1
|
O’Donovan AJ, Gorelik S, Nally LM. Shifting the paradigm of type 1 diabetes: a narrative review of disease modifying therapies. Front Endocrinol (Lausanne) 2024; 15:1477101. [PMID: 39568817 PMCID: PMC11576206 DOI: 10.3389/fendo.2024.1477101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/26/2024] [Indexed: 11/22/2024] Open
Abstract
A new diagnosis of type 1 diabetes (T1D) may be accompanied by numerous lifelong financial, emotional, and physical challenges, thus advancements in therapies that can delay the onset of clinical disease are crucial. T1D is an autoimmune condition involving destruction of pancreatic beta cells leading to insulin deficiency, hyperglycemia, and long-term insulin dependence. The pathogenesis of T1D is classified into stages, with the first signal being the detection of autoantibodies without any glycemic changes. In the second stage, dysglycemia develops without symptoms, and in stage 3, symptoms of hyperglycemia become apparent, and at this time a clinical diagnosis of T1D is made. As a greater understanding of these stages of T1D have evolved, research efforts have been devoted to delaying the onset of clinical disease. To date, only one medication, teplizumab, has been approved by the Food and Drug Administration (FDA) for the treatment of stage 2 T1D. This narrative review present published trials and ongoing research on disease modifying therapies (DMT) in T1D, the mechanisms of action for each therapy, and the stages of T1D that these interventions are being studied.
Collapse
Affiliation(s)
- Alexander J. O’Donovan
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT, United States
| | - Seth Gorelik
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT, United States
- Bowdoin College, Brunswick, ME, United States
| | - Laura M. Nally
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT, United States
| |
Collapse
|
2
|
Pinheiro MM, Pinheiro FMM, Garo ML, Pastore D, Pacifici F, Ricordi C, Della-Morte D, Infante M. Prevention and treatment of type 1 diabetes: in search of the ideal combination therapy targeting multiple immunometabolic pathways. METABOLISM AND TARGET ORGAN DAMAGE 2024; 4. [DOI: 10.20517/mtod.2024.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Type 1 diabetes (T1D) represents an autoimmune disease caused by the gradual immune-mediated destruction of the insulin-producing beta cells within the pancreatic islets of Langerhans, resulting in the lifelong need for exogenous insulin therapy. According to recent estimates, T1D currently affects about 8.4 million individuals worldwide. Since a definitive biological cure for this disease is not available yet, there is a great need for novel therapeutic strategies aimed at safely and effectively altering the natural history of the disease during its sequential stages. Ideal therapeutic goals in T1D include the prevention of autoimmune beta-cell destruction, the preservation of residual beta-cell mass and endogenous insulin secretion, the replacement and/or regeneration of beta cells, as well as automated insulin delivery through advanced closed-loop artificial pancreas systems. With this regard, an important research area focused on the identification of a definitive biological cure for T1D is represented by the investigation of immunotherapeutic and beta-cell-protective agents used as disease-modifying therapies to forestall or eliminate insulin dependence. In this commentary, we discuss the reasons why the use of combination therapies targeting the multiple immunometabolic dysfunctions associated with T1D (other than beta-cell autoimmunity) is likely to be more effective in preserving beta cell function in individuals at different stages of T1D, as compared to the use of single therapeutic agents.
Collapse
|
3
|
Hals IK, Balasuriya C, Casas R, Ludvigsson J, Björklund A, Grill V. A 1-year pilot study of intralymphatic injections of GAD-alum in individuals with latent autoimmune diabetes in adults (LADA) with signs of high immunity: No safety concerns and resemblance to juvenile type 1 diabetes. Diabetes Obes Metab 2023; 25:3400-3409. [PMID: 37580967 DOI: 10.1111/dom.15239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/16/2023]
Abstract
AIMS To test, for the first time in latent autoimmune diabetes in adults (LADA), the effects of autoantigen-specific immunotherapy by intralymphatic administration of aluminium-formulated recombinant human glutamic acid decarboxylase 65 (GAD-alum); specifically, to test if this treatment is safe, to test whether it induces a strong immunological response akin to a similar protocol in type 1 diabetes and to look for associations with preserved beta-cell function. MATERIALS AND METHODS Three GAD-alum injections, 4 μg each, were administered 1 month apart into an inguinal lymph node in 14 people with newly diagnosed LADA (age 30-62 years) presenting with high levels of antibodies against glutamic acid decarboxylase (GADA). Adverse effects, immunological variables and beta-cell function were monitored, with detailed measurements at 5 and 12 months from baseline. RESULTS Clinical adverse effects were minor and transient and measured laboratory variables were unaffected. All participants completed the study. Treatment raised levels of GADA, elicited strong effects on reactivity of peripheral blood mononuclear cells to GAD and raised cytokine/chemokine levels. Beta-cell function appeared stable preferentially in the seven participants carrying human leukocyte antigen (HLA) haplotypes DR3DQ2, as assessed by C-peptide glucagon tests (P < 0.05 vs. seven non-carriers). CONCLUSION Intralymphatic treatment with GAD-alum in LADA is without clinical or other safety concerns over a 12-month period. As in a similar protocol used in type 1 diabetes, treatment exerts a strong immunological impact and is compatible with protection of beta-cell function preferentially in HLA-DR3DQ2 LADA patients. These findings pave the way for a randomized controlled trial in this important subgroup of LADA patients.
Collapse
Affiliation(s)
- Ingrid K Hals
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Endocrinology, Clinic of Medicine, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Research, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Chandima Balasuriya
- Department of Endocrinology, Clinic of Medicine, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Rosaura Casas
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Johnny Ludvigsson
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
- Crown Princess Victoria Children's Hospital, Linköping, Sweden
| | - Anneli Björklund
- Department of Molecular medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Diabetes, Academic Specialist Center, Stockholm, Sweden
| | - Valdemar Grill
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
4
|
Heath KE, Feduska JM, Taylor JP, Houp JA, Botta D, Lund FE, Mick GJ, McGwin G, McCormick KL, Tse HM. GABA and Combined GABA with GAD65-Alum Treatment Alters Th1 Cytokine Responses of PBMCs from Children with Recent-Onset Type 1 Diabetes. Biomedicines 2023; 11:1948. [PMID: 37509587 PMCID: PMC10377053 DOI: 10.3390/biomedicines11071948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease culminating in the destruction of insulin-producing pancreatic cells. There is a need for the development of novel antigen-specific strategies to delay cell destruction, including combinatorial strategies that do not elicit systemic immunosuppression. Gamma-aminobutyric acid (GABA) is expressed by immune cells, β-cells, and gut bacteria and is immunomodulatory. Glutamic-acid decarboxylase 65 (GAD65), which catalyzes GABA from glutamate, is a T1D autoantigen. To test the efficacy of combinatorial GABA treatment with or without GAD65-immunization to dampen autoimmune responses, we enrolled recent-onset children with T1D in a one-year clinical trial (ClinicalTrials.gov NCT02002130) and examined T cell responses. We isolated peripheral blood mononuclear cells and evaluated cytokine responses following polyclonal activation and GAD65 rechallenge. Both GABA alone and GABA/GAD65-alum treatment inhibited Th1 cytokine responses over the 12-month study with both polyclonal and GAD65 restimulation. We also investigated whether patients with HLA-DR3-DQ2 and HLA-DR4-DQ8, the two highest-risk human leukocyte antigen (HLA) haplotypes in T1D, exhibited differences in response to GABA alone and GABA/GAD65-alum. HLA-DR4-DQ8 patients possessed a Th1-skewed response compared to HLA-DR3-DQ2 patients. We show that GABA and GABA/GAD65-alum present an attractive immunomodulatory treatment for children with T1D and that HLA haplotypes should be considered.
Collapse
Affiliation(s)
- Katie E. Heath
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA (J.M.F.); (J.P.T.); (D.B.); (F.E.L.)
| | - Joseph M. Feduska
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA (J.M.F.); (J.P.T.); (D.B.); (F.E.L.)
| | - Jared P. Taylor
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA (J.M.F.); (J.P.T.); (D.B.); (F.E.L.)
| | - Julie A. Houp
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Davide Botta
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA (J.M.F.); (J.P.T.); (D.B.); (F.E.L.)
| | - Frances E. Lund
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA (J.M.F.); (J.P.T.); (D.B.); (F.E.L.)
| | - Gail J. Mick
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (G.J.M.); (K.L.M.)
| | - Gerald McGwin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Kenneth L. McCormick
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (G.J.M.); (K.L.M.)
| | - Hubert M. Tse
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Mail Stop 3029, 1012 Wahl Hall West, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
5
|
Arif S, Domingo-Vila C, Pollock E, Christakou E, Williams E, Tree TIM. Monitoring islet specific immune responses in type 1 diabetes clinical immunotherapy trials. Front Immunol 2023; 14:1183909. [PMID: 37283770 PMCID: PMC10240960 DOI: 10.3389/fimmu.2023.1183909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/02/2023] [Indexed: 06/08/2023] Open
Abstract
The number of immunotherapeutic clinical trials in type 1 diabetes currently being conducted is expanding, and thus there is a need for robust immune-monitoring assays which are capable of detecting and characterizing islet specific immune responses in peripheral blood. Islet- specific T cells can serve as biomarkers and as such can guide drug selection, dosing regimens and immunological efficacy. Furthermore, these biomarkers can be utilized in patient stratification which can then benchmark suitability for participation in future clinical trials. This review focusses on the commonly used immune-monitoring techniques including multimer and antigen induced marker assays and the potential to combine these with single cell transcriptional profiling which may provide a greater understanding of the mechanisms underlying immuno-intervention. Although challenges remain around some key areas such as the need for harmonizing assays, technological advances mean that multiparametric information derived from a single sample can be used in coordinated efforts to harmonize biomarker discovery and validation. Moreover, the technologies discussed here have the potential to provide a unique insight on the effect of therapies on key players in the pathogenesis of T1D that cannot be obtained using antigen agnostic approaches.
Collapse
|
6
|
Puente-Marin S, Dietrich F, Achenbach P, Barcenilla H, Ludvigsson J, Casas R. Intralymphatic glutamic acid decarboxylase administration in type 1 diabetes patients induced a distinctive early immune response in patients with DR3DQ2 haplotype. Front Immunol 2023; 14:1112570. [PMID: 36817467 PMCID: PMC9933867 DOI: 10.3389/fimmu.2023.1112570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
GAD-alum given into lymph nodes to Type 1 diabetes (T1D) patients participating in a multicenter, randomized, placebo-controlled double-blind study seemed to have a positive effect for patients with DR3DQ2 haplotype, who showed better preservation of C-peptide than the placebo group. Here we compared the immunomodulatory effect of GAD-alum administered into lymph nodes of patients with T1D versus placebo with focus on patients with DR3DQ2 haplotype. Methods GAD autoantibodies, GADA subclasses, GAD65-induced cytokine secretion (Luminex panel) and proliferation of peripheral mononuclear cells were analyzed in T1D patients (n=109) who received either three intra-lymphatic injections (one month apart) with 4 µg GAD-alum and oral vitamin D supplementation (2000 IE daily for 120 days), or placebo. Results Higher GADA, GADA subclasses, GAD65-induced proliferation and cytokine secretion was observed in actively treated patients after the second injection of GAD-alum compared to the placebo group. Following the second injection of GAD-alum, actively treated subjects with DR3DQ2 haplotype had higher GAD65-induced secretion of several cytokine (IL4, IL5, IL7, IL10, IL13, IFNγ, GM-CSF and MIP1β) and proliferation compared to treated individuals without DR3DQ2. Stratification of samples from GAD-alum treated patients according to C-peptide preservation at 15 months revealed that "good responder" individuals with better preservation of C-peptide secretion, independently of the HLA haplotype, had increased GAD65-induced proliferation and IL13 secretion at 3 months, and a 2,5-fold increase of IL5 and IL10 as compared to "poor responders". The second dose of GAD-alum also induced a more pronounced cytokine secretion in "good responders" with DR3DQ2, compared to few "good responders" without DR3DQ2 haplotype. Conclusion Patients with DR3DQ2 haplotype had a distinct early cellular immune response to GAD-alum injections into the lymph node, and predominant GAD65-induced IL13 secretion and proliferation that seems to be associated with a better clinical outcome. If confirmed in the ongoing larger randomized double-blind placebo-controlled clinical trial (DIAGNODE-3), including only patients carrying DR3DQ2 haplotype, these results might be used as early surrogate markers for clinical efficacy.
Collapse
Affiliation(s)
- Sara Puente-Marin
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Fabrícia Dietrich
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany,Technical University Munich, School of Medicine, Forschergruppe Diabetes at Klinikum rechts der Isar, Munich, Germany
| | - Hugo Barcenilla
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Johnny Ludvigsson
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden,Crown Princess Victoria Children´s Hospital, Linköping University, Linköping, Sweden
| | - Rosaura Casas
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden,*Correspondence: Rosaura Casas,
| |
Collapse
|
7
|
Persia FA, Abba R, Pascual LI, Hapon MB, Mackern-Oberti JP, Gamarra-Luques C. Prosopis strombulifera aqueous extract reduces T cell response and ameliorates type I diabetes in NOD mice. J Tradit Complement Med 2022; 13:20-29. [PMID: 36685075 PMCID: PMC9845655 DOI: 10.1016/j.jtcme.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Background New products with tolerogenic properties on T cell response are necessary to improve current efficacy, cost and side effects of immunosuppressants. Prosopis strombulifera aqueous extract (PsAE) have reported cytotoxic, antitumoral, antiatherogenic and antileishmanial activities, containing phytochemicals with immune-related activities. Despite these, there are no previous studies with respect to PsAE suppressive properties over T cell proliferation and their function. Goal Because of previous antecedents, this study aims to evaluate the effect of PsAE on T cell activation, proliferation, cytokine production, and to investigate its effect over an in vivo model of type 1 diabetes (T1D). Experimental procedure Splenocytes and sorted CD4+/CD8+ from wild type C57BL/6 mice were cultured to determine activation, IFN-γ release and T-cell proliferation after polyclonal stimulation. NOD (non-obese diabetic) mice were used to study the effects of orally administered extract on glycemia, insulitis stages and perforin-1 (PRF-1)/granzyme-B (GRZ-B) expression. Results In primary cultures, the plant extract impairs T cell activation, decreases IFN-γ release, and reduces proliferation after different polyclonal stimuli. In vivo, PsAE improves NOD mice glycemic levels and T1D progression by diminution of pancreas insulitis and reduction of PRF-1 and GRZ-B mRNA expression. To our knowledge, this is the first report characterizing the therapeutic properties of PsAE on T cell activation. Conclusion The current work provides evidence about in vitro and in vivo immunosuppressive effects of PsAE and promotes this plant extract as a complementary and alternative treatment in autoimmune T-cell mediated diseases as T1D.
Collapse
Affiliation(s)
- Fabio Andrés Persia
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Universidad Nacional de Cuyo, CCT Mendoza CONICET, Argentina,Facultad de Ciencias Médicas, Universidad de Mendoza, Argentina
| | - Romina Abba
- Instituto de Histología y Embriología de Mendoza, CCT Mendoza CONICET, Argentina
| | - Lourdes Inés Pascual
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Universidad Nacional de Cuyo, CCT Mendoza CONICET, Argentina
| | - María Belén Hapon
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Universidad Nacional de Cuyo, CCT Mendoza CONICET, Argentina,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Juan Pablo Mackern-Oberti
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Universidad Nacional de Cuyo, CCT Mendoza CONICET, Argentina,Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Carlos Gamarra-Luques
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Universidad Nacional de Cuyo, CCT Mendoza CONICET, Argentina,Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina,Corresponding author. Instituto de Medicina y Biología Experimental de Cuyo, Universidad Nacional de Cuyo, CCT Mendoza CONICET, Av. Ruiz Leal s/n. Casilla de Correo 0855, CP5500, Mendoza, Provincia de Mendoza, Argentina.
| |
Collapse
|
8
|
Buschard K. The etiology and pathogenesis of type 1 diabetes - A personal, non-systematic review of possible causes, and interventions. Front Endocrinol (Lausanne) 2022; 13:876470. [PMID: 36093076 PMCID: PMC9452747 DOI: 10.3389/fendo.2022.876470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
In this review after a lifelong research career, my personal opinion on the development of type 1 diabetes (T1D) from its very start to clinical manifestation will be described. T1D is a disease of an increased intestinal permeability and a reduced pancreas volume. I am convinced that virus might be the initiator and that this virus could persist on strategically significant locations. Furthermore, intake of gluten is important both in foetal life and at later ages. Disturbances in sphingolipid metabolism may also be of crucial importance. During certain stages of T1D, T cells take over resulting in the ultimate destruction of beta cells, which manifests T1D as an autoimmune disease. Several preventive and early treatment strategies are mentioned. All together this review has more new theories than usually, and it might also be more speculative than ordinarily. But without new ideas and theories advancement is difficult, even though everything might not hold true during the continuous discovery of the etiology and pathogenesis of T1D.
Collapse
|
9
|
Ding JT, Yang KP, Lin KL, Cao YK, Zou F. Mechanisms and therapeutic strategies of immune checkpoint molecules and regulators in type 1 diabetes. Front Endocrinol (Lausanne) 2022; 13:1090842. [PMID: 36704045 PMCID: PMC9871554 DOI: 10.3389/fendo.2022.1090842] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Considered a significant risk to health and survival, type 1 diabetes (T1D) is a heterogeneous autoimmune disease characterized by hyperglycemia caused by an absolute deficiency of insulin, which is mainly due to the immune-mediated destruction of pancreatic beta cells. SCOPE OF REVIEW In recent years, the role of immune checkpoints in the treatment of cancer has been increasingly recognized, but unfortunately, little attention has been paid to the significant role they play both in the development of secondary diabetes with immune checkpoint inhibitors and the treatment of T1D, such as cytotoxic T-lymphocyte antigen 4(CTLA-4), programmed cell death protein-1(PD-1), lymphocyte activation gene-3(LAG-3), programmed death ligand-1(PD-L1), and T-cell immunoglobulin mucin protein-3(TIM-3). Here, this review summarizes recent research on the role and mechanisms of diverse immune checkpoint molecules in mediating the development of T1D and their potential and theoretical basis for the prevention and treatment of diabetes. MAJOR CONCLUSIONS Immune checkpoint inhibitors related diabetes, similar to T1D, are severe endocrine toxicity induced with immune checkpoint inhibitors. Interestingly, numerous treatment measures show excellent efficacy for T1D via regulating diverse immune checkpoint molecules, including co-inhibitory and co-stimulatory molecules. Thus, targeting immune checkpoint molecules may exhibit potential for T1D treatment and improve clinical outcomes.
Collapse
Affiliation(s)
- Jia-Tong Ding
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Kang-Ping Yang
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Kong-Lan Lin
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Yu-Ke Cao
- School of Ophthalmology & Optometry, Nanchang University, Nanchang, China
| | - Fang Zou
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Fang Zou,
| |
Collapse
|