1
|
Xu L, Shen T, Li Y, Wu X. The Role of M 6A Modification in Autoimmunity: Emerging Mechanisms and Therapeutic Implications. Clin Rev Allergy Immunol 2025; 68:29. [PMID: 40085180 DOI: 10.1007/s12016-025-09041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
N6-methyladenosine (m6A), a prevalent and essential RNA modification, serves a key function in driving autoimmune disease pathogenesis. By modulating immune cell development, activation, migration, and polarization, as well as inflammatory pathways, m6A is crucial in forming innate defenses and adaptive immunity. This article provides a comprehensive overview of m6A modification features and reveals how its dysregulation affects the intensity and persistence of immune responses, disrupts immune tolerance, exacerbates tissue damage, and promotes the development of autoimmunity. Specific examples include its contributions to systemic autoimmune disorders like lupus and rheumatoid arthritis, as well as conditions that targeting specific organs like multiple sclerosis and type 1 diabetes. Furthermore, this review explores the therapeutic promise of target m6A-related enzymes ("writers," "erasers," and "readers") and summarizes recent advances in intervention strategies. By focusing on the mechanistic and therapeutic implications of m6A modification, this review sheds light on its role as a promising tool for both diagnosis and treatment in autoimmune disorders, laying the foundation for advancements in customized medicine.
Collapse
Affiliation(s)
- Liyun Xu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Tian Shen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yongzhen Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Xiaochuan Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
2
|
Xia X, Qu R. The Roles of RNA N6-methyladenosine Modifications in Systemic Lupus Erythematosus. Cell Biochem Biophys 2024; 82:3223-3234. [PMID: 39095568 DOI: 10.1007/s12013-024-01464-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
N6-methyladenosine (m6A) modification is the most widespread RNA internal modification involved in RNA metabolism. M6A regulators consist of writers, erasers and readers. They exert their function by methylation, demethylation and recognization respectively, participating in cell biology and immune responses. Previously, the focus of m6A modification is its effect on tumor progress. Currently, extensive m6A-related studies have been performed in autoimmune diseases, such as RA, IBD and SLE, revealing that the unique influence of m6A modification in autoimmunity is undeniable. In this review, we summarize the function of m6A regulators, analyze their roles in pathogenic immune cells, summarize the m6A modification in SLE, and provide the potential m6A-targeting therapies for autoimmune diseases.
Collapse
Affiliation(s)
- Xin Xia
- School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Rui Qu
- Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
3
|
Liu Y, Wang X, Huang M, Luo A, Liu S, Cai M, Li W, Yuan S, Zheng Z, Liu X, Tang C. METTL3 facilitates kidney injury through promoting IRF4-mediated plasma cell infiltration via an m6A-dependent manner in systemic lupus erythematosus. BMC Med 2024; 22:511. [PMID: 39501302 PMCID: PMC11539763 DOI: 10.1186/s12916-024-03735-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is an autoimmune disease of unknown cause. N6-methyladenosine (m6A) is the most common mRNA modification and participates in various immune processes such as interferon production and immune cell regulation. However, the role of m6A in dysregulated immune response of SLE remains unknown. METHODS PBMCs from SLE patients were collected to compare the m6A modification profile by methylated RNA immunoprecipitation sequencing (MeRIP-seq). Interferon regulatory factor 4 (IRF4) was identified by combination with MeRIP-seq and RNA-Seq. IRF4 and methyltransferase 3 (METTL3) were detected using qRT-PCR and WB. Clinical significance of IRF4 in SLE patients was explored subsequently. IRF4 expression in B cell subsets of female MRL/lpr mice was detected by flow cytometry. Adeno-associated viruses (AAV) including AAV9-METTL3-OE and/or AAV9-IRF4-sh were treated with female MRL/lpr mice. Autoantibody levels and kidney injury were tested by ELISA, pathological staining, and immunofluorescence. m6A level of IRF4 was detected by MeRIP-qPCR. The downstream effectors of IRF4 contributing to renal pathology were explored by RNA-seq and verified by qRT-PCR. RESULTS m6A methylation features were obviously aberrant in SLE patients, and IRF4 was the upregulated gene modified by m6A. METTL3 and IRF4 expressions were elevated in SLE patients and kidney of MRL/lpr mice. Clinical analysis indicated that SLE patients with high IRF4 level were more prone to kidney damage. IRF4 expression was especially increased in plasma cells of MRL/lpr mice. METTL3 induced renal IRF4 expression, plasma creatinine, ANA and urine ALB levels, IgG and C3 deposition, and renal damage and plasma cell infiltration were aggravated in MRL/lpr mice. However, IRF4 depletion could partially reduce METTL3-induced kidney damage. Meanwhile, m6A level of IRF4 elevated with METTL3 overexpression. Also, the expression of Cxcl1, Bcl3, and Fos mRNA were significantly reduced after knockdown of IRF4, which were mainly involved in TNF signaling pathway. CONCLUSIONS Our study confirmed that upregulated METTL3 promoting IRF4 expression in an m6A-dependent manner, thus causing plasma cell infiltration-mediated kidney damage of SLE. This provides new evidence for the role of m6A in SLE kidney injury.
Collapse
Affiliation(s)
- Yu Liu
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xiaohua Wang
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Mingcheng Huang
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Ailing Luo
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510623, China
| | - Shanshan Liu
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510623, China
| | - Mansi Cai
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510623, China
| | - Weinian Li
- Department of Rheumatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510623, China
| | - Shiwen Yuan
- Department of Rheumatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510623, China
| | - Zhihua Zheng
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Xiaoping Liu
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
4
|
Gan L, Wu X, Song J. Comprehensive Analysis of Crucial m 6A-Related Differentially Expressed Genes in Psoriasis. FRONT BIOSCI-LANDMRK 2024; 29:311. [PMID: 39344312 DOI: 10.31083/j.fbl2909311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Psoriasis is a common, chronic, and multifactorial inflammatory cutaneous disorder that involves genetic and epigenetic factors. N6-methyladenosine methylation (m6A) is the most prevalent RNA modification implicated in various diseases; however, its role in psoriasis still needs to be further explored. We aimed to explore the mechanisms underlying the effects of m6A in psoriasis pathogenesis, prompting new therapeutic targets. METHODS Three psoriasis-related datasets, including GSE155702, GSE109248, and GSE142582, were collected. Differentially m6A methylated genes (DMGs) between psoriasis lesions of psoriasis patients and healthy skin controls were identified from the GSE155702 dataset, and corresponding Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. Differentially expressed genes (DEGs) and the common DEGs between the two groups were screened from the GSE109248 and GSE142582 datasets; the expression and interactions of the m6A regulators were analyzed. The m6A levels of total RNAs and the protein expression levels of METTL3, WTAP, ALKBH5, FTO, and METTL14 in imiquimod (IMQ)-induced psoriasiform lesions were evaluated. RESULTS 66 significantly upregulated and 381 significantly downregulated m6A peaks were identified, corresponding to 414 genes which were particularly associated with cell and tissue development processes and cell cycle related items. 271 common DEGs were identified, associating with keratinocyte differentiation, epidermis development, cytokine-cytokine receptor interaction, and fatty acid metabolic processes. 15 crucial m6A related differentially expressed genes were obtained after the intersection of the DMGs and common DEGs, including NEU2, GALNT6, MTCL1, DOC2B, CAMK2N1, SNTB1, RNF150, CGNL1, CCDC102A, MEOX2, EEF2K, OBSCN, SLC46A2, CCDC85A, and DACH1. In addition, we found that m6A methylation and these five m6A regulators were both upregulated in psoriatic lesions. CONCLUSIONS It revealed that psoriasis pathophysiological processes encompass m6A epigenetic alterations, and that m6A alterations may specifically influence cell proliferation and neural regulation, and closely associated with osteoarticular involvement and metabolic syndrome in psoriasis.
Collapse
Affiliation(s)
- Lu Gan
- Department of Dermatology, Zhongnan Hospital of Wuhan University, 430071 Wuhan, Hubei, China
| | - Xuejingzi Wu
- Department of Dermatology, Zhongnan Hospital of Wuhan University, 430071 Wuhan, Hubei, China
| | - Jiquan Song
- Department of Dermatology, Zhongnan Hospital of Wuhan University, 430071 Wuhan, Hubei, China
| |
Collapse
|
5
|
Chen Y, Liu M, Lu M, Luo L, Han Z, Liu X. Exploring the impact of m 6A modification on immune diseases: mechanisms and therapeutic implication. Front Immunol 2024; 15:1387582. [PMID: 39072324 PMCID: PMC11272477 DOI: 10.3389/fimmu.2024.1387582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
N6-methyladenosine (m6A) is a chemical modification of RNA and has become a widely discussed topic among scientific researchers in recent years. It is distributed in various organisms, including eukaryotes and bacteria. It has been found that m6A is composed of writers, erasers and readers and is involved in biological functions such as splicing, transport and translation of RNA. The balance of the human immune microenvironment is important for human health abnormalities. Increasing studies have found that m6A affects the development of immune diseases such as inflammatory enteritis and systemic lupus erythematosus (SLE) by participating in the homeostatic regulation of the immune microenvironment in vivo. In this manuscript, we introduce the composition, biological function, regulation of m6A in the immune microenvironment and its progression in various immune diseases, providing new targets and directions for the treatment of immune diseases in clinical practice.
Collapse
Affiliation(s)
- Yutong Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Liu
- Department of Traditional Chinese Medicine, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, China
| | - Miao Lu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Linling Luo
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xide Liu
- Department of Traditional Chinese Medicine, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Tian Y, Tao K, Li S, Chen X, Wang R, Zhang M, Zhai Z. Identification of m6A-Related Biomarkers in Systemic Lupus Erythematosus: A Bioinformation-Based Analysis. J Inflamm Res 2024; 17:507-526. [PMID: 38298525 PMCID: PMC10829513 DOI: 10.2147/jir.s439779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
Background Systemic Lupus Erythematosus (SLE), a prototypical autoimmune disorder, presents a challenge due to the absence of reliable biomarkers for discerning organ-specific damage within SLE. A growing body of evidence underscores the pivotal involvement of N6-methyladenosine (m6A) in the etiology of autoimmune conditions. Methods The datasets, which primarily encompassed the expression profiles of m6A regulatory genes, were retrieved from the Gene Expression Omnibus (GEO) repository. The optimal model, selected from either Random Forest (RF) or Support Vector Machine (SVM), was employed for the development of a predictive nomogram model. To identify pivotal genes associated with SLE, a comprehensive screening process was conducted utilizing LASSO, SVM-RFE, and RF techniques. Within the realm of SLE susceptibility, Weighted Gene Co-expression Network Analysis (WGCNA) was harnessed to delineate relevant modules and hub genes. Additionally, MeRIP-qPCR assays were performed to elucidate key genes correlated with m6A targets. Furthermore, a Mendelian randomization study was conducted based on genome-wide association studies to assess the causative influence of MMP9 on ischemic stroke (IS), which is not only a severe cerebrovascular event but also a common complication of SLE. Results Twelve m6A regulatory genes was identified, demonstrating statistical significance (p < 0.05) and utilized for constructing a nomogram model using the RF algorithm. EPSTI1, USP18, HP, and MMP9, as the hub genes, were identified. MMP9 uniquely correlates with m6A modification and was causally linked to an increased risk of IS, as indicated by our inverse variance weighting analysis showing an odds ratio of 1.0134 (95% CI=1.0004-1.0266, p = 0.0440). Conclusion Our study identified twelve m6A regulators, shedding light on the molecular mechanisms underlying SLE risk genes. Importantly, our analysis established a causal relationship between MMP9, a key m6A-related gene, and ischemic stroke, a common complication of SLE, thereby providing critical insights for presymptomatic diagnostic approaches.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Dermatology, The First Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Kang Tao
- Department of Dermatology, The First Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Shifei Li
- Department of Dermatology, The First Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Xiaoqiang Chen
- Department of Dermatology, General Hospital of Central Theater Command, Wuhan, People’s Republic of China
| | - Rupeng Wang
- Department of Dermatology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People’s Republic of China
| | - Mingwang Zhang
- Department of Dermatology, The First Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Zhifang Zhai
- Department of Dermatology, The First Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
7
|
Yu Y, Lu S, Jin H, Zhu H, Wei X, Zhou T, Zhao M. RNA N6-methyladenosine methylation and skin diseases. Autoimmunity 2023; 56:2167983. [PMID: 36708146 DOI: 10.1080/08916934.2023.2167983] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Skin diseases are global health issues caused by multiple pathogenic factors, in which epigenetics plays an invaluable role. Post-transcriptional RNA modifications are important epigenetic mechanism that regulate gene expression at the genome-wide level. N6-methyladenosine (m6A) is the most prevalent modification that occurs in the messenger RNAs (mRNA) of most eukaryotes, which is installed by methyltransferases called "writers", removed by demethylases called "erasers", and recognised by RNA-binding proteins called "readers". To date, m6A is emerging to play essential part in both physiological processes and pathological progression, including skin diseases. However, a systematic summary of m6A in skin disease has not yet been reported. This review starts by illustrating each m6A-related modifier specifically and their roles in RNA processing, and then focus on the existing research advances of m6A in immune homeostasis and skin diseases.
Collapse
Affiliation(s)
- Yaqin Yu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China.,Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Shuang Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China.,Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Hui Jin
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China.,Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Huan Zhu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China.,Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Xingyu Wei
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China.,Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Tian Zhou
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China.,Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China.,Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| |
Collapse
|
8
|
Huang Y, Xue Q, Chang J, Wang Y, Cheng C, Xu S, Wang X, Miao C. M6A methylation modification in autoimmune diseases, a promising treatment strategy based on epigenetics. Arthritis Res Ther 2023; 25:189. [PMID: 37784134 PMCID: PMC10544321 DOI: 10.1186/s13075-023-03149-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/24/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) methylation modification is involved in the regulation of various biological processes, including inflammation, antitumor, and antiviral immunity. However, the role of m6A modification in the pathogenesis of autoimmune diseases has been rarely reported. METHODS Based on a description of m6A modification and the corresponding research methods, this review systematically summarizes current insights into the mechanism of m6A methylation modification in autoimmune diseases, especially its contribution to rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). RESULTS By regulating different biological processes, m6A methylation is involved in the pathogenesis of autoimmune diseases and provides a promising biomarker for the diagnosis and treatment of such diseases. Notably, m6A methylation modification is involved in regulating a variety of immune cells and mitochondrial energy metabolism. In addition, m6A methylation modification plays a role in the pathological processes of RA, and m6A methylation-related genes can be used as potential targets in RA therapy. CONCLUSIONS M6A methylation modification plays an important role in autoimmune pathological processes such as RA and SLE and represents a promising new target for clinical diagnosis and treatment, providing new ideas for the treatment of autoimmune diseases by targeting m6A modification-related pathways.
Collapse
Affiliation(s)
- Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1 Qianjiang Road, Xinzhan District, Hefei, 230012, Anhui Province, China
| | - Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1 Qianjiang Road, Xinzhan District, Hefei, 230012, Anhui Province, China
| | - Jun Chang
- Department of Orthopaedics, the First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China.
- Anhui Public Health Clinical Center, Hefei, China.
| | - Yuting Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1 Qianjiang Road, Xinzhan District, Hefei, 230012, Anhui Province, China
| | - Chenglong Cheng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1 Qianjiang Road, Xinzhan District, Hefei, 230012, Anhui Province, China
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230027, China
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China.
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1 Qianjiang Road, Xinzhan District, Hefei, 230012, Anhui Province, China.
| |
Collapse
|
9
|
You L, Han Z, Chen H, Chen L, Lin Y, Wang B, Fan Y, Zhang M, Luo J, Peng F, Ma Y, Wang Y, Yuan L, Han Z. The role of N6-methyladenosine (m 6A) in kidney diseases. Front Med (Lausanne) 2023; 10:1247690. [PMID: 37841018 PMCID: PMC10569431 DOI: 10.3389/fmed.2023.1247690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023] Open
Abstract
Chemical modifications are a specific and efficient way to regulate the function of biological macromolecules. Among them, RNA molecules exhibit a variety of modifications that play important regulatory roles in various biological processes. More than 170 modifications have been identified in RNA molecules, among which the most common internal modifications include N6-methyladenine (m6A), n1-methyladenosine (m1A), 5-methylcytosine (m5C), and 7-methylguanine nucleotide (m7G). The most widely affected RNA modification is m6A, whose writers, readers, and erasers all have regulatory effects on RNA localization, splicing, translation, and degradation. These functions, in turn, affect RNA functionality and disease development. RNA modifications, especially m6A, play a unique role in renal cell carcinoma disease. In this manuscript, we will focus on the biological roles of m6A in renal diseases such as acute kidney injury, chronic kidney disease, lupus nephritis, diabetic kidney disease, and renal cancer.
Collapse
Affiliation(s)
- Luling You
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haoran Chen
- Science and Education Department, Chengdu Xinhua Hospital, Chengdu, China
| | - Liuyan Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Binjian Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiyue Fan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meiqi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ji Luo
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Ma
- School of Clinical Medicine, Southeast University, Nanjing, China
| | - Yanmei Wang
- Institute of Traditional Chinese Medicine, Sichuan College of Traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Li F, Zhang Y, Peng Z, Wang Y, Zeng Z, Tang Z. Diagnostic, clustering, and immune cell infiltration analysis of m6A regulators in patients with sepsis. Sci Rep 2023; 13:2532. [PMID: 36781867 PMCID: PMC9925440 DOI: 10.1038/s41598-022-27039-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 12/23/2022] [Indexed: 02/15/2023] Open
Abstract
RNA N6-methladenosine (m6A) regulators are required for a variety of biological processes, including immune responses, and increasing evidence indicates that their dysregulation is closely associated with many diseases. However, the potential roles of m6A regulators in sepsis remain unknown. We comprehensively analyzed the transcriptional variations in and interactions of 26 m6A regulators in sepsis based on the Gene Expression Omnibus (GEO) database. A random forest (RF) model and nomogram were established to predict the occurrence and risk of sepsis in patients. Then, two different m6A subtypes were defined by consensus clustering analysis, and we explored the correlation between the subtypes and immune cells. We found that 17 of the 26 m6A regulators were significantly differentially expressed between patients with and without sepsis, and strong correlations among these 17 m6A regulators were revealed. Compared with the support vector machine (SVM) model, the RF model had better predictive ability, and therefore was used to construct a reliable nomogram containing 10 candidate m6A regulators to predict the risk of sepsis in patients. In addition, a consensus clustering algorithm was used to identify two different subtypes of m6A, which helped us distinguish different levels of immune cell infiltration and inflammation in patients with sepsis. Comprehensive analysis of m6A regulators in sepsis revealed their potential roles in sepsis occurrence, immune cell infiltration and inflammation in patients with sepsis. This study may contribute to the development of follow-up treatment strategies for sepsis.
Collapse
Affiliation(s)
- Fenghui Li
- Intensive Care Unit, Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong Province, China
| | - Yuan Zhang
- Intensive Care Unit, Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong Province, China
| | - Zhiyun Peng
- Intensive Care Unit, Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong Province, China
| | - Yingjing Wang
- Intensive Care Unit, Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong Province, China
| | - Zhaoshang Zeng
- Intensive Care Unit, Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong Province, China
| | - Zhongxiang Tang
- Intensive Care Unit, Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong Province, China.
| |
Collapse
|
11
|
Yu L, Wang L, Wang L, Yan S, Chen S, Xu Q, Su D, Wang X. Identification and validation of immune cells and hub genes alterations in recurrent implantation failure: A GEO data mining study. Front Genet 2023; 13:1094978. [PMID: 36699469 PMCID: PMC9868458 DOI: 10.3389/fgene.2022.1094978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/27/2022] [Indexed: 01/10/2023] Open
Abstract
Introduction: Recurrent implantation failure (RIF) is a distressing problem in assisted reproductive technology (ART). Immunity plays a vital role in recurrent implantation failure (RIF) occurrence and development, but its underlying mechanism still needs to be fully elucidated. Through bioinformatics analysis, this study aims to identify the RIF-associated immune cell types and immune-related genes. Methods: The differentially expressed genes (DEGs) were screened based on RIF-associated Gene Expression Omnibus (GEO) datasets. Then, the enrichment analysis and protein-protein interaction (PPI) analysis were conducted with the DEGs. The RIF-associated immune cell types were clarified by combining single sample gene set enrichment analysis (ssGSEA) and CIBERSORT. Differentially expressed immune cell types-related modules were identified by weighted gene co-expression network analysis (WGCNA) and local maximal quasi-clique merger (lmQCM) analysis. The overlapping genes between DEGs and genes contained by modules mentioned above were delineated as candidate hub genes and validated in another two external datasets. Finally, the microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) that interacted with hub genes were predicted, and the competing endogenous RNA (ceRNA) regulatory network was structured. Results: In the present study, we collected 324 DEGs between RIF and the control group, which functions were mainly enriched in immune-related signaling pathways. Regarding differential cell types, the RIF group had a higher proportion of activated memory CD4 T cells and a lower proportion of γδ T cells in the endometrial tissue. Finally, three immune-related hub genes (ALOX5AP, SLC7A7, and PTGS2) were identified and verified to effectively discriminate RIF from control individuals with a specificity rate of 90.8% and a sensitivity rate of 90.8%. In addition, we constructed a key ceRNA network that is expected to mediate molecular mechanisms in RIF. Conclusion: Our study identified the intricate correlation between immune cell types and RIF and provided new immune-related hub genes that offer promising diagnostic and therapeutic targets for RIF.
Collapse
Affiliation(s)
- Liangcheng Yu
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Lu Wang
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Lijin Wang
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Song Yan
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Shuqiang Chen
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Qian Xu
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Danjie Su
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Xiaohong Wang
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi’an, China,*Correspondence: Xiaohong Wang,
| |
Collapse
|
12
|
The Role of N 6-Methyladenosine in Inflammatory Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9744771. [PMID: 36578520 PMCID: PMC9792239 DOI: 10.1155/2022/9744771] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
N6-Methyladenosine (m6A) is the most abundant epigenetic RNA modification in eukaryotes, regulating RNA metabolism (export, stability, translation, and decay) in cells through changes in the activity of writers, erasers, and readers and ultimately affecting human life or disease processes. Inflammation is a response to infection and injury in various diseases and has therefore attracted significant attention. Currently, extensive evidence indicates that m6A plays an essential role in inflammation. In this review, we focus on the mechanisms of m6A in inflammatory autoimmune diseases, metabolic disorder, cardio-cerebrovascular diseases, cancer, and pathogen-induced inflammation, as well as its possible role as targets for clinical diagnosis and treatment.
Collapse
|
13
|
Shi X, Ni H, Wu Y, Guo M, Wang B, Zhang Y, Zhang B, Xu Y. Diagnostic signature, subtype classification, and immune infiltration of key m6A regulators in osteomyelitis patients. Front Genet 2022; 13:1044264. [PMID: 36544487 PMCID: PMC9760713 DOI: 10.3389/fgene.2022.1044264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Background: As a recurrent inflammatory bone disease, the treatment of osteomyelitis is always a tricky problem in orthopaedics. N6-methyladenosine (m6A) regulators play significant roles in immune and inflammatory responses. Nevertheless, the function of m6A modification in osteomyelitis remains unclear. Methods: Based on the key m6A regulators selected by the GSE16129 dataset, a nomogram model was established to predict the incidence of osteomyelitis by using the random forest (RF) method. Through unsupervised clustering, osteomyelitis patients were divided into two m6A subtypes, and the immune infiltration of these subtypes was further evaluated. Validating the accuracy of the diagnostic model for osteomyelitis and the consistency of clustering based on the GSE30119 dataset. Results: 3 writers of Methyltransferase-like 3 (METTL3), RNA-binding motif protein 15B (RBM15B) and Casitas B-lineage proto-oncogene like 1 (CBLL1) and three readers of YT521-B homology domain-containing protein 1 (YTHDC1), YT521-B homology domain-containing family 3 (YTHDF2) and Leucine-rich PPR motif-containing protein (LRPPRC) were identified by difference analysis, and their Mean Decrease Gini (MDG) scores were all greater than 10. Based on these 6 significant m6A regulators, a nomogram model was developed to predict the incidence of osteomyelitis, and the fitting curve indicated a high degree of fit in both the test and validation groups. Two m6A subtypes (cluster A and cluster B) were identified by the unsupervised clustering method, and there were significant differences in m6A scores and the abundance of immune infiltration between the two m6A subtypes. Among them, two m6A regulators (METTL3 and LRPPRC) were closely related to immune infiltration in patients with osteomyelitis. Conclusion: m6A regulators play key roles in the molecular subtypes and immune response of osteomyelitis, which may provide assistance for personalized immunotherapy in patients with osteomyelitis.
Collapse
Affiliation(s)
- Xiangwen Shi
- School of Medicine, Kunming Medical University, Kunming, China
| | - Haonan Ni
- School of Medicine, Kunming Medical University, Kunming, China
| | - Yipeng Wu
- School of Medicine, Kunming Medical University, Kunming, China,Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming, China,Laboratory of Clinical Medical Center, Yunnan Traumatology and Orthopedics, Kunming, China
| | - Minzheng Guo
- School of Medicine, Kunming Medical University, Kunming, China
| | - Bin Wang
- School of Medicine, Kunming Medical University, Kunming, China
| | - Yue Zhang
- School of Medicine, Kunming Medical University, Kunming, China
| | - Bihuan Zhang
- School of Medicine, Kunming Medical University, Kunming, China
| | - Yongqing Xu
- Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming, China,Laboratory of Clinical Medical Center, Yunnan Traumatology and Orthopedics, Kunming, China,*Correspondence: Yongqing Xu,
| |
Collapse
|