1
|
Di Pasqua LG, Cagna M, Palladini G, Croce AC, Cadamuro M, Fabris L, Perlini S, Adorini L, Ferrigno A, Vairetti M. FXR agonists INT-787 and OCA increase RECK and inhibit liver steatosis and inflammation in diet-induced ob/ob mouse model of NASH. Liver Int 2024; 44:214-227. [PMID: 37904642 DOI: 10.1111/liv.15767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/12/2023] [Accepted: 10/11/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND AND AIMS We have previously shown in a model of hepatic ischaemia/reperfusion injury that the farnesoid X receptor (FXR) agonist obeticholic acid (OCA) restores reversion-inducing-cysteine-rich protein with Kazal motifs (RECK), an inverse modulator of metalloproteases (MMPs) and inhibitor of the sheddases ADAM10 and ADAM17 involved in inflammation and fibrogenesis. Here, the effects of FXR agonists OCA and INT-787 on hepatic levels of RECK, MMPs, ADAM10 and ADAM17 were compared in a diet-induced ob/ob mouse model of non-alcoholic steatohepatitis (NASH). METHODS Lep ob/ob NASH mice fed a high-fat diet (HFD) or control diet (CD) for 9 weeks (wks) were treated with OCA or INT-787 0.05% dosed via HFD admixture (30 mg/kg/day) or HFD for further 12 wks. Serum alanine transaminase (ALT) and inflammatory cytokines, liver RECK, MMP-2 and MMP-9 activity as well as ADAM10, ADAM17, collagen deposition (Sirius red), hepatic stellate cell activation (α-SMA) and pCK+ reactive biliary cells were quantified. RESULTS Only INT-787 significantly reduced serum ALT, IL-1β and TGF-β. A downregulation of RECK expression and protein levels observed in HFD groups (at 9 and 21 wks) was counteracted by both OCA and INT-787. HFD induced a significant increase in liver MMP-2 and MMP-9; OCA administration reduced both MMP-2 and MMP-9 while INT-787 markedly reduced MMP-2 expression. OCA and INT-787 reduced both ADAM10 and ADAM17 expression and number of pCK+ cells. INT-787 was superior to OCA in decreasing collagen deposition and α-SMA levels. CONCLUSION INT-787 is superior to OCA in controlling specific cell types and clinically relevant anti-inflammatory and antifibrotic molecular mechanisms in NASH.
Collapse
Affiliation(s)
- Laura G Di Pasqua
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Marta Cagna
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Giuseppina Palladini
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Internal Medicine Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Anna C Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR), Pavia, Italy
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Luca Fabris
- Department of Molecular Medicine (DMM), University of Padua, Padua, Italy
- Department of Internal Medicine, Liver Center and Section of Digestive Diseases, Yale University, New Haven, Connecticut, USA
| | - Stefano Perlini
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Emergency Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Andrea Ferrigno
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Mariapia Vairetti
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| |
Collapse
|
2
|
Saad MI, Jenkins BJ. The protease ADAM17 at the crossroads of disease: revisiting its significance in inflammation, cancer, and beyond. FEBS J 2024; 291:10-24. [PMID: 37540030 DOI: 10.1111/febs.16923] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/04/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
The protease A Disintegrin And Metalloproteinase 17 (ADAM17) plays a central role in the pathophysiology of several diseases. ADAM17 is involved in the cleavage and shedding of at least 80 known membrane-tethered proteins, which subsequently modulate several intracellular signaling pathways, and therefore alter cell behavior. Dysregulated expression and/or activation of ADAM17 has been linked to a wide range of autoimmune and inflammatory diseases, cancer, and cardiovascular disease. In this review, we provide an overview of the current state of knowledge from preclinical models and clinical data on the diverse pathophysiological roles of ADAM17, and discuss the mechanisms underlying ADAM17-mediated protein shedding and the potential therapeutic implications of targeting ADAM17 in these diseases.
Collapse
Affiliation(s)
- Mohamed I Saad
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Vic., Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Vic., Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Vic., Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Vic., Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, SA, Australia
| |
Collapse
|
3
|
Mondal T, Smith CI, Loffredo CA, Quartey R, Moses G, Howell CD, Korba B, Kwabi-Addo B, Nunlee-Bland G, R. Rucker L, Johnson J, Ghosh S. Transcriptomics of MASLD Pathobiology in African American Patients in the Washington DC Area †. Int J Mol Sci 2023; 24:16654. [PMID: 38068980 PMCID: PMC10706626 DOI: 10.3390/ijms242316654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Metabolic-dysfunction-associated steatotic liver disease (MASLD) is becoming the most common chronic liver disease worldwide and is of concern among African Americans (AA) in the United States. This pilot study evaluated the differential gene expressions and identified the signature genes in the disease pathways of AA individuals with MASLD. Blood samples were obtained from MASLD patients (n = 23) and non-MASLD controls (n = 24) along with their sociodemographic and medical details. Whole-blood transcriptomic analysis was carried out using Affymetrix Clarion-S Assay. A validation study was performed utilizing TaqMan Arrays coupled with Ingenuity Pathway Analysis (IPA) to identify the major disease pathways. Out of 21,448 genes in total, 535 genes (2.5%) were significantly (p < 0.05) and differentially expressed when we compared the cases and controls. A significant overlap in the predominant differentially expressed genes and pathways identified in previous studies using hepatic tissue was observed. Of note, TGFB1 and E2F1 genes were upregulated, and HMBS was downregulated significantly. Hepatic fibrosis signaling is the top canonical pathway, and its corresponding biofunction contributes to the development of hepatocellular carcinoma. The findings address the knowledge gaps regarding how signature genes and functional pathways can be detected in blood samples ('liquid biopsy') in AA MASLD patients, demonstrating the potential of the blood samples as an alternative non-invasive source of material for future studies.
Collapse
Affiliation(s)
- Tanmoy Mondal
- Department of Biology, Howard University, Washington, DC 20059, USA; (T.M.); (G.M.); (J.J.)
| | - Coleman I. Smith
- MedStar-Georgetown Transplantation Institute, Georgetown University School of Medicine, Washington, DC 20007, USA;
| | | | - Ruth Quartey
- Department of Internal Medicine, College of Medicine, Howard University, Washington, DC 20007, USA; (R.Q.); (C.D.H.)
| | - Gemeyel Moses
- Department of Biology, Howard University, Washington, DC 20059, USA; (T.M.); (G.M.); (J.J.)
| | - Charles D. Howell
- Department of Internal Medicine, College of Medicine, Howard University, Washington, DC 20007, USA; (R.Q.); (C.D.H.)
| | - Brent Korba
- Department of Microbiology & Immunology, Georgetown University, Washington, DC 20007, USA;
| | - Bernard Kwabi-Addo
- Department of Biochemistry, College of Medicine, Howard University, Washington, DC 20059, USA;
| | - Gail Nunlee-Bland
- Departments of Pediatrics and Child Health, College of Medicine, Howard University, Washington, DC 20059, USA;
| | - Leanna R. Rucker
- Department of Internal Medicine, MedStar Georgetown University Hospital, Washington, DC 20007, USA;
| | - Jheannelle Johnson
- Department of Biology, Howard University, Washington, DC 20059, USA; (T.M.); (G.M.); (J.J.)
| | - Somiranjan Ghosh
- Department of Biology, Howard University, Washington, DC 20059, USA; (T.M.); (G.M.); (J.J.)
- Departments of Pediatrics and Child Health, College of Medicine, Howard University, Washington, DC 20059, USA;
| |
Collapse
|
4
|
Hamad RS, Al-Kuraishy HM, Alexiou A, Papadakis M, Ahmed EA, Saad HM, Batiha GES. SARS-CoV-2 infection and dysregulation of nuclear factor erythroid-2-related factor 2 (Nrf2) pathway. Cell Stress Chaperones 2023; 28:657-673. [PMID: 37796433 PMCID: PMC10746631 DOI: 10.1007/s12192-023-01379-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/19/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a recent pandemic caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) leading to pulmonary and extra-pulmonary manifestations due to the development of oxidative stress (OS) and hyperinflammation. The underlying cause for OS and hyperinflammation in COVID-19 may be related to the inhibition of nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulator of antioxidative responses and cellular homeostasis. The Nrf2 pathway inhibits the expression of pro-inflammatory cytokines and the development of cytokine storm and OS in COVID-19. Nrf2 activators can attenuate endothelial dysfunction (ED), renin-angiotensin system (RAS) dysregulation, immune thrombosis, and coagulopathy. Hence, this review aimed to reveal the potential role of the Nrf2 pathway and its activators in the management of COVID-19. As well, we tried to revise the mechanistic role of the Nrf2 pathway in COVID-19.
Collapse
Affiliation(s)
- Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, 31982, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, 12411, Egypt
| | - Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Eman A Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| |
Collapse
|
5
|
Nguyen HH, Swain MG. Avenues within the gut-liver-brain axis linking chronic liver disease and symptoms. Front Neurosci 2023; 17:1171253. [PMID: 37521690 PMCID: PMC10372440 DOI: 10.3389/fnins.2023.1171253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/09/2023] [Indexed: 08/01/2023] Open
Abstract
Symptoms of fatigue, social withdrawal and mood disturbances are commonly encountered in patients with chronic liver disease and have a detrimental effect on patient quality of life. Treatment options for these symptoms are limited and a current area of unmet medical need. In this review, we will evaluate the potential mechanistic avenues within the gut-liver-brain axis that may be altered in the setting of chronic liver disease that drive the development of these symptoms. Both clinical and pre-clinical studies will be highlighted as we discuss how perturbations in host immune response, microbiome, neural responses, and metabolites composition can affect the central nervous system.
Collapse
Affiliation(s)
- Henry H. Nguyen
- University of Calgary Liver Unit, Departments of Medicine and Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mark G. Swain
- University of Calgary Liver Unit, Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
Jiang D, Xu S, Zhang C, Hu C, Li L, Zhang M, Wu H, Yang D, Liu Y. Association between the expression levels of ADAMTS16 and BMP2 and tumor budding in hepatocellular carcinoma. Oncol Lett 2023; 25:256. [PMID: 37205917 PMCID: PMC10189853 DOI: 10.3892/ol.2023.13842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/27/2023] [Indexed: 05/21/2023] Open
Abstract
Tumor budding (TB) has become a crucial factor for predicting the malignancy grade and prognostic outcome for multiple types of solid cancer. Studies have investigated the prognostic value of TB in hepatocellular carcinoma (HCC). However, its molecular mechanism in HCC remains unclear. To the best of our knowledge, the present study was the first to compare the expression of differentially expressed genes (DEGs) between TB-positive (TB-pos) and TB-negative HCC tissues. In the present study, total RNA was extracted from 40 HCC tissue specimens and then sequenced. According to Gene Ontology (GO) functional annotation, upregulated DEGs were markedly associated with embryonic kidney development-related GO terms, which suggested that the TB process may at least partly mimic the process of embryonic kidney development. Subsequently, two genes, a disintegrin and metalloproteinase domain with thrombospondin motifs 16 (ADAMTS16) and bone morphogenetic protein 2 (BMP2), were screened and verified through immunohistochemical analysis of HCC tissue microarrays. According to the immunohistochemical results, ADAMTS16 and BMP2 were upregulated in TB-pos HCC samples, and BMP2 expression was increased in budding cells compared with the tumor center. Additionally, through cell culture experiments, it was demonstrated that ADAMTS16 and BMP2 may promote TB of liver cancer, thus promoting the malignant progression of liver cancer. Further analysis revealed that ADAMTS16 expression was associated with necrosis and cholestasis, and BMP2 expression was associated with the Barcelona Clinic Liver Cancer stage and the vessels encapsulating tumor clusters. Overall, the findings of the present study provided insights into the possible mechanisms of TB in HCC and revealed potential anti-HCC therapeutic targets.
Collapse
Affiliation(s)
- Di Jiang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shaoshao Xu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chuanpeng Zhang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Chuanbing Hu
- Department of Pediatric Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Lei Li
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Mingming Zhang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Haiyan Wu
- Department of Medical Equipment, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Dongchang Yang
- Department of Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
- Correspondence to: Dr Dongchang Yang, Department of Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong 272029, P.R. China, E-mail:
| | - Yanrong Liu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
- Professor Yanrong Liu, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, P.R. China, E-mail:
| |
Collapse
|