1
|
Pluta R, Kocki J, Bogucki J, Bogucka-Kocka A, Czuczwar SJ. Apolipoprotein ( APOA1, APOE, CLU) genes expression in the CA3 region of the hippocampus in an ischemic model of Alzheimer's disease with survival up to 2 years. J Alzheimers Dis 2024:13872877241303950. [PMID: 39686609 DOI: 10.1177/13872877241303950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
BACKGROUND Changes in the Alzheimer's disease-related apolipoprotein genes expression, occurring parallel with brain ischemia-induced neurodegeneration in the hippocampal CA3 area, may be crucial for the development of memory loss and dementia. OBJECTIVE The aim of the study was to investigate changes in genes expression of apolipoprotein A1 (APOA1), apolipoprotein E (APOE), and clusterin (CLU) in CA3 area post-ischemia with survival of 2 years. METHODS The gene expression was evaluated with the use of an RT-PCR protocol after 2, 7, and 30 days and 6, 12, 18, and 24 months post-ischemia. RESULTS The expression of the APOA1 gene (encoding apolipoprotein A1) was below the control values at 2 days, 6 and 12 months while at 7 and 30 days and 18 and 24 months post-ischemia this gene expression exceeded the control values. In the case of the CLU gene (encoding clusterin) expression, it was above the control values at all times post-ischemia. Similar expression was observed for the APOE gene (encoding apolipoprotein E) except on day 7 after ischemia where its expression was below the control value. CONCLUSIONS The results seem to indicate that the observed changes in the gene expression may reflect the activation and inhibition of a variety of processes involved in ischemia-induced neurodegeneration. The enhanced expression of APOA1 and CLU genes may be associated with induction of neuroprotective mechanisms while increased expression of the APOE gene may produce detrimental effects.
Collapse
Affiliation(s)
- Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Jacek Bogucki
- Faculty of Medicine, John Paul II Catholic University of Lublin, Lublin, Poland
| | - Anna Bogucka-Kocka
- Department of Biology and Genetics, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
2
|
Martínez-Drudis L, Bérard M, Musiol D, Rivest S, Oueslati A. Pharmacological inhibition of PLK2 kinase activity mitigates cognitive decline but aggravates APP pathology in a sex-dependent manner in APP/PS1 mouse model of Alzheimer's disease. Heliyon 2024; 10:e39571. [PMID: 39498012 PMCID: PMC11532864 DOI: 10.1016/j.heliyon.2024.e39571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
Converging evidence from clinical and experimental studies suggest the potential significance of Polo-like kinase 2 (PLK2) in regulating the phosphorylation and toxicity of the Alzheimer's disease (AD)-related protein, amyloid precursor protein (APP). These findings have prompted various experimental trials aimed at inhibiting PLK2 kinase activity in different transgenic mouse models of AD. While positive impacts on cognitive decline were reported in these studies, the cellular effects remained controversial. In the present study, we sought to assess the cognitive and cellular consequences of chronic PLK2 inhibitor treatment in the APP/PS1 transgenic mouse model of AD. First, we confirmed that inhibiting PLK2 prevented cognitive decline in a sex-dependent manner, particularly by enhancing working memory in male APP/PS1 mice. Surprisingly, cellular analysis revealed that treatment with PLK2 inhibitor increased the load of amyloid plaques and elevated levels of soluble amyloid β (Aβ) 40 and Aβ42 in the cortex, as well as insoluble Aβ42 in the hippocampus of female mice, without affecting APP pathology in males. These results underscore the potential of PLK2 inhibition to mitigate cognitive symptoms in males. However, paradoxically, it intensifies amyloid pathology in females by enhancing APP amyloidogenic processing, creating a controversial aspect to its therapeutic impact. Overall, these data highlight the sex-dependent nature of the effects of PLK2 inhibition, which may also be influenced by the genetic background of the transgenic mouse model utilized.
Collapse
Affiliation(s)
- Laura Martínez-Drudis
- CHU de Québec-Université Laval Research Center, Neuroscience Axis, 2705 Boulevard Laurier, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Morgan Bérard
- CHU de Québec-Université Laval Research Center, Neuroscience Axis, 2705 Boulevard Laurier, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Dylan Musiol
- CHU de Québec-Université Laval Research Center, Neuroscience Axis, 2705 Boulevard Laurier, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Serge Rivest
- CHU de Québec-Université Laval Research Center, Neuroscience Axis, 2705 Boulevard Laurier, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Abid Oueslati
- CHU de Québec-Université Laval Research Center, Neuroscience Axis, 2705 Boulevard Laurier, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| |
Collapse
|
3
|
Iram F, Shahid M, Ansari J, Ashraf GM, Hassan MI, Islam A. Navigating the Maze of Alzheimer's disease by exploring BACE1: Discovery, current scenario, and future prospects. Ageing Res Rev 2024; 98:102342. [PMID: 38762102 DOI: 10.1016/j.arr.2024.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Alzheimer's disease (AD) is a chronic neurological condition that has become a leading cause of cognitive decline in elder individuals. Hardly any effective medication has been developed to halt the progression of AD due to the disease's complexity. Several theories have been put forward to clarify the mechanisms underlying AD etiology. The identification of amyloid plaques as a hallmark of AD has sparked the development of numerous drugs targeting the players involved in the amyloidogenic pathway, such as the β-site of amyloid precursor protein cleavage enzyme 1 (BACE1) blockers. Over the last ten years, preclinical and early experimental research has led several pharmaceutical companies to prioritize producing BACE1 inhibitors. Despite all these efforts, earlier discovered inhibitors were discontinued in consideration of another second-generation small molecules and recent BACE1 antagonists failed in the final stages of clinical trials because of the complications associated either with toxicity or effectiveness. In addition to discussing the difficulties associated with development of BACE1 inhibitors, this review aims to provide an overview of BACE1 and offer perspectives on the causes behind the failure of five recent BACE1 inhibitors, that would be beneficial for choosing effective treatment approaches in the future.
Collapse
Affiliation(s)
- Faiza Iram
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Jaoud Ansari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, Sharjah 27272, United Arab Emirates
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
4
|
Planas AM. Role of microglia in stroke. Glia 2024; 72:1016-1053. [PMID: 38173414 DOI: 10.1002/glia.24501] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Microglia play key roles in the post-ischemic inflammatory response and damaged tissue removal reacting rapidly to the disturbances caused by ischemia and working to restore the lost homeostasis. However, the modified environment, encompassing ionic imbalances, disruption of crucial neuron-microglia interactions, spreading depolarization, and generation of danger signals from necrotic neurons, induce morphological and phenotypic shifts in microglia. This leads them to adopt a proinflammatory profile and heighten their phagocytic activity. From day three post-ischemia, macrophages infiltrate the necrotic core while microglia amass at the periphery. Further, inflammation prompts a metabolic shift favoring glycolysis, the pentose-phosphate shunt, and lipid synthesis. These shifts, combined with phagocytic lipid intake, drive lipid droplet biogenesis, fuel anabolism, and enable microglia proliferation. Proliferating microglia release trophic factors contributing to protection and repair. However, some microglia accumulate lipids persistently and transform into dysfunctional and potentially harmful foam cells. Studies also showed microglia that either display impaired apoptotic cell clearance, or eliminate synapses, viable neurons, or endothelial cells. Yet, it will be essential to elucidate the viability of engulfed cells, the features of the local environment, the extent of tissue damage, and the temporal sequence. Ischemia provides a rich variety of region- and injury-dependent stimuli for microglia, evolving with time and generating distinct microglia phenotypes including those exhibiting proinflammatory or dysfunctional traits and others showing pro-repair features. Accurate profiling of microglia phenotypes, alongside with a more precise understanding of the associated post-ischemic tissue conditions, is a necessary step to serve as the potential foundation for focused interventions in human stroke.
Collapse
Affiliation(s)
- Anna M Planas
- Cerebrovascular Research Laboratory, Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- Cerebrovascular Diseases, Area of Clinical and Experimental Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Hospital Clínic, Barcelona, Spain
| |
Collapse
|
5
|
Bernard M, Menet R, Lecordier S, ElAli A. Endothelial PDGF-D contributes to neurovascular protection after ischemic stroke by rescuing pericyte functions. Cell Mol Life Sci 2024; 81:225. [PMID: 38769116 PMCID: PMC11106055 DOI: 10.1007/s00018-024-05244-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/29/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024]
Abstract
Ischemic stroke induces neovascularization of the injured tissue as an attempt to promote structural repair and neurological recovery. Angiogenesis is regulated by pericytes that potently react to ischemic stroke stressors, ranging from death to dysfunction. Platelet-derived growth factor (PDGF) receptor (PDGFR)β controls pericyte survival, migration, and interaction with brain endothelial cells. PDGF-D a specific ligand of PDGFRβ is expressed in the brain, yet its regulation and role in ischemic stroke pathobiology remains unexplored. Using experimental ischemic stroke mouse model, we found that PDGF-D is transiently induced in brain endothelial cells at the injury site in the subacute phase. To investigate the biological significance of PDGF-D post-ischemic stroke regulation, its subacute expression was either downregulated using siRNA or upregulated using an active recombinant form. Attenuation of PDGF-D subacute induction exacerbates neuronal loss, impairs microvascular density, alters vascular permeability, and increases microvascular stalling. Increasing PDGF-D subacute bioavailability rescues neuronal survival and improves neurological recovery. PDGF-D subacute enhanced bioavailability promotes stable neovascularization of the injured tissue and improves brain perfusion. Notably, PDGF-D enhanced bioavailability improves pericyte association with brain endothelial cells. Cell-based assays using human brain pericyte and brain endothelial cells exposed to ischemia-like conditions were applied to investigate the underlying mechanisms. PDGF-D stimulation attenuates pericyte loss and fibrotic transition, while increasing the secretion of pro-angiogenic and vascular protective factors. Moreover, PDGF-D stimulates pericyte migration required for optimal endothelial coverage and promotes angiogenesis. Our study unravels new insights into PDGF-D contribution to neurovascular protection after ischemic stroke by rescuing the functions of pericytes.
Collapse
Affiliation(s)
- Maxime Bernard
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Neuroscience Axis, Research Center of CHU de Québec (CHUQ)-Université Laval, 2705 Laurier Boulevard, Quebec City, QC, G1V 4G2, Canada
| | - Romain Menet
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Neuroscience Axis, Research Center of CHU de Québec (CHUQ)-Université Laval, 2705 Laurier Boulevard, Quebec City, QC, G1V 4G2, Canada
| | - Sarah Lecordier
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Neuroscience Axis, Research Center of CHU de Québec (CHUQ)-Université Laval, 2705 Laurier Boulevard, Quebec City, QC, G1V 4G2, Canada
| | - Ayman ElAli
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
- Neuroscience Axis, Research Center of CHU de Québec (CHUQ)-Université Laval, 2705 Laurier Boulevard, Quebec City, QC, G1V 4G2, Canada.
| |
Collapse
|
6
|
Pluta R, Czuczwar SJ. Trans- and Cis-Phosphorylated Tau Protein: New Pieces of the Puzzle in the Development of Neurofibrillary Tangles in Post-Ischemic Brain Neurodegeneration of the Alzheimer's Disease-like Type. Int J Mol Sci 2024; 25:3091. [PMID: 38542064 PMCID: PMC10970557 DOI: 10.3390/ijms25063091] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 11/11/2024] Open
Abstract
Recent evidence indicates that experimental brain ischemia leads to dementia with an Alzheimer's disease-like type phenotype and genotype. Based on the above evidence, it was hypothesized that brain ischemia may contribute to the development of Alzheimer's disease. Brain ischemia and Alzheimer's disease are two diseases characterized by similar changes in the hippocampus that are closely related to memory impairment. Following brain ischemia in animals and humans, the presence of amyloid plaques in the extracellular space and intracellular neurofibrillary tangles was revealed. The phenomenon of tau protein hyperphosphorylation is a similar pathological feature of both post-ischemic brain injury and Alzheimer's disease. In Alzheimer's disease, the phosphorylated Thr231 motif in tau protein has two distinct trans and cis conformations and is the primary site of tau protein phosphorylation in the pre-entanglement cascade and acts as an early precursor of tau protein neuropathology in the form of neurofibrillary tangles. Based on the latest publication, we present a similar mechanism of the formation of neurofibrillary tangles after brain ischemia as in Alzheimer's disease, established on trans- and cis-phosphorylation of tau protein, which ultimately influences the development of tauopathy.
Collapse
Affiliation(s)
- Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland;
| | | |
Collapse
|
7
|
Pluta R, Czuczwar SJ. Ischemia-Reperfusion Programming of Alzheimer's Disease-Related Genes-A New Perspective on Brain Neurodegeneration after Cardiac Arrest. Int J Mol Sci 2024; 25:1291. [PMID: 38279289 PMCID: PMC10816023 DOI: 10.3390/ijms25021291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
The article presents the latest data on pathological changes after cerebral ischemia caused by cardiac arrest. The data include amyloid accumulation, tau protein modification, neurodegenerative and cognitive changes, and gene and protein changes associated with Alzheimer's disease. We present the latest data on the dysregulation of genes related to the metabolism of the amyloid protein precursor, tau protein, autophagy, mitophagy, apoptosis, and amyloid and tau protein transport genes. We report that neuronal death after cerebral ischemia due to cardiac arrest may be dependent and independent of caspase. Moreover, neuronal death dependent on amyloid and modified tau protein has been demonstrated. Finally, the results clearly indicate that changes in the expression of the presented genes play an important role in acute and secondary brain damage and the development of post-ischemic brain neurodegeneration with the Alzheimer's disease phenotype. The data indicate that the above genes may be a potential therapeutic target for brain therapy after ischemia due to cardiac arrest. Overall, the studies show that the genes studied represent attractive targets for the development of new therapies to minimize ischemic brain injury and neurological dysfunction. Additionally, amyloid-related genes expression and tau protein gene modification after cerebral ischemia due to cardiac arrest are useful in identifying ischemic mechanisms associated with Alzheimer's disease. Cardiac arrest illustrates the progressive, time- and area-specific development of neuropathology in the brain with the expression of genes responsible for the processing of amyloid protein precursor and the occurrence of tau protein and symptoms of dementia such as those occurring in patients with Alzheimer's disease. By carefully examining the common genetic processes involved in these two diseases, these data may help unravel phenomena associated with the development of Alzheimer's disease and neurodegeneration after cerebral ischemia and may lead future research on Alzheimer's disease or cerebral ischemia in new directions.
Collapse
Affiliation(s)
- Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland;
| | | |
Collapse
|
8
|
Pluta R, Bogucka-Kocka A, Bogucki J, Kocki J, Czuczwar SJ. Apoptosis, Autophagy, and Mitophagy Genes in the CA3 Area in an Ischemic Model of Alzheimer's Disease with 2-Year Survival. J Alzheimers Dis 2024; 99:1375-1383. [PMID: 38759019 PMCID: PMC11191440 DOI: 10.3233/jad-240401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2024] [Indexed: 05/19/2024]
Abstract
Background Currently, no evidence exists on the expression of apoptosis (CASP3), autophagy (BECN1), and mitophagy (BNIP3) genes in the CA3 area after ischemia with long-term survival. Objective The goal of the paper was to study changes in above genes expression in CA3 area after ischemia in the period of 6-24 months. Methods In this study, using quantitative RT-PCR, we present the expression of genes associated with neuronal death in a rat ischemic model of Alzheimer's disease. Results First time, we demonstrated overexpression of the CASP3 gene in CA3 area after ischemia with survival ranging from 0.5 to 2 years. Overexpression of the CASP3 gene was accompanied by a decrease in the activity level of the BECN1 and BNIP3 genes over a period of 0.5 year. Then, during 1-2 years, BNIP3 gene expression increased significantly and coincided with an increase in CASP3 gene expression. However, BECN1 gene expression was variable, increased significantly at 1 and 2 years and was below control values 1.5 years post-ischemia. Conclusions Our observations suggest that ischemia with long-term survival induces neuronal death in CA3 through activation of caspase 3 in cooperation with the pro-apoptotic gene BNIP3. This study also suggests that the BNIP3 gene regulates caspase-independent pyramidal neuronal death post-ischemia. Thus, caspase-dependent and -independent death of neuronal cells occur post-ischemia in the CA3 area. Our data suggest new role of the BNIP3 gene in the regulation of post-ischemic neuronal death in CA3. This suggests the involvement of the BNIP3 together with the CASP3 in the CA3 in neuronal death post-ischemia.
Collapse
Affiliation(s)
- Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | - Anna Bogucka-Kocka
- Department of Biology and Genetics, Medical University of Lublin, Lublin, Poland
| | - Jacek Bogucki
- Faculty of Medicine, Johon Paul II Catholic University of Lublin, Lublin, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
9
|
Czuczwar SJ, Kocki J, Miziak B, Bogucki J, Bogucka-Kocka A, Pluta R. Alpha-, Beta-, and Gamma-Secretase, Amyloid Precursor Protein, and Tau Protein Genes in the Hippocampal CA3 Subfield in an Ischemic Model of Alzheimer's Disease with Survival up to 2 Years. J Alzheimers Dis 2024; 98:151-161. [PMID: 38393914 DOI: 10.3233/jad-231333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Background Understanding the phenomena underlying the non-selective susceptibility to ischemia of pyramidal neurons in the CA3 is important from the point of view of elucidating the mechanisms of memory loss and the development of dementia. Objective The aim of the study was to investigate changes in genes expression of amyloid precursor protein, its cleaving enzymes and tau protein in CA3 post-ischemia with survival of 12-24 months. Methods We used an ischemic model of Alzheimer's disease to study the above genes using an RT-PCR protocol. Results The expression of the amyloid precursor protein gene was above the control values at all times post-ischemia. The expression of the α-secretase gene also exceeded the control values post-ischemia. The expression of the β-secretase gene increased 12 and 24 months post-ischemia, and 18 months was below control values. Presenilin 1 and 2 genes expression was significantly elevated at all times post-ischemia. Also, tau protein gene expression was significantly elevated throughout the observation period, and peak gene expression was present 12 months post-ischemia. Conclusions The study suggests that the genes studied are involved in the non-amyloidogenic processing of amyloid precursor protein. Additionally data indicate that brain ischemia with long-term survival causes damage and death of pyramidal neurons in the CA3 area of the hippocampus in a modified tau protein-dependent manner. Thus defining a new and important mechanism of pyramidal neuronal death in the CA3 area post-ischemia. In addition expression of tau protein gene modification after brain ischemia is useful in identifying ischemic mechanisms occurring in Alzheimer's disease.
Collapse
Affiliation(s)
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | - Jacek Bogucki
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Anna Bogucka-Kocka
- Department of Biology and Genetics, Medical University of Lublin, Lublin, Poland
| | - Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
10
|
Le YP, Saito K, Parajuli B, Sakai K, Kubota Y, Miyakawa M, Shinozaki Y, Shigetomi E, Koizumi S. Severity of Peripheral Infection Differentially Affects Brain Functions in Mice via Microglia-Dependent and -Independent Mechanisms. Int J Mol Sci 2023; 24:17597. [PMID: 38139424 PMCID: PMC10743593 DOI: 10.3390/ijms242417597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Peripheral infection induces inflammation in peripheral tissues and the brain, impacting brain function. Glial cells are key players in this process. However, the effects of peripheral infection on glial activation and brain function remain unknown. Here, we showed that varying degrees of peripheral infection had different effects on the regulation of brain functions by microglia-dependent and -independent mechanisms. Acute mild infection (one-day LPS challenge: 1LPS) exacerbated middle cerebral artery occlusion (MCAO) injury, and severe infection (four-day LPS challenge: 4LPS) for one week suppressed it. MCAO injury was assessed by triphenyltetrazolium chloride staining. We observed early activation of microglia in the 1LPS and 4LPS groups. Depleting microglia with a colony-stimulating factor-1 receptor (CSF1R) antagonist had no effect on 1LPS-induced brain injury exacerbation but abolished 4LPS-induced protection, indicating microglial independence and dependence, respectively. Microglia-independent exacerbation caused by 1LPS involved peripheral immune cells including macrophages. RNA sequencing analysis of 4LPS-treated microglia revealed increased factors related to anti-inflammatory and neuronal tissue repair, suggesting their association with the protective effect. In conclusion, varying degrees of peripheral inflammation had contradictory effects (exacerbation vs. protection) on MCAO, which may be attributed to microglial dependence. Our findings highlight the significant impact of peripheral infection on brain function, particularly in relation to glial cells.
Collapse
Affiliation(s)
- Yen-Phung Le
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.-P.L.); (K.S.); (B.P.); (K.S.); (Y.K.); (M.M.); (Y.S.); (E.S.)
- GLIA Center, University of Yamanashi, Chuo 409-3898, Japan
| | - Kozo Saito
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.-P.L.); (K.S.); (B.P.); (K.S.); (Y.K.); (M.M.); (Y.S.); (E.S.)
- GLIA Center, University of Yamanashi, Chuo 409-3898, Japan
| | - Bijay Parajuli
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.-P.L.); (K.S.); (B.P.); (K.S.); (Y.K.); (M.M.); (Y.S.); (E.S.)
- GLIA Center, University of Yamanashi, Chuo 409-3898, Japan
| | - Kent Sakai
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.-P.L.); (K.S.); (B.P.); (K.S.); (Y.K.); (M.M.); (Y.S.); (E.S.)
- GLIA Center, University of Yamanashi, Chuo 409-3898, Japan
| | - Yuto Kubota
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.-P.L.); (K.S.); (B.P.); (K.S.); (Y.K.); (M.M.); (Y.S.); (E.S.)
- GLIA Center, University of Yamanashi, Chuo 409-3898, Japan
| | - Miho Miyakawa
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.-P.L.); (K.S.); (B.P.); (K.S.); (Y.K.); (M.M.); (Y.S.); (E.S.)
- GLIA Center, University of Yamanashi, Chuo 409-3898, Japan
| | - Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.-P.L.); (K.S.); (B.P.); (K.S.); (Y.K.); (M.M.); (Y.S.); (E.S.)
- GLIA Center, University of Yamanashi, Chuo 409-3898, Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.-P.L.); (K.S.); (B.P.); (K.S.); (Y.K.); (M.M.); (Y.S.); (E.S.)
- GLIA Center, University of Yamanashi, Chuo 409-3898, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.-P.L.); (K.S.); (B.P.); (K.S.); (Y.K.); (M.M.); (Y.S.); (E.S.)
- GLIA Center, University of Yamanashi, Chuo 409-3898, Japan
| |
Collapse
|
11
|
Wang H, Zhang Z, Hongpaisan J. PKCε activator protects hippocampal microvascular disruption and memory defect in 3×Tg-Alzheimer's disease mice with cerebral microinfarcts. Front Aging Neurosci 2023; 15:1272361. [PMID: 38187357 PMCID: PMC10768563 DOI: 10.3389/fnagi.2023.1272361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/23/2023] [Indexed: 01/09/2024] Open
Abstract
Background Current evidence suggests that microvessel disease is involved in Alzheimer's disease (AD). Cerebrovascular disease correlates with cardiovascular disease and is complicated in ≈40% of AD patients. The protein kinase C (PKC) ε activator DCPLA can stimulate human antigen (Hu) R that prevents degradation and promotes the translation of mitochondrial Mn-superoxide dismutase (MnSOD) and vascular endothelial growth factor-A (VEGF) mRNAs. Methods To induce brain microinfarcts, we injected triple transgenic (3×Tg) and wild-type (WT) control mice with microbeads (20 μm caliber) into common carotid arteries, with or without the DCPLA-ME (methyl-ester) for 2 weeks. After water maze training, mice at 16 months old were examined for confocal immunohistochemistry at a single cell or microvessel level in the hippocampal CA1 area, important for spatial memory storage, and in the dorsal hippocampus by western blots. Results In 3×Tg mice without cerebral microinfarcts, an accelerating age-related increase in (mild) oxidative stress and hypoxia inducible factor (HIF)-1α, but a reduction in VEGF, mitochondrial transcription factor A (TFAM), and MnSOD were associated with capillary loss. The change was less pronounced in arterioles. However, in 3×Tg mice with cerebral microinfarcts, increasing arteriolar diameter and their wall cells were related with the strong oxidative DNA damage 8-hydroxy-2'-deoxyguanosine (8-OHdG), apoptosis (cleaved caspase 3), and sustained hypoxia (increased HIF-1α and VEGF/PKCε/extracellular signal regulated kinase or ERK pathway). Microocclusion enhanced the loss of the synaptic marker spinophilin, astrocytic number, and astrocyte-vascular coupling areas and demyelination of axons. DCPLA-ME prevented spatial memory defect; strong oxidative stress-related apoptosis; sustained hypoxia (by reducing HIF-1α and VEGF); and exaggerated cell repair in arteriolar walls, pericapillary space dilation, neuro-glial-vascular disruption, and demyelination. Conclusion In conclusion, in 3×Tg mice with cerebral microinfarcts, sustained hypoxia (increased HIF-1α and VEGF signals) is dominant with arteriolar wall thickening, and DCPLA has a protective effect on sustained hypoxia.
Collapse
Affiliation(s)
| | | | - Jarin Hongpaisan
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
12
|
Lecordier S, Menet R, Allain AS, ElAli A. Non-classical monocytes promote neurovascular repair in cerebral small vessel disease associated with microinfarctions via CX3CR1. J Cereb Blood Flow Metab 2023; 43:1873-1890. [PMID: 37340860 PMCID: PMC10676133 DOI: 10.1177/0271678x231183742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 06/22/2023]
Abstract
Cerebral small vessel disease (cSVD) constitutes a major risk factor for dementia. Monocytes play important roles in cerebrovascular disorders. Herein, we aimed to investigate the contribution of non-classical C-X3-C motif chemokine receptor (CX3CR)1 monocytes to cSVD pathobiology and therapy. To this end, we generated chimeric mice in which CX3CR1 in non-classical monocytes was either functional (CX3CR1GFP/+) or dysfunctional (CX3CR1GFP/GFP). cSVD was induced in mice via the micro-occlusion of cerebral arterioles, and novel immunomodulatory approaches targeting CX3CR1 monocyte production were used. Our findings demonstrate that CX3CR1GFP/+ monocytes transiently infiltrated the ipsilateral hippocampus and were recruited to the microinfarcts 7 days after cSVD, inversely associated with neuronal degeneration and blood-brain barrier (BBB) disruption. Dysfunctional CX3CR1GFP/GFP monocytes failed to infiltrate the injured hippocampus and were associated with exacerbated microinfarctions and accelerated cognitive decline, accompanied with an impaired microvascular structure. Pharmacological stimulation of CX3CR1GFP/+ monocyte generation attenuated neuronal loss and improved cognitive functions by promoting microvascular function and preserving cerebral blood flow (CBF). These changes were associated with elevated levels of pro-angiogenic factors and matrix stabilizers in the blood circulation. The results indicate that non-classical CX3CR1 monocytes promote neurovascular repair after cSVD and constitute a promising target for the development of new therapies.
Collapse
Affiliation(s)
- Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Quebec – Université Laval, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Romain Menet
- Neuroscience Axis, Research Center of CHU de Quebec – Université Laval, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Anne-Sophie Allain
- Neuroscience Axis, Research Center of CHU de Quebec – Université Laval, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Quebec – Université Laval, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
13
|
Fan Y, Yang Y, Lin K, Zhou X, Li Y, Lin Q. The effect of AQP4 on tau protein aggregation in neurodegeneration and persistent neuroinflammation after cerebral microinfarcts. Open Med (Wars) 2023; 18:20230800. [PMID: 37873537 PMCID: PMC10590608 DOI: 10.1515/med-2023-0800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 10/25/2023] Open
Abstract
This study aimed to investigate the effect of aquaporin-4 (AQP4) on tau protein aggregation in neurodegeneration and persistent neuroinflammation after cerebral microinfarcts. A model of diffuse ischemic brain injury was established, and adenovirus was injected stereotactically through the lateral ventricle of mice. The water content of the brain tissue was measured. The co-expression of glial fibrillary acidic protein (GFAP) and AQP4 and the aggregation of p-tau and neuronal marker were detected through immunofluorescence double staining. The expression of phosphorylated microtubule-associated protein tau (p-tau, Ser202/Thr205, Thr205, Ser396, Ser404), interleukin(IL)-6, IL-1β, tumor necrosis factor (TNF)-a, growth associated protein43 (GAP43), GFAP, and ionized calcium-binding adapter molecule 1 (Iba1) was detected through Western blot. It was found that the brain water content in the model group was increased and decreased after the AQP4 interference. Compared with the sham group, the expression of GFAP, p-tau, IL-1β, TNF-a, Iba1, and p-tau was increased in the model group (p < 0.05). Compared with the model group, the expression of p-tau, IL-6, IL-1β, TNF-a, GFAP, and Iba1 was decreased after AQP4 interference (p < 0.05). It is indicated that AQP4 positively regulates neurodegeneration and persistent neuroinflammation caused by tau protein aggregation after cerebral microinfarcts.
Collapse
Affiliation(s)
- Yong Fan
- Central Laboratory, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, Fujian, 350009, China
| | - Yongkai Yang
- Department of Neurosurgery, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, Fujian, 350009, China
| | - Kunzhe Lin
- Department of Neurosurgery, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, Fujian, 350009, China
| | - Xiaohui Zhou
- Department of Neurosurgery, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, Fujian, 350009, China
| | - Yongkun Li
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, No. 134, East Street, Fuzhou, Fujian, 350001, China
| | - Qingqiang Lin
- College of Life Sciences, Fujian Normal University, Qishan Campus, No. 13 Science and Engineering Building, Fuzhou, Fujian, 350117, China
| |
Collapse
|
14
|
Zeng L, Hu S, Zeng L, Chen R, Li H, Yu J, Yang H. Animal Models of Ischemic Stroke with Different Forms of Middle Cerebral Artery Occlusion. Brain Sci 2023; 13:1007. [PMID: 37508939 PMCID: PMC10377124 DOI: 10.3390/brainsci13071007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Ischemic stroke is a common type of stroke that significantly affects human well-being and quality of life. In order to further characterize the pathophysiology of ischemic stroke and develop new treatment strategies, ischemic stroke models with controllable and consistent response to potential clinical treatments are urgently needed. The middle cerebral artery occlusion (MCAO) model is currently the most widely used animal model of ischemic stroke. This review discusses various methods for constructing the MCAO model and compares their advantages and disadvantages in order to provide better approaches for studying ischemic stroke.
Collapse
Affiliation(s)
- Lang Zeng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shengqi Hu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lingcheng Zeng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rudong Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hua Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiasheng Yu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongkuan Yang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
15
|
Shen Y, Cui J, Zhang S, Wang Y, Wang J, Su Y, Xu D, Liu Y, Guo Y, Bai W. Temporal alteration of microglia to microinfarcts in rat brain induced by the vascular occlusion with fluorescent microspheres. Front Cell Neurosci 2022; 16:956342. [PMID: 35990892 PMCID: PMC9381699 DOI: 10.3389/fncel.2022.956342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/04/2022] [Indexed: 12/02/2022] Open
Abstract
Microglia, the resident immune cells in the central nervous system, can monitor the microenvironment and actively respond to ischemic stroke and other brain injuries. In this procedure, microglia and neurons can cross-talk via transmembrane chemokine, Fractalkine (CX3CL1), to impact one another. We used a rat model of multifocal microinfarcts induced by the injection of fluorescent microspheres into the right common carotid artery and examined the morphological alteration of blood vessels, microglia, astrocytes, and neurons at 6 h, 1, 7, and 14 days after modeling, along with neurobehavioral tests and the staining of CX3CL1 in this study. Our results demonstrated that in the infarcted regions, astrocytes and microglia activated in response to neuronal degeneration and upregulation of cleaved caspase-3, which occurred concurrently with vascular alteration and higher expression of CX3CL1. We provided sequential histological data to shed light on the morphological changes after modeling, which would help in the identification of new targets and the choice of the ideal time window for therapeutic intervention in ischemic stroke.
Collapse
Affiliation(s)
- Yi Shen
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingjing Cui
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuang Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuqing Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuxin Su
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongsheng Xu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yihan Liu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yating Guo
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wanzhu Bai
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Wanzhu Bai
| |
Collapse
|
16
|
Muramyl Dipeptide Administration Delays Alzheimer’s Disease Physiopathology via NOD2 Receptors. Cells 2022; 11:cells11142241. [PMID: 35883683 PMCID: PMC9321587 DOI: 10.3390/cells11142241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 01/27/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia in the world. The prevalence is steadily increasing due to an aging population and the lack of effective treatments. However, modulation of innate immune cells is a new therapeutic avenue, which is quite effective at delaying disease onset and improving cognitive decline. Methods: We studied the effect of the NOD2 receptor ligand muramyl dipeptide (MDP) on the modulation of the innate immune cells, namely patrolling monocytes and microglia. We administrated MDP once a week for 3 months in an APPswe/PS1 mouse model in both sexes. We started the treatment at 3 months before plaque formation and evaluated its effects at 6 months. Results: We showed that the MDP injections delay cognitive decline in both sexes via different mechanisms and protect the blood brain barrier (BBB). In males, MDP triggers the sink effect from the BBB, leading to a diminution in the amyloid load in the brain. This phenomenon is underlined by the increased expression of phagocytosis markers such as TREM2, CD68, and LAMP2 and a higher expression of ABCB1 and LRP1 at the BBB level. The beneficial effect seems more restricted to the brain in females treated with MDP, where microglia surround amyloid plaques and prevent the spreading of amyloid peptides. This phenomenon is also associated with an increase in TREM2 expression. Interestingly, both treated groups showed an increase in Arg-1 expression compared to controls, suggesting that MDP modulates the inflammatory response. Conclusion: These results indicate that stimulation of the NOD2 receptor in innate immune cells is a promising therapeutic avenue with potential different mechanisms between males and females.
Collapse
|
17
|
Amyloid Beta Alters Prefrontal-dependent Functions Along with its Excitability and Synaptic Plasticity in Male Rats. Neuroscience 2022; 498:260-279. [PMID: 35839923 DOI: 10.1016/j.neuroscience.2022.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/20/2022] [Accepted: 07/07/2022] [Indexed: 12/17/2022]
Abstract
Prefrontal cortex (PFC)-related functions, such as working memory (WM) and cognitive flexibility (CF), are among the first to be altered at early stages of Alzheimer's disease (AD). Likewise, transgenic AD models carrying different AD-related mutations, mostly linked to the overproduction of amyloid beta (Aβ) and other peptides, show premature behavioral and functional symptoms associated with PFC alterations. However, little is known about the effects of intracerebral or intra-PFC Aβ infusion on WM and CF, as well as on pyramidal cell excitability and plasticity. Thus, here we evaluated the effects of a single Aβ injection, directly into the PFC, or its intracerebroventricular (icv) application, on PFC-dependent behaviors and on the intrinsic and synaptic properties of layer V pyramidal neurons in PFC slices. We found that a single icv Aβ infusion reduced learning and performance of a delayed non-matching-to-sample WM task and prevented reversal learning in a matching-to-sample version of the task, several weeks after its infusion. The inhibition of WM performance was reproduced more potently by a single PFC Aβ infusion and was associated with Aβ accumulation. This behavioral disruption was related to increased layer V pyramidal cell firing, larger sag membrane potential, increased fast after-hyperpolarization and a failure to sustain synaptic long-term potentiation, even leading to long-term depression, at both the hippocampal-PFC pathway and intracortical synapses. These findings show that Aβ can affect PFC excitability and synaptic plasticity balance, damaging PFC-dependent functions, which could constitute the foundations of the early alterations in executive functions in AD patients.
Collapse
|