1
|
Arneth B. Regulatory T Cells in Multiple Sclerosis Diagnostics-What Do We Know So Far? J Pers Med 2023; 14:29. [PMID: 38248730 PMCID: PMC10821144 DOI: 10.3390/jpm14010029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune disorder that affects the central nervous system (CNS) through inflammation. MS symptoms become acute if the disease progresses to the relapsing phase. AIM This review aimed to evaluate the role played by regulatory T cells (Tregs) in the pathogenesis of MS. METHODS This review used scholarly journal articles obtained from PubMed, PsycINFO, and CINAHL with different search parameters such as 'regulatory T cells', 'multiple sclerosis', and 'current knowledge'. The process of searching for articles was limited to those that had publication dates falling between 2010 and 2020. RESULTS Tregs play a role in the pathogenesis of MS. This conclusion is supported by animal disease models and environmental factors that can underlie Treg alterations in MS. Despite the knowledge of the role played by Tregs in MS pathogenesis, the specific subsets of Tregs involved in MS development remain incompletely understood. DISCUSSION This review provides an essential link between Tregs and MS activity. Targeting Tregs could be an efficient way to establish new treatment methods for MS management. CONCLUSION MS is a complex condition affecting many people worldwide. Research has shown that Tregs can influence MS development and progression. More investigations are needed to understand how Tregs affect the pathogenesis of MS.
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Philipps University Marburg, 35043 Marburg, Germany;
- Institute of Laboratory Medicine and Pathobiochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
- Hospital of the Universities of Giessen and Marburg, 35392 Giessen, Germany
| |
Collapse
|
2
|
Passeron T, King B, Seneschal J, Steinhoff M, Jabbari A, Ohyama M, Tobin DJ, Randhawa S, Winkler A, Telliez JB, Martin D, Lejeune A. Inhibition of T-cell activity in alopecia areata: recent developments and new directions. Front Immunol 2023; 14:1243556. [PMID: 38022501 PMCID: PMC10657858 DOI: 10.3389/fimmu.2023.1243556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Alopecia areata (AA) is an autoimmune disease that has a complex underlying immunopathogenesis characterized by nonscarring hair loss ranging from small bald patches to complete loss of scalp, face, and/or body hair. Although the etiopathogenesis of AA has not yet been fully characterized, immune privilege collapse at the hair follicle (HF) followed by T-cell receptor recognition of exposed HF autoantigens by autoreactive cytotoxic CD8+ T cells is now understood to play a central role. Few treatment options are available, with the Janus kinase (JAK) 1/2 inhibitor baricitinib (2022) and the selective JAK3/tyrosine kinase expressed in hepatocellular carcinoma (TEC) inhibitor ritlecitinib (2023) being the only US Food and Drug Administration-approved systemic medications thus far for severe AA. Several other treatments are used off-label with limited efficacy and/or suboptimal safety and tolerability. With an increased understanding of the T-cell-mediated autoimmune and inflammatory pathogenesis of AA, additional therapeutic pathways beyond JAK inhibition are currently under investigation for the development of AA therapies. This narrative review presents a detailed overview about the role of T cells and T-cell-signaling pathways in the pathogenesis of AA, with a focus on those pathways targeted by drugs in clinical development for the treatment of AA. A detailed summary of new drugs targeting these pathways with expert commentary on future directions for AA drug development and the importance of targeting multiple T-cell-signaling pathways is also provided in this review.
Collapse
Affiliation(s)
- Thierry Passeron
- University Côte d’Azur, Centre Hospitalier Universitaire Nice, Department of Dermatology, Nice, France
- University Côte d’Azur, INSERM, U1065, C3M, Nice, France
| | - Brett King
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, United States
| | - Julien Seneschal
- Department of Dermatology and Paediatric Dermatology, National Reference Centre for Rare Skin Diseases, Saint-André Hospital, University of Bordeaux, Bordeaux, France
- Bordeaux University, Centre national de la recherche scientifique (CNRS), ImmunoConcept, UMR5164, Bordeaux, France
| | - Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Weill Cornell Medicine-Qatar, Doha, Qatar
- College of Medicine, Qatar University, Doha, Qatar
- Department of Dermatology, Weill Cornell Medicine, New York, NY, United States
- College of Health and Life Sciences, Hamad Bin Khalifa University-Qatar, Doha, Qatar
| | - Ali Jabbari
- Department of Dermatology, University of Iowa, Iowa City, IA, United States
- Iowa City VA Medical Center, Iowa City, IA, United States
| | - Manabu Ohyama
- Department of Dermatology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Desmond J. Tobin
- Charles Institute of Dermatology, UCD School of Medicine, University College Dublin, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
3
|
Lanz TV, Robinson WH, Ho PP, Steinman L. Roadmap for understanding mechanisms on how Epstein-Barr virus triggers multiple sclerosis and for translating these discoveries in clinical trials. Clin Transl Immunology 2023; 12:e1438. [PMID: 36815946 PMCID: PMC9933111 DOI: 10.1002/cti2.1438] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Here, we offer a roadmap for what might be studied next in understanding how EBV triggers MS. We focus on two areas: The first area concerns the molecular mechanisms underlying how clonal antibody in the CSF emanates in widespread molecular mimicry to key antigens in the nervous system including GlialCAM, a protein associated with chloride channels. A second and equally high priority in the roadmap concerns various therapeutic approaches that are related to blocking the mechanisms whereby EBV triggers MS. Therapies deserving of attention include clinical trials with antivirals and the development of 'inverse' vaccines based on nucleic acid technologies to control or to eradicate the consequences of EBV infection. High enthusiasm is given to continuation of ongoing clinical trials of cellular adoptive therapy to attack EBV-infected cells. Clinical trials of vaccines to EBV are another area deserving attention. These suggested topics involving research on mechanism, and the design, implementation and performance of well-designed trials are not intended to be an exhaustive list. We have splendid tools available to our community of medical scientists to tackle how EBV triggers MS and then to perhaps change the world with new therapies to potentially eradicate MS, as we have done with nearly complete success for poliomyelitis.
Collapse
|
4
|
Gupta N, Shirani A, Arcot Jayagopal L, Piccione E, Hartman E, Zabad RK. Anti-Neurofascin Antibodies Associated with White Matter Diseases of the Central Nervous System: A Red Flag or a Red Herring? Brain Sci 2022; 12:brainsci12091124. [PMID: 36138860 PMCID: PMC9497231 DOI: 10.3390/brainsci12091124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022] Open
Abstract
Autoantibodies against nodal and paranodal proteins, specifically anti-neurofascin antibodies (ANFAs), have been recently described in central and peripheral nervous system demyelinating disorders. We retrospectively reviewed the charts of six individuals evaluated at our Multiple Sclerosis Program who tested positive for serum ANFAs on Western blot. We describe these patients’ clinical and diagnostic findings and attempt to identify features that might guide clinicians in checking for ANFAs. In our series, the women-to-men ratio was 2:1. At presentation, the median age was 60 years (range 30–70). The clinical presentation was pleiotropic and included incomplete transverse myelitis (n = 3), progressive myelopathy (n = 1), recurrent symmetric polyneuropathy (n = 1), and nonspecific neurological symptoms (n = 1). Atypical features prompting further workup included coexisting upper and lower motor neuron features, older age at presentation with active disease, atypical spinal cord MRI features, and unusual cerebrospinal fluid findings. The serum ANFAs panel was positive for the NF-155 isoform in five patients (IgM n = 2; IgG n = 2; both n = 1) and the NF-140 isoform in two (IgG n = 2). Larger studies are needed to assess the relevance of ANFAs in demyelinating nervous system diseases, their impact on long-term clinical outcomes, and associated therapeutic implications.
Collapse
|