1
|
Meenakshi Sundaram DN, Bahadur K C R, Fu W, Uludağ H. An optimized polymeric delivery system for piggyBac transposition. Biotechnol Bioeng 2024; 121:1503-1517. [PMID: 38372658 DOI: 10.1002/bit.28665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/14/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024]
Abstract
The piggyBac transposon/transposase system has been explored for long-term, stable gene expression to execute genomic integration of therapeutic genes, thus emerging as a strong alternative to viral transduction. Most studies with piggyBac transposition have employed physical methods for successful delivery of the necessary components of the piggyBac system into the cells. Very few studies have explored polymeric gene delivery systems. In this short communication, we report an effective delivery system based on low molecular polyethylenimine polymer with lipid substitution (PEI-L) capable of delivering three components, (i) a piggyBac transposon plasmid DNA carrying a gene encoding green fluorescence protein (PB-GFP), (ii) a piggyBac transposase plasmid DNA or mRNA, and (iii) a 2 kDa polyacrylic acid as additive for transfection enhancement, all in a single complex. We demonstrate an optimized formulation for stable GFP expression in two model cell lines, MDA-MB-231 and SUM149 recorded till day 108 (3.5 months) and day 43 (1.4 months), respectively, following a single treatment with very low cell number as starting material. Moreover, the stability of the transgene (GFP) expression mediated by piggyBac/PEI-L transposition was retained following three consecutive cryopreservation cycles. The success of this study highlights the feasibility and potential of employing a polymeric delivery system to obtain piggyBac-based stable expression of therapeutic genes.
Collapse
Affiliation(s)
| | - Remant Bahadur K C
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University, Shanghai, China
| | - Hasan Uludağ
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Pasupuleti V, Vora L, Prasad R, Nandakumar DN, Khatri DK. Glioblastoma preclinical models: Strengths and weaknesses. Biochim Biophys Acta Rev Cancer 2024; 1879:189059. [PMID: 38109948 DOI: 10.1016/j.bbcan.2023.189059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
Glioblastoma multiforme is a highly malignant brain tumor with significant intra- and intertumoral heterogeneity known for its aggressive nature and poor prognosis. The complex signaling cascade that regulates this heterogeneity makes targeted drug therapy ineffective. The development of an optimal preclinical model is crucial for the comprehension of molecular heterogeneity and enhancing therapeutic efficacy. The ideal model should establish a relationship between various oncogenes and their corresponding responses. This review presents an analysis of preclinical in vivo and in vitro models that have contributed to the advancement of knowledge in model development. The experimental designs utilized in vivo models consisting of both immunodeficient and immunocompetent mice induced with intracranial glioma. The transgenic model was generated using various techniques, like the viral vector delivery system, transposon system, Cre-LoxP model, and CRISPR-Cas9 approaches. The utilization of the patient-derived xenograft model in glioma research is valuable because it closely replicates the human glioma microenvironment, providing evidence of tumor heterogeneity. The utilization of in vitro techniques in the initial stages of research facilitated the comprehension of molecular interactions. However, these techniques are inadequate in reproducing the interactions between cells and extracellular matrix (ECM). As a result, bioengineered 3D-in vitro models, including spheroids, scaffolds, and brain organoids, were developed to cultivate glioma cells in a three-dimensional environment. These models have enabled researchers to understand the influence of ECM on the invasive nature of tumors. Collectively, these preclinical models effectively depict the molecular pathways and facilitate the evaluation of multiple molecules while tailoring drug therapy.
Collapse
Affiliation(s)
- Vasavi Pasupuleti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK.
| | - Renuka Prasad
- Department of Anatomy, Korea University College of Medicine, Moonsuk Medical Research Building, 516, 5th floor, 73 Inchon-ro, Seongbuk-gu, Seoul 12841, Republic of Korea
| | - D N Nandakumar
- Department of Neurochemistry National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India.
| |
Collapse
|
3
|
Chinsuwan T, Hirabayashi K, Mishima S, Hasegawa A, Tanaka M, Mochizuki H, Shimoi A, Murakami T, Yagyu S, Shimizu K, Nakazawa Y. Ligand-based, piggyBac-engineered CAR-T cells targeting EGFR are safe and effective against non-small cell lung cancers. Mol Ther Oncolytics 2023; 31:100728. [PMID: 37822488 PMCID: PMC10562194 DOI: 10.1016/j.omto.2023.100728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is overexpressed in various cancers, including non-small cell lung cancer (NSCLC), and in some somatic cells at a limited level, rendering it an attractive antitumor target. In this study, we engineered chimeric antigen receptor (CAR)-T cells using the piggyBac transposon system, autologous artificial antigen-presenting cells, and natural ligands of EGFR. We showed that this approach yielded CAR-T cells with favorable phenotypes and CAR positivity. They exhibited potent antitumor activity against NSCLC both in vitro and in vivo. When administered to tumor-bearing mice and non-tumor-bearing cynomolgus macaques, they did not elicit toxicity despite their cross-reactivity to both murine and simian EGFRs. In total we tested three ligands and found that the CAR candidate with the highest affinity consistently displayed greater potency without adverse events. Taken together, our results demonstrate the feasibility and safety of targeting EGFR-expressing NSCLCs using ligand-based, piggyBac-engineered CAR-T cells. Our data also show that lowering the affinity of CAR molecules is not always beneficial.
Collapse
Affiliation(s)
- Thanyavi Chinsuwan
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Koichi Hirabayashi
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Shuji Mishima
- Division of General Thoracic Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Aiko Hasegawa
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Miyuki Tanaka
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
- Center for Advanced Research of Gene and Cell Therapy, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Hidemi Mochizuki
- Center for Advanced Research of Gene and Cell Therapy, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
- Ina Research Inc., Ina, Nagano, Japan
| | - Akihito Shimoi
- Center for Advanced Research of Gene and Cell Therapy, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
- Ina Research Inc., Ina, Nagano, Japan
| | - Takashi Murakami
- Department of Microbiology, Faculty of Medicine, Saitama Medical University, Iruma, Saitama, Japan
| | - Shigeki Yagyu
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
- Center for Advanced Research of Gene and Cell Therapy, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Kimihiro Shimizu
- Division of General Thoracic Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
- Center for Advanced Research of Gene and Cell Therapy, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Nagano, Japan
| |
Collapse
|
4
|
Voss RH, Echchannaoui H, Huang H, Xue SA. Editorial: Translation of genetically engineered T cells in cancer immunotherapy. Front Immunol 2023; 14:1278677. [PMID: 37744369 PMCID: PMC10513460 DOI: 10.3389/fimmu.2023.1278677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Affiliation(s)
- Ralf-Holger Voss
- Institute of Immunology, Department of Research Center for Immunotherapy, Laboratory U. Sahin, University Medical Center (UMC) of the Johannes Gutenberg University, Mainz, Germany
| | - Hakim Echchannaoui
- Department of Hematology and Medical Oncology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
- German Cancer Consortium partner site Frankfurt/Mainz, Mainz, Germany
- University Cancer Center Mainz, Mainz, Germany
| | - He Huang
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Shao-An Xue
- Surgery, Medical School, Faculty of Medical Sciences, University College London, London, United Kingdom
- Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi’An University, Xi’An, China
| |
Collapse
|
5
|
Niu A, Zou J, Hu X, Zhang Z, Su L, Wang J, Lu X, Zhang W, Chen W, Zhang X. Differences in the phenotypes and transcriptomic signatures of chimeric antigen receptor T lymphocytes manufactured via electroporation or lentiviral transfection. Front Immunol 2023; 14:1068625. [PMID: 37228617 PMCID: PMC10203401 DOI: 10.3389/fimmu.2023.1068625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/14/2023] [Indexed: 05/27/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is an innovative treatment for CD19-expressing lymphomas. CAR-T cells are primarily manufactured via lentivirus transfection or transposon electroporation. While anti-tumor efficacy comparisons between the two methods have been conducted, there is a current dearth of studies investigating the phenotypes and transcriptome alterations induced in T cells by the two distinct manufacturing methods. Here, we established CAR-T signatures using fluorescent imaging, flow cytometry, and RNA-sequencing. A small fraction of CAR-T cells that were produced using the PiggyBac transposon (PB CAR-T cells) exhibited much higher expression of CAR than those produced using a lentivirus (Lenti CAR-T cells). PB and Lenti CAR-T cells contained more cytotoxic T cell subsets than control T cells, and Lenti CAR-T cells presented a more pronounced memory phenotype. RNA-sequencing further revealed vast disparities between the two CAR-T cell groups, with PB CAR-T cells exhibiting greater upregulation of cytokines, chemokines, and their receptors. Intriguingly, PB CAR-T cells singularly expressed IL-9 and fewer cytokine release syndrome-associated cytokines when activated by target cells. In addition, PB CAR-T cells exerted faster in vitro cytotoxicity against CD19-expressing K562 cells but similar in vivo anti-tumor efficacy with Lenti CAR-T. Taken together, these data provide insights into the phenotypic alterations induced by lentiviral transfection or transposon electroporation and will attract more attention to the clinical influence of different manufacturing procedures.
Collapse
Affiliation(s)
- Anna Niu
- Beijing Institute of Biotechnology, Beijing, China
| | - Jintao Zou
- Beijing Institute of Biotechnology, Beijing, China
| | - Xuan Hu
- Beijing Institute of Biotechnology, Beijing, China
| | - Zhang Zhang
- Beijing Institute of Biotechnology, Beijing, China
| | - Lingyu Su
- Beijing Institute of Biotechnology, Beijing, China
- Nanhu Laboratory, Jiaxing, Zhejiang, China
| | - Jing Wang
- Beijing Institute of Biotechnology, Beijing, China
| | - Xing Lu
- Beijing Institute of Biotechnology, Beijing, China
- Nanhu Laboratory, Jiaxing, Zhejiang, China
| | - Wei Zhang
- Nanhu Laboratory, Jiaxing, Zhejiang, China
| | - Wei Chen
- Beijing Institute of Biotechnology, Beijing, China
| | | |
Collapse
|
6
|
Sanyanusin M, Tudsamran S, Thaiwong R, Tawinwung S, Nishio N, Takahashi Y, Hirankarn N, Suppipat K. Novel xeno-free and serum-free culturing condition to improve piggyBac transposon-based CD19 chimeric antigen receptor T-cell production and characteristics. Cytotherapy 2023; 25:397-406. [PMID: 36517366 DOI: 10.1016/j.jcyt.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AIMS Chimeric antigen receptor (CAR) T cell is a novel therapy for relapse and refractory hematologic malignancy. Characteristics of CAR T cells are associated with clinical efficacy and toxicity. The type of serum supplements used during cultivation affects the immunophenotype and function of viral-based CAR T cells. This study explores the effect of serum supplements on nonviral piggyBac transposon CAR T-cell production. METHODS PiggyBac CD19 CAR T cells were expanded in cultured conditions containing fetal bovine serum, human AB serum or xeno-free serum replacement. We evaluated the effect of different serum supplements on cell expansion, transduction efficiency, immunophenotypes and antitumor activity. RESULTS Xeno-free serum replacement exhibited comparable CAR surface expression, cell expansion and short-term antitumor activity compared with conventional serum supplements. However, CAR T cells cultivated with xeno-free serum replacement exhibited an increased naïve/stem cell memory population and better T-cell expansion after long-term co-culture as well as during the tumor rechallenge assay. CONCLUSIONS Our study supports the usage of xeno-free serum replacement as an alternative source of serum supplements for piggyBac-based CAR T-cell expansion.
Collapse
Affiliation(s)
- Mulita Sanyanusin
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Suparat Tudsamran
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand; Chulalongkorn Comprehensive Cancer Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Rattapoom Thaiwong
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand; Chulalongkorn Comprehensive Cancer Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Supannikar Tawinwung
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand; Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Nobuhiro Nishio
- Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nattiya Hirankarn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Koramit Suppipat
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand; Chulalongkorn Comprehensive Cancer Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
7
|
Yagyu S, Nakazawa Y. piggyBac-transposon-mediated CAR-T cells for the treatment of hematological and solid malignancies. Int J Clin Oncol 2023; 28:736-747. [PMID: 36859566 DOI: 10.1007/s10147-023-02319-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
Since the introduction of the use of chimeric antigen receptor T-cell therapy (CAR-T therapy) dramatically changed the therapeutic strategy for B cell tumors, various CAR-T cell products have been developed and applied to myeloid and solid tumors. Although viral vectors have been widely used to produce genetically engineered T cells, advances in genetic engineering have led to the development of methods for producing non-viral, gene-modified CAR-T cells. Recent progress has revealed that non-viral CAR-T cells have a significant impact not only on the simplicity of the production process and the accessibility of non-viral vectors but also on the function of the cells themselves. In this review, we focus on piggyBac-transposon-based CAR-T cells among non-viral, gene-modified CAR-T cells and discuss their characteristics, preclinical development, and recent clinical applications.
Collapse
Affiliation(s)
- Shigeki Yagyu
- Innovative Research and Liaison Organization, Shinshu University, 3-1-1, Asahi, Matsumoto, Nagano, Japan. .,Center for Advanced Research of Gene and Cell Therapy, Shinshu University, 3-1-1, Asahi, Matsumoto, Nagano, Japan. .,Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto, Japan.
| | - Yozo Nakazawa
- Center for Advanced Research of Gene and Cell Therapy, Shinshu University, 3-1-1, Asahi, Matsumoto, Nagano, Japan.,Department of Pediatrics, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, Nagano, Japan.,Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1, Asahi, Matsumoto, Nagano, Japan
| |
Collapse
|
8
|
Zhang Y, Lin Z, Zhang F, Chen X, Yang Y, Fu X, Li Z, Sun Y, Qian Q. Rapid response in relapsed follicular lymphoma with massive chylous ascites to anti-CD19 CAR T therapy using Piggy Bac: A case report. Front Immunol 2022; 13:1007210. [PMID: 36532014 PMCID: PMC9752063 DOI: 10.3389/fimmu.2022.1007210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
CD19-directed chimeric antigen receptor (CAR) T cell therapy has been shown to achieve a considerably durable response in patients with refractory or relapsed B cell non-Hodgkin lymphomas, as seen from the results of Zuma-1, Zuma-5, and other clinical trials. Most of these CARs were generated by lentivirus or reverse adenovirus. It is rare to see CARs using non-viral vectors, such as Piggy Bac (pb), in treating lymphoma patients with active diseases. Generally, patients with a high tumor burden tend to have a higher rate of severe cytokine release syndrome (CRS) or neurological events as reported in the literature. Patients with symptomatic pleural effusions are excluded from the Zuma-1 trial because of the risk of severe CRS. We report here that a patient with relapsed follicular lymphoma with bulky disease and massive chylous ascites failed several lines of chemotherapy. After infusion of the CD19-directed pbCAR-T cells at 6 × 106 cells/kg, the patient had a rapid response and achieved a nearly complete metabolic remission on day 28. There was only grade 1 CRS, and no neurotoxicity occurred. The CAR-T cells reached a peak level on day 14 and spread into the ascites and expanded for 3 months. This might be the first case reported for pbCAR-T cells to treat relapsed follicular lymphoma directly. The long-term efficacy will be observed, and more patients be tested in the future. Clinical Trial Registration https://ClinicalTrials.gov, identifier NCT05472610.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Oncology, Shanghai Mengchao Cancer Hospital, Shanghai University, Shanghai, China,*Correspondence: Yan Zhang, ; Qijun Qian,
| | - Zhicai Lin
- Clinical R&D Center, Shanghai Cell Therapy Group Corporation, Shanghai, China
| | - Faliang Zhang
- Department of Oncology, Shanghai Mengchao Cancer Hospital, Shanghai University, Shanghai, China
| | - Xiuxiu Chen
- Department of Oncology, Shanghai Mengchao Cancer Hospital, Shanghai University, Shanghai, China
| | - Yaping Yang
- Clinical R&D Center, Shanghai Cell Therapy Group Corporation, Shanghai, China
| | - Xin Fu
- Clinical R&D Center, Shanghai Cell Therapy Group Corporation, Shanghai, China
| | - Zhong Li
- Clinical R&D Center, Shanghai Cell Therapy Group Corporation, Shanghai, China,Shanghai Cell Therapy Research Institute, Shanghai Cell Therapy Group Corporation, Shanghai, China
| | - Yan Sun
- Clinical R&D Center, Shanghai Cell Therapy Group Corporation, Shanghai, China
| | - Qijun Qian
- Department of Oncology, Shanghai Mengchao Cancer Hospital, Shanghai University, Shanghai, China,Shanghai Cell Therapy Research Institute, Shanghai Cell Therapy Group Corporation, Shanghai, China,*Correspondence: Yan Zhang, ; Qijun Qian,
| |
Collapse
|