1
|
Cao Z, Jiang X, He Y, Zheng X. Metabolic landscape in venous thrombosis: insights into molecular biology and therapeutic implications. Ann Med 2024; 56:2401112. [PMID: 39297312 DOI: 10.1080/07853890.2024.2401112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/20/2024] [Accepted: 05/12/2024] [Indexed: 09/21/2024] Open
Abstract
The findings of the last decade suggest a complex link between inflammatory cells, coagulation, and the activation of platelets and their synergistic interaction to promote venous thrombosis. Inflammation is present throughout the process of venous thrombosis, and various metabolic pathways of erythrocytes, endothelial cells, and immune cells involved in venous thrombosis, including glucose metabolism, lipid metabolism, homocysteine metabolism, and oxidative stress, are associated with inflammation. While the metabolic microenvironment has been identified as a marker of malignancy, recent studies have revealed that for cancer thrombosis, alterations in the metabolic microenvironment appear to also be a potential risk. In this review, we discuss how the synergy between metabolism and thrombosis drives thrombotic disease. We also explore the great potential of anti-inflammatory strategies targeting venous thrombosis and the complex link between anti-inflammation and metabolism. Furthermore, we suggest how we can use our existing knowledge to reduce the risk of venous thrombosis.
Collapse
Affiliation(s)
- Zheng Cao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yiyu He
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoxin Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Jabrah D, Rossi R, Molina S, Douglas A, Pandit A, McCarthy R, Gilvarry M, Ceder E, Fitzgerald S, Dunker D, Nordanstig A, Redfors P, Tatlisumak T, O'Hare A, Power S, Brennan P, Owens P, Nagy A, Vadász Á, De Meyer SF, Tsivgoulis G, Psychogios K, Szikora I, Jood K, Rentzos A, Thornton J, Doyle K. White blood cell subtypes and neutrophil extracellular traps content as biomarkers for stroke etiology in acute ischemic stroke clots retrieved by mechanical thrombectomy. Thromb Res 2024; 234:1-8. [PMID: 38113606 DOI: 10.1016/j.thromres.2023.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/17/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Lymphocytes, macrophages, neutrophils, and neutrophil extracellular traps (NETs) associate with stroke risk factors and form a thrombus through different mechanisms. We investigated the total WBCs, WBC subtypes and NETs composition in acute ischemic stroke (AIS) clots to identify possible etiological differences that could help us further understand the process of thrombosis that leads to AIS. METHODS AIS clots from 100 cases each of atherothrombotic (AT), cardioembolic (CE) and cryptogenic stroke etiology were collected per-pass as part of the CÚRAM RESTORE registry of AIS clots. Martius Scarlet Blue stain was used to identify the main histological components of the clots. Immunohistochemical staining was used to identify neutrophils, lymphocytes, macrophages, and NETs patterns. The cellular and histological components were quantified using Orbit Image Analysis software. RESULTS AT clots were larger, with more red blood cells and fewer WBCs than CE clots. AT clots had more lymphocytes and cryptogenic clots had fewer macrophages than other etiologies. Most significantly, CE clots showed higher expression of neutrophils and extracellular web-like NETs compared to AT and cryptogenic clots. There was also a significantly higher distribution of web-like NETs around the periphery of the CE clots while a mixed distribution was observed in AT clots. CONCLUSION The difference in neutrophil and NETs expression in clots from different etiologies may provide insight into the mechanism of clot formation.
Collapse
Affiliation(s)
- Duaa Jabrah
- Department of Physiology, University of Galway, Galway, Ireland
| | - Rosanna Rossi
- Department of Physiology, University of Galway, Galway, Ireland; CÚRAM-SFI Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Sara Molina
- Department of Physiology, University of Galway, Galway, Ireland; CÚRAM-SFI Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Andrew Douglas
- Department of Physiology, University of Galway, Galway, Ireland
| | - Abhay Pandit
- CÚRAM-SFI Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Ray McCarthy
- Cerenovus, Galway Neuro Technology Centre, Galway, Ireland
| | | | - Eric Ceder
- Department of Interventional and Diagnostic Neuroradiology, Sahlgrenska University Hospital, Institute of Clinical Sciences, Department of Radiology, Sahlgrenska Academy at University of Gothenburg, Sweden
| | - Seán Fitzgerald
- Department of Physiology, University of Galway, Galway, Ireland
| | - Dennis Dunker
- Department of Interventional and Diagnostic Neuroradiology, Sahlgrenska University Hospital, Institute of Clinical Sciences, Department of Radiology, Sahlgrenska Academy at University of Gothenburg, Sweden
| | - Annika Nordanstig
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg and Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Petra Redfors
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg and Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Turgut Tatlisumak
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg and Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alan O'Hare
- Department of Radiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Sarah Power
- Department of Radiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Paul Brennan
- Department of Radiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Peter Owens
- Centre for Microscopy and Imaging, University of Galway, Galway, Ireland
| | - András Nagy
- Department of Neurointerventions, National Institute of Neurosciences, Budapest, Hungary
| | - Ágnes Vadász
- Department of Neurointerventions, National Institute of Neurosciences, Budapest, Hungary
| | - Simon F De Meyer
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak, Kortrijk, Belgium
| | - Georgios Tsivgoulis
- Second Department of Neurology, National & Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece
| | | | - Istvan Szikora
- Department of Neurointerventions, National Institute of Neurosciences, Budapest, Hungary
| | - Katarina Jood
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg and Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alexandros Rentzos
- Department of Interventional and Diagnostic Neuroradiology, Sahlgrenska University Hospital, Institute of Clinical Sciences, Department of Radiology, Sahlgrenska Academy at University of Gothenburg, Sweden
| | - John Thornton
- Department of Radiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Karen Doyle
- Department of Physiology, University of Galway, Galway, Ireland; CÚRAM-SFI Centre for Research in Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
3
|
Bissenova S, Buitinga M, Boesch M, Korf H, Casteels K, Teunkens A, Mathieu C, Gysemans C. High-Throughput Analysis of Neutrophil Extracellular Trap Levels in Subtypes of People with Type 1 Diabetes. BIOLOGY 2023; 12:882. [PMID: 37372166 DOI: 10.3390/biology12060882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Neutrophils might play an important role in the pathogenesis of autoimmune diseases, including type 1 diabetes (T1D), by contributing to immune dysregulation via a highly inflammatory program called neutrophil extracellular trap (NET) formation or NETosis, involving the extrusion of chromatin entangled with anti-microbial proteins. However, numerous studies reported contradictory data on NET formation in T1D. This might in part be due to the inherent heterogeneity of the disease and the influence of the disease developmental stage on neutrophil behavior. Moreover, there is a lack of a standardized method to measure NETosis in an unbiased and robust manner. In this study, we employed the Incucyte® ZOOM live-cell imaging platform to study NETosis levels in various subtypes of adult and pediatric T1D donors compared to healthy controls (HC) at baseline and in response to phorbol-myristate acetate (PMA) and ionomycin. Firstly, we determined that the technique allows for an operator-independent and automated quantification of NET formation across multiple time points, which showed that PMA and ionomycin induced NETosis with distinct kinetic characteristics, confirmed by high-resolution microscopy. NETosis levels also showed a clear dose-response curve to increasing concentrations of both stimuli. Overall, using Incucyte® ZOOM, no aberrant NET formation was observed over time in the different subtypes of T1D populations, irrespective of age, compared to HC. These data were corroborated by the levels of peripheral NET markers in all study participants. The current study showed that live-cell imaging allows for a robust and unbiased analysis and quantification of NET formation in real-time. Peripheral neutrophil measures should be complemented with dynamic quantification of NETing neutrophils to make robust conclusions on NET formation in health and disease.
Collapse
Affiliation(s)
- Samal Bissenova
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Mijke Buitinga
- Department of Nutrition and Movement Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, 6211 LK Maastricht, The Netherlands
| | - Markus Boesch
- Laboratory of Hepatology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Hannelie Korf
- Laboratory of Hepatology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Kristina Casteels
- Woman and Child, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - An Teunkens
- Anesthesiology and Algology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
4
|
Bissenova S, Ellis D, Callebaut A, Eelen G, Derua R, Buitinga M, Mathieu C, Gysemans C, Overbergh L. NET Proteome in Established Type 1 Diabetes Is Enriched in Metabolic Proteins. Cells 2023; 12:cells12091319. [PMID: 37174719 PMCID: PMC10177393 DOI: 10.3390/cells12091319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND AND AIMS Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by a T-cell-mediated destruction of the pancreatic insulin-producing beta cells. A growing body of evidence suggests that abnormalities in neutrophils and neutrophil extracellular trap (NET) formation (NETosis) are associated with T1D pathophysiology. However, little information is available on whether these changes are primary neutrophil defects or related to the environmental signals encountered during active disease. METHODS In the present work, the NET proteome (NETome) of phorbol 12-myristate 13-acetate (PMA)- and ionomycin-stimulated neutrophils from people with established T1D compared to healthy controls (HC) was studied by proteomic analysis. RESULTS Levels of NETosis, in addition to plasma levels of pro-inflammatory cytokines and NET markers, were comparable between T1D and HC subjects. However, the T1D NETome was distinct from that of HC in response to both stimuli. Quantitative analysis revealed that the T1D NETome was enriched in proteins belonging to metabolic pathways (i.e., phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase, and UTP-glucose-1-phosphate uridylyltransferase). Complementary metabolic profiling revealed that the rate of extracellular acidification, an approximate measure for glycolysis, and mitochondrial respiration were similar between T1D and HC neutrophils in response to both stimuli. CONCLUSION The NETome of people with established T1D was enriched in metabolic proteins without an apparent alteration in the bio-energetic profile or dysregulated NETosis. This may reflect an adaptation mechanism employed by activated T1D neutrophils to avoid impaired glycolysis and consequently excessive or suboptimal NETosis, pivotal in innate immune defence and the resolution of inflammation.
Collapse
Affiliation(s)
- Samal Bissenova
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Darcy Ellis
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Aïsha Callebaut
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Rita Derua
- Laboratory of Protein Phosphorylation & Proteomics, Department Cellular & Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
- SyBioMa, Proteomics Core Facility, KU Leuven, 3000 Leuven, Belgium
| | - Mijke Buitinga
- Department of Nutrition and Movement Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Lut Overbergh
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
5
|
Burgos RA, Werling D, Hermosilla CR. Editorial: The emerging role of metabolism and metabolic-related receptors on neutrophil extracellular traps (NET) formation. Front Immunol 2022; 13:1028228. [PMID: 36238307 PMCID: PMC9552222 DOI: 10.3389/fimmu.2022.1028228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Rafael Agustín Burgos
- Laboratory of Inflammation Pharmacology and Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
- *Correspondence: Rafael Agustín Burgos,
| | - Dirk Werling
- Centre for Vaccinology and Regenerative Medicine, Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Carlos Rodrigo Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|