1
|
Yucel N, Hekimoglu G, Keser S, Erhan S, Yesilay G, Hocaoglu G, Seker M. Investigation of the relationship of tissue-resident γδ T cells and IL-17 gene expression with the pathogenesis of autoimmune hepatitis. Immunol Res 2024; 72:895-901. [PMID: 39023823 DOI: 10.1007/s12026-024-09515-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease. Elevated serum immunoglobulin G (IgG) levels, autoantibodies, and histopathological interface hepatitis are the hallmarks of AIH. Autoantibodies and pathological findings, clinical and biochemical features, typical immunoglobulin levels, and exclusion of other diseases are used to diagnose the condition. Gamma-delta (γδ) T cells are a unique population of unconventional T cells with γ and δ glycoprotein chains. γδ T cells have been shown to play a crucial role in autoimmune diseases by producing interleukin (IL)-17. However, its role in AIH remains to be further elucidated. In this study, we aimed to examine the role of γδ T cells and IL-17 in the pathogenesis of AIH, by working on biopsy samples. Paraffin blocks of 18 patients with type 1 AIH and 18 control liver tissues were analyzed. qRT-PCR assessed IL-17 gene expression. Immunofluorescence double staining of CD3+TCRγδ+ was performed to reveal tissue-resident γδ T cells' role in AIH. When comparing AIH to the control, there was a substantial increase in the ratio of CD3+TCRγδ+ cells in total inflammatory cells (p = 0.01). IL-17 gene expression was lowered in AIH when compared to the control (p = 0.01). This study provides evidence for the involvement of γδ T cells and IL-17 in the pathogenesis of AIH. The ratio of γδ T cells and IL-17 gene expression showed a significant difference in AIH suggesting a potential role for γδ T cells in driving liver inflammation in A fIH.
Collapse
Affiliation(s)
- Nurullah Yucel
- Department of Anatomy, Hamidiye School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Gulam Hekimoglu
- Department of Histology and Embryology, International School of Medicine, University of Health Sciences, Istanbul, Turkey.
- Experimental Medicine Application & Research Center, Validebag Research Park, University of Health Sciences, Istanbul, Turkey.
| | - Sevinc Keser
- Department of Pathology, Kartal Dr. Lutfi Kirdar City Hospital, University of Health Sciences, Istanbul, Turkey
| | - Selma Erhan
- Department of Pathology, Prof. Dr. Cemil Tascıoglu City Hospital, University of Health Sciences, Istanbul, Turkey
| | - Gamze Yesilay
- Experimental Medicine Application & Research Center, Validebag Research Park, University of Health Sciences, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Hamidiye Institute of Health Science, University of Health Sciences, Istanbul, Turkey
| | - Gulizar Hocaoglu
- Department of Molecular Biology and Genetics, Hamidiye Institute of Health Science, University of Health Sciences, Istanbul, Turkey
| | | |
Collapse
|
2
|
Fiala GJ, Lücke J, Huber S. Pro- and antitumorigenic functions of γδ T cells. Eur J Immunol 2024; 54:e2451070. [PMID: 38803018 DOI: 10.1002/eji.202451070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
γδ T cells are a subset of T cells that are characterized by the expression of a TCR-γδ instead of a TCR-αβ. Despite being outnumbered by their αβ T cell counterpart in many tissues, studies from the last 20 years underline their important and non-redundant roles in tumor and metastasis development. However, whether a γδ T cell exerts pro- or antitumorigenic effects seems to depend on a variety of factors, many of them still incompletely understood today. In this review, we summarize mechanisms by which γδ T cells exert these seemingly contradictory effector functions in mice and humans. Furthermore, we discuss the current view on inducing and inhibiting factors of γδ T cells during cancer development.
Collapse
Affiliation(s)
- Gina J Fiala
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, Germany
| | - Jöran Lücke
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Asgari R, Bazzazan MA, Karimi Jirandehi A, Yousefzadeh S, Alaei M, Keshavarz Shahbaz S. Peyer's Patch: Possible target for modulating the Gut-Brain-Axis through microbiota. Cell Immunol 2024; 401-402:104844. [PMID: 38901288 DOI: 10.1016/j.cellimm.2024.104844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
The gastrointestinal (GI) tract and the brain form bidirectional nervous, immune, and endocrine communications known as the gut-brain axis. Several factors can affect this axis; among them, various studies have focused on the microbiota and imply that alterations in microbiota combinations can influence both the brain and GI. Also, many studies have shown that the immune system has a vital role in varying gut microbiota combinations. In the current paper, we will review the multidirectional effects of gut microbiota, immune system, and nervous system on each other. Specifically, this review mainly focuses on the impact of Peyer's patches as a critical component of the gut immune system on the gut-brain axis through affecting the gut's microbial composition. In this way, some factors were discussed as proposed elements of missing gaps in this field.
Collapse
Affiliation(s)
- Reza Asgari
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical science, Qazvin, Iran
| | - Mohammad Amin Bazzazan
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical science, Qazvin, Iran
| | - Ashkan Karimi Jirandehi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical science, Qazvin, Iran
| | - Salar Yousefzadeh
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical science, Qazvin, Iran
| | - Masood Alaei
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical science, Qazvin, Iran
| | - Sanaz Keshavarz Shahbaz
- USERN Office, Qazvin University of Medical science, Qazvin, Iran; Cellular and Molecular Research Center, Research Institute for prevention of Non- Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
4
|
Gray JI, Caron DP, Wells SB, Guyer R, Szabo P, Rainbow D, Ergen C, Rybkina K, Bradley MC, Matsumoto R, Pethe K, Kubota M, Teichmann S, Jones J, Yosef N, Atkinson M, Brusko M, Brusko TM, Connors TJ, Sims PA, Farber DL. Human γδ T cells in diverse tissues exhibit site-specific maturation dynamics across the life span. Sci Immunol 2024; 9:eadn3954. [PMID: 38848342 PMCID: PMC11425769 DOI: 10.1126/sciimmunol.adn3954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/15/2024] [Indexed: 06/09/2024]
Abstract
During ontogeny, γδ T cells emerge from the thymus and directly seed peripheral tissues for in situ immunity. However, their functional role in humans has largely been defined from blood. Here, we analyzed the phenotype, transcriptome, function, and repertoire of human γδ T cells in blood and mucosal and lymphoid tissues from 176 donors across the life span, revealing distinct profiles in children compared with adults. In early life, clonally diverse Vδ1 subsets predominate across blood and tissues, comprising naïve and differentiated effector and tissue repair functions, whereas cytolytic Vδ2 subsets populate blood, spleen, and lungs. With age, Vδ1 and Vδ2 subsets exhibit clonal expansions and elevated cytolytic signatures, which are disseminated across sites. In adults, Vδ2 cells predominate in blood, whereas Vδ1 cells are enriched across tissues and express residency profiles. Thus, antigenic exposures over childhood drive the functional evolution and tissue compartmentalization of γδ T cells, leading to age-dependent roles in immunity.
Collapse
Affiliation(s)
- Joshua I. Gray
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, NY 10032 USA
| | - Daniel P. Caron
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, NY 10032 USA
| | - Steven B. Wells
- Department of Systems Biology, Columbia University Irving Medical Center; New York, NY 10032 USA
| | - Rebecca Guyer
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, NY 10032 USA
| | - Peter Szabo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, NY 10032 USA
| | - Daniel Rainbow
- Department of Clinical Neurosciences, University of Cambridge; Cambridge, UK
| | - Can Ergen
- Department of Electrical Engineering and Computer Science and Center for Computational Biology, University of California; Berkeley, CA
| | - Ksenia Rybkina
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, NY 10032 USA
| | - Marissa C. Bradley
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons; New York, NY 10032 USA
| | - Rei Matsumoto
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, NY 10032 USA
- Department of Surgery, Columbia University Irving Medical Center; New York, NY 10032 USA
| | - Kalpana Pethe
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons; New York, NY 10032 USA
| | - Masaru Kubota
- Department of Surgery, Columbia University Irving Medical Center; New York, NY 10032 USA
| | - Sarah Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton; Cambridge, UK
| | - Joanne Jones
- Department of Clinical Neurosciences, University of Cambridge; Cambridge, UK
| | - Nir Yosef
- Department of Electrical Engineering and Computer Science and Center for Computational Biology, University of California; Berkeley, CA
- Department of Systems Immunology, Weizmann institute; Rehovot, Israel
| | - Mark Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida; Gainesville, FL 32611, USA
| | - Maigan Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida; Gainesville, FL 32611, USA
| | - Todd M. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida; Gainesville, FL 32611, USA
| | - Thomas J. Connors
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons; New York, NY 10032 USA
| | - Peter A. Sims
- Department of Systems Biology, Columbia University Irving Medical Center; New York, NY 10032 USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center; New York, NY 10032
| | - Donna L. Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, NY 10032 USA
- Department of Surgery, Columbia University Irving Medical Center; New York, NY 10032 USA
| |
Collapse
|
5
|
Zhao G, Duan W, Zhang L, Sun W, Liu W, Zhang X, Zhang Y, Shi Q, Wu T. The peptidoglycan-associated lipoprotein gene mutant elicits robust immunological defense in mice against Salmonella enteritidis. Front Microbiol 2024; 15:1422202. [PMID: 38903796 PMCID: PMC11188350 DOI: 10.3389/fmicb.2024.1422202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
Background Salmonella enteritidis (S. enteritidis), a zoonotic pathogen with a broad host range, presents a substantial threat to global public health safety. Vaccination stands as an effective strategy for the prevention and control of S. enteritidis infection, highlighting an immediate clinical need for the creation of safe and efficient attenuated live vaccines. Methods In this study, a S. enteritidis peptidoglycan-associated lipoprotein (pal) gene deletion strain (Δpal), was constructed. To assess its virulence, we conducted experiments on biofilm formation capability, motility, as well as cell and mouse infection. Subsequently, we evaluated the immune-protective effect of Δpal. Results It was discovered that deletion of the pal gene reduced the biofilm formation capability and motility of S. enteritidis. Cell infection experiments revealed that the Δpal strain exhibited significantly decreased abilities in invasion, adhesion, and intracellular survival, with downregulation of virulence gene expression, including mgtC, invH, spvB, sipA, sipB, ssaV, csgA, and pipB. Mouse infection experiments showed that the LD50 of Δpal increased by 104 times, and its colonization ability in mouse tissue organs was significantly reduced. The results indicated that the pal gene severely affected the virulence of S. enteritidis. Further, immunogenicity evaluation of Δpal showed a significant enhancement in the lymphocyte transformation proliferation capability of immunized mice, producing high titers of specific IgG and IgA, suggesting that Δpal possesses good immunogenicity. Challenge protection tests demonstrated that the strain could provide 100% immune protection against wild-type strains in mice. Discussion This study proves that the pal gene influences the virulence of S. enteritidis, and Δpal could serve as a candidate strain for attenuated live vaccines, laying the foundation for the development of attenuated live vaccines against Salmonella.
Collapse
Affiliation(s)
- Guixin Zhao
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Wenlong Duan
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Lu Zhang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Wenchao Sun
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
| | - Wan Liu
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Xiaoyu Zhang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yanying Zhang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Qiumei Shi
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Tonglei Wu
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| |
Collapse
|
6
|
Ni S, Yuan X, Cao Q, Chen Y, Peng X, Lin J, Li Y, Ma W, Gao S, Chen D. Gut microbiota regulate migration of lymphocytes from gut to lung. Microb Pathog 2023; 183:106311. [PMID: 37625662 DOI: 10.1016/j.micpath.2023.106311] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/10/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
The community of microorganisms known as gut microbiota that lives in the intestine confers significant health benefits on its host, primarily in the form of immunological homeostasis regulation. Gut microbiota not only can shape immune responses in the gut but also in other organs. This review focus on the gut-lung axis. Aberrant gut microbiota development is associated with greater lung disease susceptibility and respiratory disease induced by a variety of pathogenic bacteria. They are known to cause changes in gut microbiota. Recent research has found that immune cells in the intestine migrate to distant lung to exert anti-infective effects. Moreover, evidence indicates that the gut microbiota and their metabolites influence intestinal immune cells. Therefore, we suspect that intestine-derived immune cells may play a significant role against pulmonary pathogenic infections by receiving instructions from gut microbiota.
Collapse
Affiliation(s)
- Silu Ni
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiulei Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Qihang Cao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yiming Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xingyu Peng
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Jingyi Lin
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yanyan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Wentao Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Shikong Gao
- Shenmu Animal Husbandry Development Center, Shenmu, 719399, Shaanxi, China.
| | - Dekun Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
7
|
Qiu L, Zhang Y, Zeng X. The function of γδ T cells in humoral immune responses. Inflamm Res 2023; 72:747-755. [PMID: 36799949 DOI: 10.1007/s00011-023-01704-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
PURPOSE The purpose of this review is to discuss the role of γδ T cells played in humoral immune responses. BACKGROUND The γδ T cell receptor (γδ TCR) recognizes antigens, including haptens and proteins, in an MHC-independent manner. The recognition of these antigens by γδ TCRs crosses antigen recognition by the B cell receptors (BCRs), suggesting that γδ T cells may be involved in the process of antigen recognition and activation of B cells. However, the role of γδ T cells in humoral immune responses is still less clear. METHODS The kinds of literature about the γδ T cell-B cell interaction were searched on PubMed with search terms, such as γδ T cells, antibody, B cell responses, antigen recognition, and infection. RESULTS Accumulating evidence indicates that γδ T cells, independent of αβ T cells, participate in multiple steps of humoral immunity, including B cell maturation, activation and differentiation, antibody production and class switching. Mechanically, γδ T cells affect B cell function by directly interacting with B cells, secreting cytokines, or modulating αβ T cells. CONCLUSION In this review, we summarize current knowledge on how γδ T cells take part in the humoral immune response, which may assist future vaccine design.
Collapse
Affiliation(s)
- Lingfeng Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yixi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
8
|
Gao Z, Bai Y, Lin A, Jiang A, Zhou C, Cheng Q, Liu Z, Chen X, Zhang J, Luo P. Gamma delta T-cell-based immune checkpoint therapy: attractive candidate for antitumor treatment. Mol Cancer 2023; 22:31. [PMID: 36793048 PMCID: PMC9930367 DOI: 10.1186/s12943-023-01722-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/16/2023] [Indexed: 02/17/2023] Open
Abstract
As a nontraditional T-cell subgroup, γδT cells have gained popularity in the field of immunotherapy in recent years. They have extraordinary antitumor potential and prospects for clinical application. Immune checkpoint inhibitors (ICIs), which are efficacious in tumor patients, have become pioneer drugs in the field of tumor immunotherapy since they were incorporated into clinical practice. In addition, γδT cells that have infiltrated into tumor tissues are found to be in a state of exhaustion or anergy, and there is upregulation of many immune checkpoints (ICs) on their surface, suggesting that γδT cells have a similar ability to respond to ICIs as traditional effector T cells. Studies have shown that targeting ICs can reverse the dysfunctional state of γδT cells in the tumor microenvironment (TME) and exert antitumor effects by improving γδT-cell proliferation and activation and enhancing cytotoxicity. Clarification of the functional state of γδT cells in the TME and the mechanisms underlying their interaction with ICs will solidify ICIs combined with γδT cells as a good treatment option.
Collapse
Affiliation(s)
- Zhifei Gao
- grid.284723.80000 0000 8877 7471The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong 510282 People’s Republic of China ,grid.284723.80000 0000 8877 7471The Second Clinical Medical School, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 People’s Republic of China
| | - Yifeng Bai
- grid.54549.390000 0004 0369 4060The Department of Oncology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Anqi Lin
- grid.284723.80000 0000 8877 7471The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong 510282 People’s Republic of China
| | - Aimin Jiang
- grid.73113.370000 0004 0369 1660The Department of Urology, Changhai hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Chaozheng Zhou
- grid.284723.80000 0000 8877 7471The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong 510282 People’s Republic of China ,grid.284723.80000 0000 8877 7471The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- grid.216417.70000 0001 0379 7164The Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zaoqu Liu
- grid.412633.10000 0004 1799 0733The Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Xin Chen
- The Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Jian Zhang
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, 510282, People's Republic of China.
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, 510282, People's Republic of China.
| |
Collapse
|
9
|
Identification of distinct functional thymic programming of fetal and pediatric human γδ thymocytes via single-cell analysis. Nat Commun 2022; 13:5842. [PMID: 36195611 PMCID: PMC9532436 DOI: 10.1038/s41467-022-33488-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/21/2022] [Indexed: 12/12/2022] Open
Abstract
Developmental thymic waves of innate-like and adaptive-like γδ T cells have been described, but the current understanding of γδ T cell development is mainly limited to mouse models. Here, we combine single cell (sc) RNA gene expression and sc γδ T cell receptor (TCR) sequencing on fetal and pediatric γδ thymocytes in order to understand the ontogeny of human γδ T cells. Mature fetal γδ thymocytes (both the Vγ9Vδ2 and nonVγ9Vδ2 subsets) are committed to either a type 1, a type 3 or a type 2-like effector fate displaying a wave-like pattern depending on gestation age, and are enriched for public CDR3 features upon maturation. Strikingly, these effector modules express different CDR3 sequences and follow distinct developmental trajectories. In contrast, the pediatric thymus generates only a small effector subset that is highly biased towards Vγ9Vδ2 TCR usage and shows a mixed type 1/type 3 effector profile. Thus, our combined dataset of gene expression and detailed TCR information at the single-cell level identifies distinct functional thymic programming of γδ T cell immunity in human. Knowledge about the ontogeny of T cells in the thymus relies heavily on mouse studies because of difficulty to obtain human material. Here the authors perform a single cell analysis of thymocytes from human fetal and paediatric thymic samples to characterise the development of human γδ T cells in the thymus.
Collapse
|
10
|
Song Y, Liu Y, Teo HY, Liu H. Targeting Cytokine Signals to Enhance γδT Cell-Based Cancer Immunotherapy. Front Immunol 2022; 13:914839. [PMID: 35747139 PMCID: PMC9210953 DOI: 10.3389/fimmu.2022.914839] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/09/2022] [Indexed: 12/28/2022] Open
Abstract
γδT cells represent a small percentage of T cells in circulation but are found in large numbers in certain organs. They are considered to be innate immune cells that can exert cytotoxic functions on target cells without MHC restriction. Moreover, γδT cells contribute to adaptive immune response via regulating other immune cells. Under the influence of cytokines, γδT cells can be polarized to different subsets in the tumor microenvironment. In this review, we aimed to summarize the current understanding of antigen recognition by γδT cells, and the immune regulation mediated by γδT cells in the tumor microenvironment. More importantly, we depicted the polarization and plasticity of γδT cells in the presence of different cytokines and their combinations, which provided the basis for γδT cell-based cancer immunotherapy targeting cytokine signals.
Collapse
Affiliation(s)
- Yuan Song
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yonghao Liu
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Huey Yee Teo
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- *Correspondence: Haiyan Liu,
| |
Collapse
|
11
|
Rampoldi F, Donato E, Ullrich L, Deseke M, Janssen A, Demera A, Sandrock I, Bubke A, Juergens AL, Swallow M, Sparwasser T, Falk C, Tan L, Trumpp A, Prinz I. γδ T cells license immature B cells to produce a broad range of polyreactive antibodies. Cell Rep 2022; 39:110854. [PMID: 35613579 DOI: 10.1016/j.celrep.2022.110854] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 03/03/2022] [Accepted: 05/02/2022] [Indexed: 11/03/2022] Open
Abstract
Immature autoreactive B cells are present in all healthy individuals, but it is unclear which signals are required for their maturation into antibody-producing cells. Inducible depletion of γδ T cells show that direct interaction between γδ T cells and immature B cells in the spleen support an "innate" transition to mature B cells with a broad range of antigen specificities. IL-4 production of γδ T cells and cell-to-cell contact via CD30L support B cell maturation and induce genes of the unfolded protein response and mTORC1 signaling. Eight days after in vivo depletion of γδ T cells, increased numbers of B cells are already stuck in the transitional phase and express increased levels of IgD and CD21. Absence of γδ T cells leads also to reduced levels of serum anti-nuclear autoantibodies, making γδ T cells an attractive target to treat autoimmunity.
Collapse
Affiliation(s)
- Francesca Rampoldi
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany; Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - Elisa Donato
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg 69120, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GmbH), Heidelberg 69120, Germany
| | - Leon Ullrich
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Malte Deseke
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Anika Janssen
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Abdi Demera
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Anja Bubke
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Anna-Lena Juergens
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Maxine Swallow
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research; a Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover 30625, Germany
| | - Tim Sparwasser
- Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany; Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research; a Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover 30625, Germany
| | - Christine Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Likai Tan
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany; Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg 69120, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GmbH), Heidelberg 69120, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany; Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany.
| |
Collapse
|
12
|
Rampoldi F, Prinz I. Three Layers of Intestinal γδ T Cells Talk Different Languages With the Microbiota. Front Immunol 2022; 13:849954. [PMID: 35422795 PMCID: PMC9004464 DOI: 10.3389/fimmu.2022.849954] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
The mucosal surfaces of our body are the main contact site where the immune system encounters non-self molecules from food-derived antigens, pathogens, and symbiotic bacteria. γδ T cells are one of the most abundant populations in the gut. Firstly, they include intestinal intraepithelial lymphocytes, which screen and maintain the intestinal barrier integrity in close contact with the epithelium. A second layer of intestinal γδ T cells is found among lamina propria lymphocytes (LPL)s. These γδ LPLs are able to produce IL-17 and likely have functional overlap with local Th17 cells and innate lymphoid cells. In addition, a third population of γδ T cells resides within the Peyer´s patches, where it is probably involved in antigen presentation and supports the mucosal humoral immunity. Current obstacles in understanding γδ T cells in the gut include the lack of information on cognate ligands of the γδ TCR and an incomplete understanding of their physiological role. In this review, we summarize and discuss what is known about different subpopulations of γδ T cells in the murine and human gut and we discuss their interactions with the gut microbiota in the context of homeostasis and pathogenic infections.
Collapse
Affiliation(s)
- Francesca Rampoldi
- Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center, University of Mainz, Mainz, Germany.,Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|