1
|
Zhang B, Tian M, Wu J, Qiu Y, Xu X, Tian C, Hou J, Wang L, Gao K, Yang X, Jiang Z. Chlorogenic Acid Enhances the Intestinal Health of Weaned Piglets by Inhibiting the TLR4/NF-κB Pathway and Activating the Nrf2 Pathway. Int J Mol Sci 2024; 25:9954. [PMID: 39337442 PMCID: PMC11432128 DOI: 10.3390/ijms25189954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Chlorogenic acid (CGA) is a natural polyphenol with potent antioxidant and anti-inflammatory activities. However, the exact role of it in regulating intestinal health under oxidative stress is not fully understood. This study aims to investigate the effects of dietary CGA supplementation on the intestinal health of weaned piglets under oxidative stress, and to explore its regulatory mechanism. Twenty-four piglets were randomly divided into two groups and fed either a basal diet (CON) or a basal diet supplemented with 200 mg/kg CGA (CGA). CGA reduced the diarrhea rate, increased the villus height in the jejunum, and decreased the crypt depth in the duodenum, jejunum, and ileum of the weaned piglets (p < 0.05). Moreover, CGA increased the protein abundance of Claudin-1, Occludin, and zonula occludens (ZO)-1 in the jejunum and ileum (p < 0.05). In addition, CGA increased the mRNA expression of pBD2 in the jejunum, and pBD1 and pBD2 in the ileum (p < 0.05). The results of 16S rRNA sequencing showed that CGA altered the ileal microbiota composition and increased the relative abundance of Lactobacillus reuteri and Lactobacillus pontis (p < 0.05). Consistently, the findings suggested that the enhancement of the intestinal barrier in piglets was associated with increased concentrations of T-AOC, IL-22, and sIgA in the serum and T-AOC, T-SOD, and sIgA in the jejunum, as well as T-AOC and CAT in the ileum caused by CGA (p < 0.05). Meanwhile, CGA decreased the concentrations of MDA, IL-1β, IL-6, and TNF-α in the serum and jejunum and IL-1β and IL-6 in the ileum (p < 0.05). Importantly, this study found that CGA alleviated intestinal inflammation and oxidative stress in the piglets by inhibiting the TLR4/NF-κB signaling pathway and activating the Nrf2 signaling pathway. These findings showed that CGA enhances the intestinal health of weaned piglets by inhibiting the TLR4/NF-κB pathway and activating the Nrf2 pathway.
Collapse
Affiliation(s)
- Beibei Zhang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Min Tian
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Jing Wu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yueqin Qiu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Xiaoming Xu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chaoyang Tian
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jing Hou
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Li Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Kaiguo Gao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Xuefen Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| |
Collapse
|
2
|
Ahmed S, Jiang X, Liu G, Yang H, Sadiq A, Yi D, Farooq U, Yiyu S, Zubair M. The protective role of maternal genetic immunization on maternal-fetal health and welfare. Int J Gynaecol Obstet 2023; 163:763-777. [PMID: 37218379 DOI: 10.1002/ijgo.14853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023]
Abstract
Pregnancy is a critical period associated with alterations in physiologic, biologic, and immunologic processes, which can affect maternal-fetal health through development of several infectious diseases. At birth, neonates have an immature immune system that makes them more susceptible to severe viral infections and diseases. For this reason, different maternal nutritional and immunization interventions have been used to improve the immune and health status of the mother and her neonate through passive immunity. Here, we reviewed the protective role of maternal immunization with different types of vaccines, especially genetic vaccines, during pregnancy in maternal-fetal health, immune response, colostrum quality, immune response, and anti-oxidative status. For this purpose, we have used different scientific databases (PubMed and Google Scholar) and other official web pages. We customized the search period range from the year 2000 to 2023 using the key words "maternal immunization" OR "gestation period/pregnancy" OR "genetic vaccination" OR "maternal-fetal health" OR "micronutrients" OR "neonatal immunity" "oxidative stress" OR "colostrum quality". The evidence demonstrated that inactivated or killed vaccines produced significant immune protection in the mother and fetus. Furthermore, most recent studies have suggested that the use of genetic vaccines (mRNA and DNA) during pregnancy is efficient at triggering the immune response in mother and neonate without the risk of undesired pregnancy outcomes. However, factors such as maternal redox balance, nutritional status, and the timing of immunization play essential roles in regulating immune response inflammatory status, antioxidant capacity, and the welfare of both the pregnant mother and her newborn.
Collapse
Affiliation(s)
- Sohail Ahmed
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xunping Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Smart Farming for Agricultural Animals, Wuhan, China
| | - Guiqiong Liu
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huiguo Yang
- Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Amber Sadiq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ding Yi
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Umar Farooq
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Sha Yiyu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Zubair
- Department of Veterinary Clinical Sciences, University of Poonch, Rawalakot, Pakistan
| |
Collapse
|
3
|
Zhang Y, Zhang X, Chen J, Jiang S, Han Y, Du H. Maternal Folic Acid Supplementation Improves the Intestinal Health of Offspring Porcine by Promoting the Proliferation and Differentiation of Intestinal Stem Cells. Animals (Basel) 2023; 13:3092. [PMID: 37835698 PMCID: PMC10571947 DOI: 10.3390/ani13193092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Maternal folic acid intake has important effects on offspring growth and development. The mechanism involved in the renewal of intestinal epithelial cells remains unclear. Thus, this study aimed to investigate the potential effect of maternal folic acid supplementation during gestation and lactation on the structural and functional development of the small intestine in piglet offspring. Twenty-four Duroc sows were assigned to a control group (CON) and a folic-acid-supplemented group (CON + FA, supplemented with 15 mg/kg of folic acid). The results showed that maternal folic acid supplementation throughout gestation and lactation significantly increased the body weight, serum folate level, and intestinal folate metabolism in piglets. It also improved the villus length, villus height-to-crypt depth ratio, and transcript levels of nutrient transporters (GLUT4, SNAT2, FABP2, and SLC7A5) in piglets' duodenum and jejunum. In addition, maternal folic acid supplementation increased Ki67-positive cells and the expression of proliferation-related marker genes (C-Myc, CyclinD1, and PCNA) in piglets' intestinal stem cells. It also boosted the expression of genes associated with mature secreted cells (ChrA, Muc2, Lyz, Vil1), indicating enhanced proliferation and differentiation of intestinal stem cells. These findings demonstrate that maternal folic acid supplementation enhances growth performance and gut health in piglet offspring by promoting epithelial cell renewal equilibrium.
Collapse
Affiliation(s)
- Yuhui Zhang
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaofeng Zhang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310004, China
| | - Jianjun Chen
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shouchuan Jiang
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Han
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huahua Du
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Xie G, Zhang Q, Fang Z, Che L, Lin Y, Xu S, Zhuo Y, Hua L, Jiang X, Li J, Sun M, Zou Y, Huang C, Li L, Wu D, Feng B. Maternal Vitamin D and Inulin Supplementation in Oxidized Oil Diet Improves Growth Performance and Hepatic Innate Immunity in Offspring Mice. Antioxidants (Basel) 2023; 12:1355. [PMID: 37507895 PMCID: PMC10376903 DOI: 10.3390/antiox12071355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Dietary oxidized fat contains harmful materials such as hydrogen peroxide and malondialdehyde (MDA). Excessive oxidized fat intake during pregnancy and lactation not only leads to maternal body injury but also damages offspring health. Our previous study demonstrated that vitamin D (VD) had antioxidative capability in sows. This study was conducted to investigate the effect of maternal VD and inulin supplementation in oxidized oil diet on the growth performance and oxidative stress of their offspring. Sixty 5-month-old C57BL/6N female mice were randomly divided into five groups: Control group (basal diet, n = 12), OF group (oxidized-soybean-oil-replaced diet, n = 12), OFV group (oxidized-soybean-oil-replaced diet + 7000 IU/kg VD, n = 12), OFI group (oxidized-soybean-oil-replaced diet + 5% inulin, n = 12) and OFVI group (oxidized-soybean-oil-replaced diet + 7000 IU/kg VD + 5% inulin, n = 12). Mice were fed with the respective diet during pregnancy and lactation. The offspring were then slaughtered on day 21 of age at weaning. Results showed that a maternal oxidized oil diet impaired body weight and liver weight gain of offspring during lactation compared to the control group, while maternal VD, inulin or VD and inulin mixture supplementation reversed this effect. In addition, the activity of T-AOC in the liver of offspring was lower in the OF group than that in the control group, but could be restored by maternal VD and inulin mixture supplementation. Furthermore, the gene expression of both proinflammatory and anti-inflammatory cytokines, such as Il-6, Tnfα and Il-10, in offspring liver were downregulated by a maternal oxidized oil diet compared with the control group, but they were restored by maternal VD or VD and inulin mixture supplementation. The expressions of Vdr and Cyp27a1 were decreased by a maternal oxidized oil diet compared with the control group, while they could be increased by VD or VD and inulin mixture supplementation. Conclusion: maternal oxidized oil diet intake could impair the growth performance by inducing oxidative stress, but this can be relieved by maternal VD and inulin supplementation.
Collapse
Affiliation(s)
- Guangrong Xie
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qipeng Zhang
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Lin
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lun Hua
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuemei Jiang
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yuanfeng Zou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lixia Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
5
|
Fan Q, Du E, Chen F, Tao W, Zhao N, Huang S, Guo W, Huang J, Wei J. Maternal Magnolol Supplementation during Pregnancy and Lactation Promotes Antioxidant Capacity, Improves Gut Health, and Alters Gut Microbiota and Metabolites of Weanling Piglets. Metabolites 2023; 13:797. [PMID: 37512505 PMCID: PMC10383630 DOI: 10.3390/metabo13070797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Maternal nutrition exerts a profound effect on the postnatal performance of offspring, especially during the weaning period. The multifunctional bioactive component magnolol (MAG) has shown promise as a dietary supplement. This study aimed to explore the effects of maternal MAG supplementation on the antioxidant capacity, gut health, gut microbiome, and metabolome composition of weanling piglets. Fifty pregnant sows were randomly divided into two equally sized groups, the control group and the group supplemented with 100 g/t MAG during the gestation and lactation periods, and 7 days postweaning, the pups were euthanized. The microbiome and metabolome features of weanling piglet colons were compared. Our results revealed that maternal MAG supplementation modified the serum redox status of weanling piglets by decreasing malondialdehyde concentration and increasing superoxide dismutase activity and total antioxidant capacity. Moreover, the decreased indicators of diarrhea were accompanied by improved gut barrier function, in which serum diamine oxidase concentration was decreased, and expressions of zona occludens-1, claudin-1, and intestinal alkaline phosphatase were increased in the colon of weanling piglets from sows supplemented with MAG. Further analysis of the gut microbiota indicated that maternal MAG supplementation significantly increased the relative abundance of beneficial bacteria in the colon of weanling piglets, including Faecalibacterium prausnitzii and Oscillospira. Metabolome analysis identified 540 differential metabolites in the colon of piglets from MAG-fed dams, of which glycerophospholipid classes were highly correlated with progeny gut health and key beneficial bacteria. Our findings indicated that maternal MAG supplementation can improve the oxidative status and gut health of weanling piglets, possibly due to alterations in the gut microbiota and metabolites.
Collapse
Affiliation(s)
- Qiwen Fan
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan 430064, China
| | - Encun Du
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan 430064, China
| | - Fang Chen
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan 430064, China
| | - Wenjing Tao
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan 430064, China
| | - Na Zhao
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan 430064, China
| | - Shaowen Huang
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan 430064, China
| | - Wanzheng Guo
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan 430064, China
| | - Jing Huang
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan 430064, China
| | - Jintao Wei
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan 430064, China
| |
Collapse
|
6
|
Zhao H, Tian M, Xiong L, Lin T, Zhang S, Yue X, Liu X, Chen F, Zhang S, Guan W. Maternal supplementation with glycerol monolaurate improves the intestinal health of suckling piglets by inhibiting the NF-κB/MAPK pathways and improving oxidative stability. Food Funct 2023; 14:3290-3303. [PMID: 36938595 DOI: 10.1039/d3fo00068k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Glycerol monolaurate (GML) is a food safe emulsifier and a kind of MCFA monoglyceride that has been proven to confer positive benefits in improving animal health, production and feed digestibility as a feed additive. This study aims to evaluate whether supplementation of a sow diet with GML could affect the intestinal barrier function and antioxidant status of newborn piglets and to explore its regulatory mechanism. A total of 80 multiparous sows were divided into two groups, which were fed a basal diet or a basal diet supplemented with 0.1% GML. The results indicated that maternal supplementation with GML significantly increased fat, lactose and protein in sow colostrum, as well as fat and protein in sow 14-day milk (P < 0.05). The results showed that GML significantly reduced the concentrations of IL-12 in the duodenum, TNF-α, IL-1β and IL-12 in the jejunum, and IL-1β in the ileum of piglets (P < 0.05). Higher concentrations of T-AOC, T-SOD, GSH and GSH-Px and lower MDA in the intestine were observed in the GML group than in the control group. Correspondingly, the villi height, crypt depth and the ratio of villi height to crypt depth (V/C) in the jejunum and the V/C in the ileum in the GML group were significantly higher than those in the control group (P < 0.05). Moreover, the GML group displayed significantly increased protein abundance of zonula occludens (ZO)-1, occludin, and claudin-1 in the small intestine (P < 0.05), mRNA expression of mucins (MUCs) in the small intestine (MUC-1, MUC-3 and MUC-4), and mRNA expression of porcine beta defensins (pBDs) in the duodenum (pBD1 and pBD2), jejunum (pBD1, pBD2 and pBD129) (P < 0.05), and ileum (pBD2, pBD3 and pBD114) (P < 0.05). Further research showed that GML significantly reduced the phosphorylation of the NF-κB/MAPK pathways in the small intestine (P < 0.05). In addition, the results of 16S rDNA sequencing showed that maternal supplementation with GML altered the colonic microbiotic structure of piglets, and reduced the relative abundance of Escherichia shigella. In summary, a sow diet supplemented with GML enhanced the offspring's intestinal oxidative stability and barrier function and attenuated the offspring's intestinal inflammatory response, possibly by suppressing the activation of the NF-κB/MAPK pathways.
Collapse
Affiliation(s)
- Hao Zhao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Min Tian
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Liang Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Tongbin Lin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Shuchang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xianhuai Yue
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xinghong Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
7
|
Liu Y, Jia X, Chang J, Jiang X, Che L, Lin Y, Zhuo Y, Feng B, Fang Z, Li J, Hua L, Wang J, Ren Z, Sun M, Wu D, Xu S. Effect of yeast culture supplementation in sows during late gestation and lactation on growth performance, antioxidant properties, and intestinal microorganisms of offspring weaned piglets. Front Microbiol 2023; 13:1105888. [PMID: 36713176 PMCID: PMC9880171 DOI: 10.3389/fmicb.2022.1105888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction The effects of maternal addition of yeast cultures on offspring gut development and intestinal microorganisms are not yet known, so the aim of this study was to investigate the effects of maternal addition of yeast cultures to the diet of sows during late gestation and lactation on growth performance, antioxidant properties and intestinal microorganisms of offspring weaned piglets. Methods 40 Landrace × Yorkshire sows (3-7 of parity) with similar backfat were randomly divided into two treatment groups: control diet (CON) and control diet +2.0 g/kg yeast culture (XPC), and the trial started on day 90 of gestation and ended on day 21 of lactation. Results The results showed that maternal addition of yeast culture significantly increased weaned piglet weight and mean daily gain (p < 0.05), with a tendency to increase litter weight gain (p = 0.083) and liver weight (p = 0.076) compared to the control group. The content of thymus malondialdehyde (MDA) was significantly higher (p < 0.05) and the content of colon total antioxidant capacity (T-AOC) was significantly lower (p < 0.05) in the offspring weaned piglets of the XPC group compared to the control group. The expression of thymus SOD1 and SOD2, spleen SOD1, jejunum SOD2, and colon GPX1, SOD1, and SOD2 were significantly downregulated in the XPC group of offspring weaned piglets compared with the control group (p < 0.05). The intestinal morphology and the content of short-chain fatty acids in colonic chyme did not differ between the two groups (p > 0.05). Compared with the control group, the XPC group significantly increased the relative abundance of colonic chyme Bacteroidetes (p < 0.05), tended to decrease the relative abundance of Lactobacillus (p = 0.078), and tended to increase the relative abundance of Alloprevotella (p = 0.055). The XPC group significantly upregulated Blautia and Fournierella (p < 0.05) and significantly downregulated Candidatus_Competibacter, Nitrospira, Dechloromonas, Haliangium, and Oscillospira (p < 0.05). Discussion In conclusion, maternal addition of yeast cultures improved the growth performance of offspring weaned piglets and changed the intestinal microbial community, but did not improve their antioxidant performance.
Collapse
Affiliation(s)
- Yalei Liu
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xinlin Jia
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Junlei Chang
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xuemei Jiang
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lianqiang Che
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Lin
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yong Zhuo
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bin Feng
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhengfeng Fang
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jian Li
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lun Hua
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jianping Wang
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhihua Ren
- Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Ya'an, China
| | - De Wu
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shengyu Xu
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China,*Correspondence: Shengyu Xu, ✉
| |
Collapse
|
8
|
Ryu S, Lee JJ, Mun D, Kim SR, Choe J, Song M, Kim Y. The Ingestion of Dietary Prebiotic Alternatives during Lactation Promotes Intestinal Health by Modulation of Gut Microbiota. J Microbiol Biotechnol 2022; 32:1454-1461. [PMID: 36310360 PMCID: PMC9720077 DOI: 10.4014/jmb.2208.08017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
Palm kernel expeller (PKE), a by-product of palm oil extraction, contains higher amounts of fiber than corn and soybean meal, but offers low energy density, protein value, and amino acid (AA) composition, limiting its use for swine. Recently however, it was reported that dietary fiber has a positive effect on the gut microbiota of the host, and therefore it is necessary to study the effect of PKE feeding on the intestinal microbiota of swine. In this study, we investigated the effects of supplementation with PKE in lactation diets on the gut microbiota composition of lactating sows and their litters. A total of 12 sows were randomly assigned to two dietary treatment groups in a completely randomized design. The treatments were a diet based on corn-soybean meal (CON) and CON supplemented with 20% of PKE. Sow and piglet fecal samples were collected before farrowing, on days 7 and 28 (weaning) after farrowing, and on days 7 and 28 (weaning) after farrowing, respectively, to verify gut microbiota composition by pyrosequencing analysis. The beta-diversity result showed a significant difference only in weaning-stage piglets, but dietary PKE altered the gut microbiota in sows by increasing the abundance of Lactobacillus compared with CON. In piglets, dietary PKE decreased the abundance of opportunistic pathogen Proteus and increased the abundance of potentially beneficial bacteria, such as Prevotellaceae and Prevotella. Our results can be helpful in developing feeding strategies and support the beneficial effects of dietary PKE to improve the gut health of animals.
Collapse
Affiliation(s)
- Sangdon Ryu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong Jae Lee
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Daye Mun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeehwan Choe
- Major of Beef Science, Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonju 54874, Republic of Korea
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea,Corresponding authors M.H. Song Phone: +82-42-821-7857 E-mail:
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea,
Y.H. Kim Phone: +82-2-880-4808 E-mail:
| |
Collapse
|
9
|
Lee JJ, Song M, Kyoung H, Park KI, Ryu S, Kim Y, Shin M. Effects of Dietary Carbohydrases on Fecal Microbiome Composition of Lactating Sows and Their Piglets. J Microbiol Biotechnol 2022; 32:776-782. [PMID: 35586929 PMCID: PMC9628907 DOI: 10.4014/jmb.2203.03026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/15/2022]
Abstract
Corn-soybean meal diets are commonly used in the pork industry as a primary source of energy and protein. However, such a diet generally contains non-starch polysaccharides (NSPs) which present a challenge in finding ways to improve their availability and digestibility. Dietary multi-carbohydrases (MCs) have been proposed as an efficient approach to utilize NSPs, and can result in improved growth performance and host intestinal fitness. In this study, we evaluated the effects of MC in lactation diets on gut microbiota composition of lactating sows and their litters. The experimental design contained two dietary treatments, a diet based on corn-soybean meal (CON), and CON supplemented with 0.01% multigrain carbohydrases (MCs). Sow and piglet fecal samples were collected on days 7 and 28 after farrowing. Based on the results from 16S rRNA gene amplicon sequencing, MC led to changes in species diversity and altered the microbial compositions in lactating sows and their piglets. Specifically, the MC treatment induced an increase in the proportions of Lactobacillus in piglets. Clostridium and Spirochaetaceae showed a significantly reduced proportion in MC-treated sows at day 28. Our results support the beneficial effects of dietary carbohydrases and their link with improved production due to better host fitness outcomes and gut microbiota composition.
Collapse
Affiliation(s)
- Jeong Jae Lee
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyunjin Kyoung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyeong Il Park
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sangdon Ryu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Minhye Shin
- Department of Microbiology, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|