1
|
Kuwazoe H, Sakatani H, Kono M, Saika S, Inoue N, Hotomi M. Complement Component 3 Promotes Regeneration of Olfactory Receptor Neurons. J Transl Med 2024; 105:102200. [PMID: 39581348 DOI: 10.1016/j.labinv.2024.102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024] Open
Abstract
Olfactory receptor neurons (ORNs) in the olfactory epithelium are characterized by high regenerative capacity even after birth, but the molecular mechanisms involved in ORN regeneration remain unclear. Complement component 3 (C3) has been shown to promote tissue regeneration, so we hypothesized that C3 activates innate immunity and also promotes the regeneration of ORNs. In this study, we investigate the role of C3 in ORN regeneration. We used C3 knockout (KO) and wild-type C57BL/6J mice in this study to examine the olfactory regeneration process for 42 days after methimazole-induced olfactory disorder. To compare the regeneration process after ORN damage between C3 KO and wild-type mice, we conducted olfactory behavioral tests and immunohistologic analysis and examined growth factors and inflammatory cell induction. C3 KO mice showed delayed olfactory recovery with lower olfactory epithelial thickness. In C3 KO mice, ORN maturation was delayed in association with increased accumulation of immature ORNs. In the normal ORN regeneration process, undesirable immature ORNs are produced and eliminated by apoptosis. C3 deficiency reduced neutrophils induced during ORN regeneration, suggesting the involvement of C3 in ORN regeneration through neutrophil-dependent elimination of undesired ORNs. C3 is therefore suggested to have promoted ORN regeneration by preventing the accumulation of immature ORNs. In addition, C3 may assist ORN maturation by participating in ORN axon selection such as synaptic pruning. Our results indicate that C3, which is activated during pathogen infection, also promotes recovery from ORN damage. These findings may lead to new therapeutic strategies for olfactory disorder.
Collapse
Affiliation(s)
- Hiroki Kuwazoe
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Hideki Sakatani
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Masamitsu Kono
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
| | - Norimitsu Inoue
- Department of Molecular Genetics, Wakayama Medical University, Wakayama, Japan
| | - Muneki Hotomi
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
2
|
Shiga T, Kono M, Murakami D, Sakatani H, Ogura K, Hotomi M. Traditional Japanese herbal medicine Hochuekkito protects development of sepsis after nasal colonization in mice. J Infect Chemother 2024; 30:1120-1127. [PMID: 38677389 DOI: 10.1016/j.jiac.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
INTRODUCTION Streptococcus pneumoniae, a commensal in the nasopharynx, can cause invasive pneumococcal diseases (IPDs). To prevent the aggravation of IPDs, it is important to enhance host immune defense against S. pneumoniae. Hochuekkito (HET) is expected to have an immunostimulatory effect against infections. METHODS HET was administrated by gavage to adult BALB/cA mice before and after intranasal inoculation of S. pneumoniae. We evaluated the effect of HET on pneumococcal nasal colonization and subsequent development of lethal pneumococcal infections. RESULTS No effect on nasal colonization was observed, but HET significantly reduced bacterial count in the blood, decreased the incidence of bacteremia, and improved survival. HET also reduced nasal tissue damage 3 days after intranasal infection. Neutrophils from HET-treated mice showed significantly higher bactericidal activity against S. pneumoniae in the presence of the serum from the HET group compared with from the control group. CONCLUSIONS The non-specific immunostimulatory effect of HET is suggested by this study to be effective in preventing the progression in IPDs and provided insights into novel strategy in the post-pneumococcal vaccine era.
Collapse
Affiliation(s)
- Tatsuya Shiga
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Kimiidera 811-1 Wakayama-shi, 641-8509, Wakayama, Japan
| | - Masamitsu Kono
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Kimiidera 811-1 Wakayama-shi, 641-8509, Wakayama, Japan
| | - Daichi Murakami
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Kimiidera 811-1 Wakayama-shi, 641-8509, Wakayama, Japan
| | - Hideki Sakatani
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Kimiidera 811-1 Wakayama-shi, 641-8509, Wakayama, Japan
| | - Keisuke Ogura
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, 300-1192, Ibaraki, Japan
| | - Muneki Hotomi
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Kimiidera 811-1 Wakayama-shi, 641-8509, Wakayama, Japan.
| |
Collapse
|
3
|
Murakami D, Kono M, Sakatani H, Iyo T, Hijiya M, Shiga T, Kinoshita T, Sumioka T, Okada Y, Saika S, Koizumi Y, Hotomi M. Inhibition of transient receptor potential vanilloid 1 reduces shedding and transmission during Streptococcus pneumoniae co-infection with influenza. Infect Immun 2024; 92:e0014624. [PMID: 39109830 PMCID: PMC11475660 DOI: 10.1128/iai.00146-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/04/2024] [Indexed: 10/16/2024] Open
Abstract
Transmission is the first step for a microorganism to establish colonization in the respiratory tract and subsequent development of infectious disease. Streptococcus pneumoniae is a leading pathogen that colonizes the mucosal surfaces of the human upper respiratory tract and causes subsequent transmission and invasive infections especially in co-infection with influenza A virus. Host factors contributing to respiratory contagion are poorly understood. Transient receptor potential vanilloid (TRPV) channels have various roles in response to microoorganism. Inhibition of TRPV exacerbates invasive infection by Streptococcus pneumoniae, but it is unclear how TRPV channels influence pneumococcal transmission. Here, we describe the effect of inhibition of TRPV1 on pneumococcal transmission. We adopted a TRPV1-deficient infant mouse model of pneumococcal transmission during co-infection with influenza A virus. We also analyzed the expression of nasal mucin or pro-inflammatory cytokines. TRPV1 deficiency attenuated pneumococcal transmission and shedding during co-infection with influenza A virus. TRPV1 deficiency suppressed the expression of nasal mucin. In addition, there were increases in the expression of tumor necrosis factor-α and type I interferon, followed by the suppressed replication of influenza A virus in TRPV1-deficient mice. Inhibition of TRPV1 was shown to attenuate pneumococcal transmission by reducing shedding through the suppression of nasal mucin during co-infection with influenza A virus. Inhibition of TRPV1 suppressed nasal mucin by modulation of pro-inflammatory responses and regulation of replication of influenza A virus. TRPV1 could be a new target in preventive strategy against pneumococcal transmission.
Collapse
Affiliation(s)
- Daichi Murakami
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Masamitsu Kono
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Hideki Sakatani
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Takuro Iyo
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Masayoshi Hijiya
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Tatsuya Shiga
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Tetsuya Kinoshita
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Takayoshi Sumioka
- Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University Kihoku Hospital, Wakayama, Japan
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
| | - Yusuke Koizumi
- Department of Clinical Infectious Diseases, Infection Control and Prevention, Wakayama Medical University, Wakayama, Japan
| | - Muneki Hotomi
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
4
|
Nanushaj D, Kono M, Sakatani H, Murakami D, Hotomi M. Nucleic acid sensing Toll-like receptors 3 and 9 play complementary roles in the development of bacteremia after nasal colonization associated with influenza co-infection. Exp Anim 2024; 73:50-60. [PMID: 37532523 PMCID: PMC10877144 DOI: 10.1538/expanim.23-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023] Open
Abstract
Streptococcus pneumoniae can cause mortality in infant, elderly, and immunocompromised individuals owing to invasion of bacteria to the lungs, the brain, and the blood. In building strategies against invasive infections, it is important to achieve greater understanding of how the pneumococci are able to survive in the host. Toll-like receptors (TLRs), critically important components in the innate immune system, have roles in various stages of the development of infectious diseases. Endosomal TLRs recognize nucleic acids of the pathogen, but the impact on the pneumococcal diseases of immune responses from signaling them remains unclear. To investigate their role in nasal colonization and invasive disease with/without influenza co-infection, we established a mouse model of invasive pneumococcal diseases directly developing from nasal colonization. TLR9 KO mice had bacteremia more frequently than wildtype in the pneumococcal mono-infection model, while the occurrence of bacteremia was higher among TLR3 KO mice after infection with influenza in advance of pneumococcal inoculation. All TLR KO strains showed poorer survival than wildtype after the mice had bacteremia. The specific and protective role of TLR3 and TLR9 was shown in developing bacteremia with/without influenza co-infection respectively, and all nucleic sensing TLRs would contribute equally to protecting sepsis after bacteremia.
Collapse
Affiliation(s)
- Denisa Nanushaj
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Research Building 9F, 811-1 Kimiidera, Wakayama 641-8510, Japan
| | - Masamitsu Kono
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Research Building 9F, 811-1 Kimiidera, Wakayama 641-8510, Japan
| | - Hideki Sakatani
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Research Building 9F, 811-1 Kimiidera, Wakayama 641-8510, Japan
| | - Daichi Murakami
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Research Building 9F, 811-1 Kimiidera, Wakayama 641-8510, Japan
| | - Muneki Hotomi
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Research Building 9F, 811-1 Kimiidera, Wakayama 641-8510, Japan
| |
Collapse
|
5
|
Lin T, Huang L, Cheng N, Wang Y, Ning Z, Huang S, Wu Y, Chen T, Su S, Lin Y. The in vitro and in vivo antibacterial activities of uniflorous honey from a medicinal plant, Scrophularia ningpoensis Hemsl., and characterization of its chemical profile with UPLC-MS/MS. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115499. [PMID: 35752262 DOI: 10.1016/j.jep.2022.115499] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/10/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to the Compendium of Materia Medica, honey has been used as a traditional medicine in treatment against mucositis, tinea, hemorrhoids and psoriasis. In complementary medicine, due to its significant antimicrobial activity, honey has been widely used as a remedy for skin wounds and gastrohelcosis for thousands of years. AIM OF THE STUDY This study is aimed at exploring the antimicrobial activity and mechanisms of honey sourced from medicinal plants, and revealing the composition-activity relationship, to facilitate their complementary and alternative application in the therapy of bacterial infectious diseases. MATERIALS AND METHODS Eight kinds of medicinal plant-derived uniflorous honey, native to China, were gathered. Their antimicrobial activities were evaluated in vitro, and then in vivo with the systemically infected mouse model and the acute skin infection model. SYTOX uptake assay, scanning electron microscopy, DNA binding assay, and quantitative real-time PCR, were carried out to elucidate the antibacterial mechanisms. This was followed by an investigation of the componential profile with the UPLC-MS/MS technique. RESULTS It was found that Scrophularia ningpoensis Hemsl. (figwort) honey (S. ningpoensis honey) exhibited broad-spectrum and the strongest antibacterial potency (MICs of 7.81-125.00%, w/v), comparable to manuka honey. In the in vivo assays, S. ningpoensis honey significantly decreased the bacterial load of the muscles under the acute MRSA-infected skin wounds; the sera level of TNF-α in the S. aureus and P. aeruginosa-infected mice decreased by 45.38% and 51.75%, respectively, after the treatment of S. ningpoensis honey (125 mg/10 g). It was capable of killing bacteria through disrupting the cell membranes and the genomic DNA, as well as down-regulating the expression of genes associated with virulence, biofilm formation and invasion, including icaA, icaD, eno, sarA, agrA, sigB, fib and ebps in S. aureus, and lasI, lasR, rhlI, rhlR and algC in P. aeruginosa. Apart from H2O2, some other nonperoxide compounds such as adenosine, chavicol, 4-methylcatechol, trehalose, palmitoleic acid and salidroside, might play a vital role in the antibacterial properties of S. ningpoensis honey. CONCLUSIONS This is the first study to thoroughly investigate the antibacterial activity, mode of action, and componential profile of S. ningpoensis honey. It suggested that S. ningpoensis honey might be a potential supplement or substitute for manuka honey, for the prevention or treatment of bacterial infections. It will facilitate the precise application of medicinal plant-sourced honey, provide a new thread for the development of antibacterial drugs, and assist in the distinction of different kinds of honey.
Collapse
Affiliation(s)
- Tianxing Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lei Huang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ningna Cheng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuzhen Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhen Ning
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shaokang Huang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuanhua Wu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Songkun Su
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yan Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
6
|
Liu M, Jia X, Liu H, He R, Zhang X, Shao Y. Role of TRPV1 in respiratory disease and association with traditional Chinese medicine: A literature review. Biomed Pharmacother 2022; 155:113676. [PMID: 36088856 DOI: 10.1016/j.biopha.2022.113676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
Transient receptor potential vanilloid type 1 (TRPV1), involved in multiple pathophysiological processes including inflammation, is a thermally activated, non-selective cation channel. It has been identified that TRPV1 is highly involved in some common respiratory diseases including allergic rhinitis, asthma, chronic obstructive pulmonary disease, and pulmonary infection by participating in neurogenic and immunogenic inflammation, sensitization, and oxidative stress. In recent years, the hypothesis of transient receptor potential (TRP) has been introduced in studies on the theory of five flavors and four properties of Chinese medicinal. However, the hypothesis is undetermined due to the multi-component and multi-target characteristics of Chinese medicinal. This study describes the relations between TRPV1 and four types of respiratory diseases based on the literature in recent five years. In the meantime, the therapeutic effect of Chinese medicinal by intervening TRPV1 was reviewed, in an attempt to provide certain evidence for future studies on the medicinal property-effect relationship, mechanism of drug action, the syndrome differentiation in traditional Chinese medicine (TCM) for respiratory diseases and to help for new drug development.
Collapse
Affiliation(s)
- Meiping Liu
- The First Clinical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinhua Jia
- Department of Pneumology and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huaman Liu
- Department of General Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rong He
- Department of Pneumology and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinyue Zhang
- The First Clinical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yumeng Shao
- Development and Planning Office of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
7
|
Sakatani H, Kono M, Sugita G, Nanushaj D, Hijiya M, Iyo T, Shiga T, Murakami D, Kaku N, Yanagihara K, Nahm MH, Hotomi M. Investigation on the virulence of non-encapsulated Streptococcus pneumoniae using liquid agar pneumonia model. J Infect Chemother 2022; 28:1452-1458. [PMID: 35835387 DOI: 10.1016/j.jiac.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/14/2022] [Accepted: 07/04/2022] [Indexed: 10/31/2022]
Abstract
INTRODUCTION Since the introduction of pneumococcal conjugate vaccine, there have been warnings of an increase in infections caused by non-vaccine type of Streptococcus pneumoniae strains. Among them, nonencapsulated Streptococcus pneumoniae (NESp) has been reported to cause invasive infections, especially in children and the elderly. Due to low virulence, however, basic experimental reports on invasive infections are limited. METHODS We applied a liquid-agar method to establish a mouse model of invasive NESp infection. Mice were intratracheally administered a bacterial suspension including agar. With this technique, we investigated the pathogenicity of NESp and the effect of Pneumococcal surface protein K (PspK), a specific surface protein antigen of NESp. NESp wild-type strain (MNZ11) and NESp pspK-deleted mutant strain (MNZ1131) were used in this study. The survival rate, number of bacteria, cytokine/chemokine levels in the bronchoalveolar lavage fluid, and histology of the lung tissue were evaluated. RESULTS Mice that were intratracheally administered MNZ11 developed lethal pneumonia with bacteremia within 48 h. Conversely, MNZ1131 showed predominantly low lethality without significant pro-inflammatory cytokine production. NESp was found to cause severe pneumonia and bacteremia upon reaching the lower respiratory tract, and PspK was a critical factor of NESp for developing invasive infections. CONCLUSIONS The current study demonstrated the ability of NESp to develop invasive diseases, especially in connection with PspK by use of a mouse pneumonia model.
Collapse
Affiliation(s)
- Hideki Sakatani
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Kimiidera 811-1, Wakayama City, Wakayama, 641-8509, Japan
| | - Masamitsu Kono
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Kimiidera 811-1, Wakayama City, Wakayama, 641-8509, Japan
| | - Gen Sugita
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Kimiidera 811-1, Wakayama City, Wakayama, 641-8509, Japan; Sugita ENT Clinic, Mihama-Ku Takasu 3-14-1, Chiba City, Chiba, 261-0004, Japan
| | - Denisa Nanushaj
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Kimiidera 811-1, Wakayama City, Wakayama, 641-8509, Japan
| | - Masayoshi Hijiya
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Kimiidera 811-1, Wakayama City, Wakayama, 641-8509, Japan
| | - Takuro Iyo
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Kimiidera 811-1, Wakayama City, Wakayama, 641-8509, Japan
| | - Tatsuya Shiga
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Kimiidera 811-1, Wakayama City, Wakayama, 641-8509, Japan
| | - Daichi Murakami
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Kimiidera 811-1, Wakayama City, Wakayama, 641-8509, Japan
| | - Norihito Kaku
- Department of Laboratory Medicine, Nagasaki University, Sakamoto 1-7-1, Nagasaki City, Nagasaki, 852-8501, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University, Sakamoto 1-7-1, Nagasaki City, Nagasaki, 852-8501, Japan
| | - Moon H Nahm
- Department of Medicine, University of Alabama at Birmingham, 1720 2nd Ave South Birmingham, Alabama, 35294, USA
| | - Muneki Hotomi
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Kimiidera 811-1, Wakayama City, Wakayama, 641-8509, Japan.
| |
Collapse
|