, Davis, California, USA
| | - Tali Shalit
- The Mantoux Bioinformatics Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Merrill E Gershwin
- Division of Rheumatology, University of California at Davis, Davis, California, USA
| | - Ehud Zigmond
- The Research Center for Digestive Tract and Liver Diseases, Department of Gastroenterology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Center for Liver Diseases, Chaim Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
3
|
Zhang W, Wu H, Luo S, Lu X, Tan X, Wen L, Ma X, Efferth T. Molecular insights into experimental models and therapeutics for cholestasis. Biomed Pharmacother 2024; 174:116594. [PMID: 38615607 DOI: 10.1016/j.biopha.2024.116594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Cholestatic liver disease (CLD) is a range of conditions caused by the accumulation of bile acids (BAs) or disruptions in bile flow, which can harm the liver and bile ducts. To investigate its pathogenesis and treatment, it is essential to establish and assess experimental models of cholestasis, which have significant clinical value. However, owing to the complex pathogenesis of cholestasis, a single modelling method can merely reflect one or a few pathological mechanisms, and each method has its adaptability and limitations. We summarize the existing experimental models of cholestasis, including animal models, gene-knockout models, cell models, and organoid models. We also describe the main types of cholestatic disease simulated clinically. This review provides an overview of targeted therapy used for treating cholestasis based on the current research status of cholestasis models. In addition, we discuss the respective advantages and disadvantages of different models of cholestasis to help establish experimental models that resemble clinical disease conditions. In sum, this review not only outlines the current research with cholestasis models but also projects prospects for clinical treatment, thereby bridging basic research and practical therapeutic applications.
Collapse
Affiliation(s)
- Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hefei Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiman Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Xiyue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
4
|
Kaps L, Medina-Montano C, Bros M, Grabbe S, Gairing SJ, Schleicher EM, Gehring S, Schattenberg JM, Galle PR, Wörns MA, Nagel M, Labenz C. Comparison of Inflammatory Cytokine Levels in Hepatic and Jugular Veins of Patients with Cirrhosis. Mediators Inflamm 2023; 2023:9930902. [PMID: 38077228 PMCID: PMC10700970 DOI: 10.1155/2023/9930902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Background Systemic inflammation with elevated inflammatory cytokines is a hallmark in patients with cirrhosis and the main driver of decompensation. There is insufficient data on whether inflammatory cytokine levels differ between hepatic and jugular veins, which may have implications for further immunological studies. Methods Blood from the hepatic and jugular veins of 40 patients with cirrhosis was collected during hepatic venous pressure gradient (HVPG) measurements. Serum levels of 13 inflammatory cytokines (IL-1β, Int-α2, Int-γ, TNF-α, MCP-1, IL-6, IL-8, IL-10, IL-12p70, IL-17A, IL-18, IL-23, and IL-33) were quantified by cytometric bead array. Results Cytokine levels of IFN-α2, IFN-γ, TNF-α, IL-6, IL-8, IL-10, IL-17A, IL-18, IL-23, and IL-33 were significantly elevated in patients with decompensated cirrhosis compared to patients with compensated cirrhosis. When comparing patients with clinically significant portal hypertension (CSPH, HVPG ≥ 10 mmHg) to patients without CSPH, there were significantly enhanced serum levels of IL-6 and IL-18 in the former group. There was no significant difference between cytokine serum levels between blood obtained from the jugular versus hepatic veins. Even in subgroup analyses stratified for an early cirrhosis stage (Child-Pugh (CP) A) or more decompensated stages (CP B/C), cytokine levels were similar. Conclusion Cytokine levels increase with decompensation and increasing portal hypertension in patients with cirrhosis. There is no relevant difference in cytokine levels between hepatic and jugular blood in patients with cirrhosis.
Collapse
Affiliation(s)
- Leonard Kaps
- Department of Internal Medicine I, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
- Cirrhosis Centre Mainz (CCM), University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Carolina Medina-Montano
- Department of Dermatology, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Simon Johannes Gairing
- Department of Internal Medicine I, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
- Cirrhosis Centre Mainz (CCM), University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Eva M. Schleicher
- Department of Internal Medicine I, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
- Cirrhosis Centre Mainz (CCM), University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Stephan Gehring
- Department of Paediatrics, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Jörn M. Schattenberg
- Department of Internal Medicine I, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
- Metabolic Liver Research Program, Department of Internal Medicine I, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Peter R. Galle
- Department of Internal Medicine I, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Marcus-Alexander Wörns
- Department of Gastroenterology, Hematology, Oncology and Endocrinology, Klinikum Dortmund, Dortmund, Germany
| | - Michael Nagel
- Department of Internal Medicine I, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
- Department of Gastroenterology, Hematology, Oncology and Endocrinology, Klinikum Dortmund, Dortmund, Germany
| | - Christian Labenz
- Department of Internal Medicine I, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
- Cirrhosis Centre Mainz (CCM), University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
5
|
Wang X, Wei Y, Yang Y, Yang Y, Li H, Li Y, Zhang F, Wang L. Animal models of primary biliary cholangitis: status and challenges. Cell Biosci 2023; 13:214. [PMID: 37993960 PMCID: PMC10664283 DOI: 10.1186/s13578-023-01170-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Primary biliary cholangitis (PBC) is an autoimmune liver disease. The aetiology of PBC remains unclear, and its pathogenesis is complex. Animal models are essential to clarify the pathogenesis of PBC and explore the occurrence of early events. MAIN BODY Herein, we review recent research progress in PBC animal models, including genetically modified, chemically inducible, biologically inducible, and protein-immunised models. Although these animal models exhibit several immunological and pathological features of PBC, they all have limitations that constrain further research and weaken their connection with clinical practice. CONCLUSION The review will benefit efforts to understand and optimise animal models in order to further clarify PBC pathogenesis and molecular targets for therapeutic interventions.
Collapse
Affiliation(s)
- Xu Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Yi Wei
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Yanlei Yang
- Clinical Biobank, Department Medical Research Central, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunjiao Yang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Haolong Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Li Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China.
| |
Collapse
|
6
|
Zhang LT, Yang YF, Chen XM, Wang SB, Tong GL. IL23R as an indicator of immune infiltration and poor prognosis in intrahepatic cholangiocarcinoma: a bioinformatics analysis. Transl Cancer Res 2023; 12:2461-2476. [PMID: 37969393 PMCID: PMC10643953 DOI: 10.21037/tcr-23-455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 09/01/2023] [Indexed: 11/17/2023]
Abstract
Background Although the incidence of intrahepatic cholangiocarcinoma (CHOL) is low, the prognosis is very poor. The expression level of interleukin 23 receptor (IL23R) is linked to the occurrence and development of cancers. This study aimed to identify the role of IL23R in CHOL using bioinformatics tools and experimental validation. Methods Circular RNA (circRNA), microRNA (miRNA), and messenger RNA (mRNA) datasets were obtained from the Gene Expression Omnibus (GEO) database, and R software was used for data analysis and visualization. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to conduct functional enrichment analysis, which was verified with gene set enrichment analysis software. Clinical data were obtained from The Cancer Genome Atlas (TCGA), and survival analyses were performed using the DriverDBv3 database and the Gene Expression Profiling Interactive Analysis website. The TIMER2.0 database provided us for immune cell infiltration analysis results of IL23R. Real-time quantitative polymerase chain reaction (RT-qPCR) was used for IL23R expression verification. Results Differentially expressed (DE) mRNAs were enriched in phosphoinositide 3-kinase-serine/threonine kinase signaling pathway, immune-related tumor microenvironment (TME), and amino acid metabolism, etc. In addition, expression of IL23R was associated with immune infiltration-related cells. Furthermore, a circRNA-miRNA-IL23R network and a IL23R protein-protein interaction network were established. Most importantly, IL23R, as a prognostic gene, was found to have a low expression in CHOL. Conclusions A circRNA-miRNA-IL23R network was identified, and it was found that IL23R may be a prognostic and immune-related biomarker in CHOL, which is worthy of further exploration.
Collapse
Affiliation(s)
- Lin-Ting Zhang
- Shantou University Medical College, Shantou, China
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute of Shenzhen-Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China
| | - Yi-Fan Yang
- Shantou University Medical College, Shantou, China
- Department of Interventional Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiao-Ming Chen
- Department of Interventional Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shu-Bin Wang
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute of Shenzhen-Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China
| | - Gang-Ling Tong
- Shantou University Medical College, Shantou, China
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute of Shenzhen-Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China
| |
Collapse
|
7
|
Li W, Yang Y, Yang L, Chang N, Li L. Monocyte-derived Kupffer cells dominate in the Kupffer cell pool during liver injury. Cell Rep 2023; 42:113164. [PMID: 37740916 DOI: 10.1016/j.celrep.2023.113164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 06/12/2023] [Accepted: 09/07/2023] [Indexed: 09/25/2023] Open
Abstract
Healthy Kupffer cell (KC) pool is dominated by embryonic KCs (EmKCs), preserving liver homeostasis. How the KC pool varies upon injury remains unclear. Using chimeric mice with bone marrow (BM) cells labeled with enhanced green fluorescent protein, we identify that BM monocyte-derived KCs (MoKCs) become dominant in cholestatic- or toxic-injured livers via immunofluorescence and mass cytometry. Single-cell RNA sequencing (scRNA-seq) unveils the enhanced proliferative, anti-apoptotic properties and repair potential of MoKCs compared with EmKCs, which are confirmed in vivo and ex vivo through flow cytometry, qPCR, Cell Counting Kit-8, and immunofluorescence. Furthermore, compared with EmKC-dominated livers, MoKC-dominated livers exhibit less functional damage, necrosis, and fibrosis under damage, as tested by serum alanine aminotransferase activity detection, H&E and Sirius red staining, qPCR, and western blot. Collectively, we highlight that MoKCs dominate the KC pool in injured livers and show enhanced proliferative and anti-apoptotic properties while also promoting repair and attenuating fibrosis.
Collapse
Affiliation(s)
- Weiyang Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Yuanru Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Lin Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Na Chang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China.
| | - Liying Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
8
|
Yang Y, He X, Rojas M, Leung PSC, Gao L. Mechanism-based target therapy in primary biliary cholangitis: opportunities before liver cirrhosis? Front Immunol 2023; 14:1184252. [PMID: 37325634 PMCID: PMC10266968 DOI: 10.3389/fimmu.2023.1184252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Primary biliary cholangitis (PBC) is an immune-mediated liver disease characterized by cholestasis, biliary injuries, liver fibrosis, and chronic non-suppurative cholangitis. The pathogenesis of PBC is multifactorial and involves immune dysregulation, abnormal bile metabolism, and progressive fibrosis, ultimately leading to cirrhosis and liver failure. Ursodeoxycholic acid (UDCA) and obeticholic acid (OCA) are currently used as first- and second-line treatments, respectively. However, many patients do not respond adequately to UDCA, and the long-term effects of these drugs are limited. Recent research has advanced our understanding the mechanisms of pathogenesis in PBC and greatly facilitated development of novel drugs to target mechanistic checkpoints. Animal studies and clinical trials of pipeline drugs have yielded promising results in slowing disease progression. Targeting immune mediated pathogenesis and anti-inflammatory therapies are focused on the early stage, while anti-cholestatic and anti-fibrotic therapies are emphasized in the late stage of disease, which is characterized by fibrosis and cirrhosis development. Nonetheless, it is worth noting that currently, there exists a dearth of therapeutic options that can effectively impede the progression of the disease to its terminal stages. Hence, there is an urgent need for further research aimed at investigating the underlying pathophysiology mechanisms with potential therapeutic effects. This review highlights our current knowledge of the underlying immunological and cellular mechanisms of pathogenesis in PBC. Further, we also address current mechanism-based target therapies for PBC and potential therapeutic strategies to improve the efficacy of existing treatments.
Collapse
Affiliation(s)
- Yushu Yang
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - XiaoSong He
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Manuel Rojas
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, Davis, CA, United States
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Patrick S. C. Leung
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Lixia Gao
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
9
|
Yang Y, Li W, Liu C, Liu J, Yang L, Yue W, Yang L, Xue R, Zhang K, Zhang H, Chang N, Li L. Single-cell RNA seq identifies Plg-R KT-PLG as signals inducing phenotypic transformation of scar-associated macrophage in liver fibrosis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166754. [PMID: 37207518 DOI: 10.1016/j.bbadis.2023.166754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
Hepatic macrophages play a central role in liver fibrosis. Scar-associated macrophages (SAMs), a recently identified subgroup of macrophages, play an important role in this process. However, the mechanism by which SAMs transform during liver fibrosis is still unclear. In this study, we aimed to characterize SAMs and elucidate the underlying mechanism of SAM transformation. Bile duct ligation (BDL) and carbon tetrachloride (CCl4) were used to induce mouse liver fibrosis. Non-parenchymal cells were isolated from normal/fibrotic livers and were analyzed using single cell RNA sequencing (scRNA-seq) or mass cytometry (CyTOF). The glucan-encapsulated siRNA particles (siRNA-GeRPs) was employed to perform macrophage selective gene knockdown. The results of scRNA-seq and CyTOF revealed that SAMs, which derived from bone marrow-derived macrophages (BMMs), accumulated in mouse fibrotic livers. Further analysis showed that SAMs highly expressed genes related to fibrosis, indicating the pro-fibrotic functions of SAMs. Moreover, plasminogen receptor Plg-RKT was highly expressed by SAMs, suggesting the role of Plg-RKT and plasminogen (PLG) in SAM transformation. In vitro, PLG-treated BMMs transformed into SAMs and expressed SAM functional genes. Knockdown of Plg-RKT blocked the effects of PLG. In vivo, selective knockdown of Plg-RKT in intrahepatic macrophages of BDL- and CCl4-treated mice reduced the number of SAMs and alleviated BDL- and CCl4-induced liver fibrosis, suggesting that Plg-RKT-PLG played an important role in liver fibrosis by mediating SAM transformation. Our findings reveal that SAMs are crucial participants in liver fibrosis. Inhibition of SAM transformation by blocking Plg-RKT might be a potential therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Yuanru Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Weiyang Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Chang Liu
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Jing Liu
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Lin Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Wenhui Yue
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Le Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Renmin Xue
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Kai Zhang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Hang Zhang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Na Chang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China.
| | - Liying Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
10
|
Chen R, Tang R, Ma X, Gershwin ME. Immunologic Responses and the Pathophysiology of Primary Biliary Cholangitis. Clin Liver Dis 2022; 26:583-611. [PMID: 36270718 DOI: 10.1016/j.cld.2022.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Primary biliary cholangitis (PBC) is an autoimmune liver disease with a female predisposition and selective destruction of intrahepatic small bile ducts leading to nonsuppurative destructive cholangitis. It is characterized by seropositivity of antimitochondrial antibodies or PBC-specific antinuclear antibodies, progressive cholestasis, and typical liver histologic manifestations. Destruction of the protective bicarbonate-rich umbrella is attributed to the decreased expression of membrane transporters in biliary epithelial cells (BECs), leading to the accumulation of hydrophobic bile acids and sensitizing BECs to apoptosis. A recent X-wide association study reveals a novel risk locus on the X chromosome, which reiterates the importance of Treg cells.
Collapse
Affiliation(s)
- Ruiling Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China.
| | - M Eric Gershwin
- Division of Rheumatology-Allergy and Clinical Immunology, University of California at Davis, 451 Health Sciences Drive, Suite 6510, Davis, CA 95616, USA.
| |
Collapse
|
11
|
Shao T, Leung PSC, Zhang W, Tsuneyama K, Ridgway WM, Young HA, Shuai Z, Ansari AA, Gershwin ME. Treatment with a JAK1/2 inhibitor ameliorates murine autoimmune cholangitis induced by IFN overexpression. Cell Mol Immunol 2022; 19:1130-1140. [PMID: 36042351 PMCID: PMC9508183 DOI: 10.1038/s41423-022-00904-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
The interferon (IFN) signaling pathways are major immunological checkpoints with clinical significance in the pathogenesis of autoimmunity. We have generated a unique murine model named ARE-Del, with chronic overexpression of IFNγ, by altering IFNγ metabolism. Importantly, these mice develop an immunologic and clinical profile similar to patients with primary biliary cholangitis, including high titers of autoantibodies and portal inflammation. We hypothesized that the downregulation of IFN signaling pathways with a JAK1/2 inhibitor would inhibit the development and progression of cholangitis. To study this hypothesis, ARE-Del+/- mice were treated with the JAK1/2 inhibitor ruxolitinib and serially studied. JAK inhibition resulted in a significant reduction in portal inflammation and bile duct damage, associated with a significant reduction in splenic and hepatic CD4+ T cells and CD8+ T cells. Functionally, ruxolitinib inhibited the secretion of the proinflammatory cytokines IFNγ and TNF from splenic CD4+ T cells. Additionally, ruxolitinib treatment also decreased the frequencies of germinal center B (GC B) cells and T follicular helper (Tfh) cells and led to lower serological AMA levels. Of note, liver and peritoneal macrophages were sharply decreased and polarized from M1 to M2 with a higher level of IRF4 expression after ruxolitinib treatment. Mechanistically, ruxolitinib inhibited the secretion of IL-6, TNF and MCP1 and the expression of STAT1 but promoted the expression of STAT6 in macrophages in vitro, indicating that M1 macrophage polarization to M2 occurred through activation of the STAT6-IRF4 pathway. Our data highlight the significance, both immunologically and clinically, of the JAK/STAT signaling pathway in autoimmune cholangitis.
Collapse
Affiliation(s)
- Tihong Shao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California, Davis, CA, USA
| | - Patrick S C Leung
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California, Davis, CA, USA
| | - Weici Zhang
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California, Davis, CA, USA
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - William M Ridgway
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California, Davis, CA, USA
| | - Howard A Young
- Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD, USA
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Aftab A Ansari
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California, Davis, CA, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
12
|
Li W, Chang N, Li L. Heterogeneity and Function of Kupffer Cells in Liver Injury. Front Immunol 2022; 13:940867. [PMID: 35833135 PMCID: PMC9271789 DOI: 10.3389/fimmu.2022.940867] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022] Open
Abstract
Kupffer cells (KCs) are key regulators of liver immunity composing the principal part of hepatic macrophages even body tissue macrophages. They reside in liver sinusoids towards portal vein. The micro-environment shapes KCs unique immunosuppressive features and functions. KCs express specific surface markers that distinguish from other liver macrophages. By engulfing gut-derived foreign products and apoptotic cells without triggering excessive inflammation, KCs maintain homeostasis of liver and body. Heterogeneity of KCs has been identified in different studies. In terms of the origin, adult KCs are derived from progenitors of both embryo and adult bone marrow. Embryo-derived KCs compose the majority of KCs in healthy and maintain by self-renewal. Bone marrow monocytes replenish massively when embryo-derived KC proliferation are impaired. The phenotype of KCs is also beyond the traditional dogma of M1-M2. Functionally, KCs play central roles in pathogenesis of acute and chronic liver injury. They contribute to each pathological stage of liver disease. By initiating inflammation, regulating fibrosis, cirrhosis and tumor cell proliferation, KCs contribute to the resolution of liver injury and restoration of tissue architecture. The underlying mechanism varied by damage factors and pathology. Understanding the characteristics and functions of KCs may provide opportunities for the therapy of liver injury. Herein, we attempt to afford insights on heterogeneity and functions of KCs in liver injury using the existing findings.
Collapse
|