1
|
Muradashvili T, Yu M, Browning SL, Bar N, Gorshein E, Parker TL, Neparidze N. Prevalence of metabolic comorbidities and viral co-infections in monoclonal gammopathy: a retrospective analysis. Leukemia 2024; 38:2281-2283. [PMID: 39164408 DOI: 10.1038/s41375-024-02380-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Affiliation(s)
| | - Mansen Yu
- Yale School of Medicine, New Haven, CT, USA
| | - Sabrina L Browning
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Noffar Bar
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Elan Gorshein
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Terri L Parker
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Natalia Neparidze
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
2
|
Rodríguez-García A, Arroyo A, García-Vicente R, Morales ML, Gómez-Gordo R, Justo P, Cuéllar C, Sánchez-Pina J, López N, Alonso R, Puig N, Mateos MV, Ayala R, Gómez-Garre D, Martínez-López J, Linares M. Short-Chain Fatty Acid Production by Gut Microbiota Predicts Treatment Response in Multiple Myeloma. Clin Cancer Res 2024; 30:904-917. [PMID: 38109212 PMCID: PMC10870002 DOI: 10.1158/1078-0432.ccr-23-0195] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/07/2023] [Accepted: 12/14/2023] [Indexed: 12/20/2023]
Abstract
PURPOSE The gut microbiota plays important roles in health and disease. We questioned whether the gut microbiota and related metabolites are altered in monoclonal gammopathies and evaluated their potential role in multiple myeloma and its response to treatment. EXPERIMENTAL DESIGN We used 16S rRNA sequencing to characterize and compare the gut microbiota of patients with monoclonal gammopathy of undetermined significance (n = 11), smoldering multiple myeloma (n = 9), newly diagnosed multiple myeloma (n = 11), relapsed/refractory multiple myeloma (n = 6), or with complete remission (n = 9). Short-chain fatty acids (SCFA) were quantified in serum and tested in cell lines. Relevant metabolites were validated in a second cohort of 62 patients. RESULTS Significant differences in alpha- and beta diversity were present across the groups and both were lower in patients with relapse/refractory disease and higher in patients with complete remission after treatment. Differences were found in the abundance of several microbiota taxa across disease progression and in response to treatment. Bacteria involved in SCFA production, including Prevotella, Blautia, Weissella, and Agathobacter, were more represented in the premalignant or complete remission samples, and patients with higher levels of Agathobacter showed better overall survival. Serum levels of butyrate and propionate decreased across disease progression and butyrate was positively associated with a better response. Both metabolites had antiproliferative effects in multiple myeloma cell lines. CONCLUSIONS We demonstrate that SCFAs metabolites and the gut microbiota associated with their production might have beneficial effects in disease evolution and response to treatment, underscoring its therapeutic potential and value as a predictor.
Collapse
Affiliation(s)
- Alba Rodríguez-García
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
| | - Andrés Arroyo
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
| | - Roberto García-Vicente
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
| | - María Luz Morales
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
| | - Rubén Gómez-Gordo
- Microbiota and Vascular Biology Laboratory, Hospital Clínico San Carlos-Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Pablo Justo
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
| | - Clara Cuéllar
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
| | - José Sánchez-Pina
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
| | - Nieves López
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
| | - Rafael Alonso
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
| | - Noemí Puig
- Hematology Department, Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - María-Victoria Mateos
- Hematology Department, Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - Rosa Ayala
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
- Department of Medicine, Medicine School, Universidad Complutense, Madrid, Spain
| | - Dulcenombre Gómez-Garre
- Microbiota and Vascular Biology Laboratory, Hospital Clínico San Carlos-Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
- Centre for Biomedical Research in Cardiovascular Disease Network (CIBERCV), Madrid, Spain
- Department of Physiology, Medicine School, Universidad Complutense, Madrid, Spain
| | - Joaquín Martínez-López
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
- Department of Medicine, Medicine School, Universidad Complutense, Madrid, Spain
| | - María Linares
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense, Madrid, Spain
| |
Collapse
|
3
|
O'Donnell E. Exploring the role of viral hepatitis in plasma cell disorders. Haematologica 2024; 109:19-20. [PMID: 37470153 PMCID: PMC10772513 DOI: 10.3324/haematol.2023.283461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023] Open
Abstract
Not available.
Collapse
|
4
|
Rodríguez-García A, Mennesson N, Hernandez-Ibarburu G, Morales ML, Garderet L, Bouchereau L, Allain-Maillet S, Piver E, Marbán I, Rubio D, Bigot-Corbel E, Martínez-López J, Linares M, Hermouet S. Impact of viral hepatitis therapy in multiple myeloma and other monoclonal gammopathies linked to hepatitis B or C viruses. Haematologica 2024; 109:272-282. [PMID: 37199121 PMCID: PMC10772493 DOI: 10.3324/haematol.2023.283096] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023] Open
Abstract
Subsets of multiple myeloma (MM) and monoclonal gammopathies of undetermined significance (MGUS) present with a monoclonal immunoglobulin specific for hepatitis C virus (HCV), thus are presumably HCV-driven, and antiviral treatment can lead to the disappearance of antigen stimulation and improved control of clonal plasma cells. Here we studied the role of hepatitis B virus (HBV) in the pathogenesis of MGUS and MM in 45 HBV-infected patients with monoclonal gammopathy. We analyzed the specificity of recognition of the monoclonal immunoglobulin of these patients and validated the efficacy of antiviral treatment (AVT). For 18 of 45 (40%) HBV-infected patients, the target of the monoclonal immunoglobulin was identified: the most frequent target was HBV (n=11), followed by other infectious pathogens (n=6) and glucosylsphingosine (n=1). Two patients whose monoclonal immunoglobulin targeted HBV (HBx and HBcAg), implying that their gammopathy was HBV-driven, received AVT and the gammopathy did not progress. AVT efficacy was then investigated in a large cohort of HBV-infected MM patients (n=1367) who received or did not receive anti-HBV treatments and compared to a cohort of HCV-infected MM patients (n=1220). AVT significantly improved patient probability of overall survival (P=0.016 for the HBV-positive cohort, P=0.005 for the HCV-positive cohort). Altogether, MGUS and MM disease can be HBV- or HCV-driven in infected patients, and the study demonstrates the importance of AVT in such patients.
Collapse
Affiliation(s)
- Alba Rodríguez-García
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041, Madrid
| | - Nicolas Mennesson
- Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, F-44000 Nantes
| | - Gema Hernandez-Ibarburu
- Biomedical Informatics Group, Universidad Politécnica de Madrid, Madrid, Spain; TriNetX LLC, Madrid
| | - María Luz Morales
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041, Madrid
| | - Laurent Garderet
- Sorbonne Université-INSERM, UMR_S 938, Centre de Recherche Saint-Antoine-Team Hematopoietic and leukemic development, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié Salpetrière, Département d'Hématologie et de Thérapie Cellulaire, F-75013 Paris
| | - Lorine Bouchereau
- Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, F-44000 Nantes
| | - Sophie Allain-Maillet
- Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, F-44000 Nantes
| | - Eric Piver
- Laboratoire de Biochimie, CHU Tours, Tours, France; Inserm UMR1253, MAVIVH Tours
| | - Irene Marbán
- Biomedical Informatics Group, Universidad Politécnica de Madrid, Madrid
| | - David Rubio
- Biomedical Informatics Group, Universidad Politécnica de Madrid, Madrid, Spain; TriNetX LLC, Madrid
| | - Edith Bigot-Corbel
- Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, F-44000 Nantes, France; Laboratoire de Biochimie, CHU Nantes, F-44000, Nantes
| | - Joaquín Martínez-López
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041, Madrid, Spain; Department of Medicine, Medicine School, Universidad Complutense de Madrid, ES 28040, Madrid
| | - María Linares
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041, Madrid, Spain; Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, ES 28040, Madrid.
| | - Sylvie Hermouet
- Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, F-44000 Nantes, France; Laboratoire d'Hématologie, CHU Nantes, F-44000, Nantes.
| |
Collapse
|
5
|
Hermouet S, Bigot-Corbel E, Harb J. Determination of the target of monoclonal immunoglobulins: a novel diagnostic tool for individualized MGUS therapy, and prevention and therapy of smoldering and multiple myeloma. Front Immunol 2023; 14:1253363. [PMID: 38022528 PMCID: PMC10644846 DOI: 10.3389/fimmu.2023.1253363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/11/2023] [Indexed: 12/01/2023] Open
Abstract
Subsets of patients diagnosed with a monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM) or multiple myeloma (MM), present with a monoclonal immunoglobulin (Ig) specific for an infectious pathogen, including hepatitis C and B viruses (HCV, HBV), Helicobacter pylori and several Herpesviruses. Such cases are likely initiated by infection, since in the context of HCV- or HBV-infected patients, antiviral therapy can lead to the disappearance of antigenic stimulation, control of clonal plasma cells, and reduced or suppressed monoclonal Ig production. Complete remission has been obtained with anti-HCV therapy in refractory MM with a HCV-specific monoclonal Ig, and antiviral treatments significantly improved the probability of survival of MM patients infected with HCV or HBV prior to the diagnosis of MM. Monoclonal Igs may also target glucolipids, particularly glucosylsphingosine (GlcSph), and GlcSph-reducing therapy can lead to complete remission in SMM and MM patients presenting with a GlcSph-specific monoclonal Ig. The present review describes the importance of determining the target of the monoclonal Ig of MGUS, SMM and MM patients, and discusses the efficacy of target-reducing treatments in the management of MGUS, SMM and MM cases who present with a monoclonal Ig reactive against a treatable infectious pathogen or GlcSph.
Collapse
Affiliation(s)
- Sylvie Hermouet
- Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes, France
- Laboratoire d’Hématologie, CHU Nantes, Nantes, France
| | - Edith Bigot-Corbel
- Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes, France
- Laboratoire de Biochimie, CHU Nantes, Nantes, France
| | - Jean Harb
- Laboratoire de Biochimie, CHU Nantes, Nantes, France
| |
Collapse
|
6
|
Jasiński M, Biliński J, Basak GW. The Role of the Crosstalk Between Gut Microbiota and Immune Cells in the Pathogenesis and Treatment of Multiple Myeloma. Front Immunol 2022; 13:853540. [PMID: 35432306 PMCID: PMC9009288 DOI: 10.3389/fimmu.2022.853540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/28/2022] [Indexed: 11/26/2022] Open
Abstract
Around 10% of all hematologic malignancies are classified as multiple myeloma (MM), the second most common malignancy within that group. Although massive progress in developing of new drugs against MM has been made in recent years, MM is still an incurable disease, and every patient eventually has relapse refractory to any known treatment. That is why further and non-conventional research elucidating the role of new factors in MM pathogenesis is needed, facilitating discoveries of the new drugs. One of these factors is the gut microbiota, whose role in health and disease is still being explored. This review presents the continuous changes in the gut microbiota composition during our whole life with a particular focus on its impact on our immune system. Additionally, it mainly focuses on the chronic antigenic stimulation of B-cells as the leading mechanism responsible for MM promotion. The sophisticated interactions between microorganisms colonizing our gut, immune cells (dendritic cells, macrophages, neutrophils, T/B cells, plasma cells), and intestinal epithelial cells will be shown. That article summarizes the current knowledge about the initiation of MM cells, emphasizing the role of microorganisms in that process.
Collapse
Affiliation(s)
- Marcin Jasiński
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland.,Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Jarosław Biliński
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland.,Human Biome Institute, Gdańsk, Poland
| | - Grzegorz W Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland.,Human Biome Institute, Gdańsk, Poland
| |
Collapse
|