1
|
Wang J, Wang B, Xiao J, Chen Y, Wang C. Chlamydia psittaci: A zoonotic pathogen causing avian chlamydiosis and psittacosis. Virulence 2024; 15:2428411. [PMID: 39541409 PMCID: PMC11622591 DOI: 10.1080/21505594.2024.2428411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 10/07/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Chlamydia psittaci is an obligate intracellular gram-negative bacterium with a unique biphasic developmental cycle. It is a zoonotic pathogen with a wide range of hosts and can cause avian chlamydiosis in birds and psittacosis in humans. The pathogen is transmitted mainly through horizontal transmission between birds. Cross-species transmission sometimes occurs and human-to-human transmission has recently been confirmed. This review provides an updated overview of C. psittaci from the perspective of both avian chlamydiosis and psittacosis. We include the aspects of genotype, host-pathogen interaction, transmission, epidemiology, detection and diagnosis, clinical manifestation, management, and prevention, aiming to provide a basic understanding of C. psittaci and offer fresh insights focused on zoonosis and cross-species transmission.
Collapse
Affiliation(s)
- Jiewen Wang
- Institute of Pathogenic Biology, School of Basic Medicine, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Institute of Cell and Genetics, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Buwei Wang
- Institute of Pathogenic Biology, School of Basic Medicine, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
| | - Jian Xiao
- The Affiliated Nanhua Hospital, Department of laboratory medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuqing Chen
- Clinical Microbiology Laboratory, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Chuan Wang
- Institute of Pathogenic Biology, School of Basic Medicine, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
| |
Collapse
|
2
|
Höhler M, Alcázar-Román AR, Schenk K, Aguirre-Huamani MP, Braun C, Zrieq R, Mölleken K, Hegemann JH, Fleig U. Direct targeting of host microtubule and actin cytoskeletons by a chlamydial pathogenic effector protein. J Cell Sci 2024; 137:jcs263450. [PMID: 39099397 PMCID: PMC11444262 DOI: 10.1242/jcs.263450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024] Open
Abstract
To propagate within a eukaryotic cell, pathogenic bacteria hijack and remodulate host cell functions. The Gram-negative obligate intracellular Chlamydiaceae, which pose a serious threat to human and animal health, attach to host cells and inject effector proteins that reprogram host cell machineries. Members of the conserved chlamydial TarP family have been characterized as major early effectors that bind to and remodel the host actin cytoskeleton. We now describe a new function for the Chlamydia pneumoniae TarP member CPn0572, namely the ability to bind and alter the microtubule cytoskeleton. Thus, CPn0572 is unique in being the only prokaryotic protein that directly modulates both dynamic cytoskeletons of a eukaryotic cell. Ectopically expressed GFP-CPn0572 associates in a dose-independent manner with either cytoskeleton singly or simultaneously. In vitro, CPn0572 binds directly to microtubules. Expression of a microtubule-only CPn0572 variant resulted in the formation of an aberrantly thick, stabilized microtubule network. Intriguingly, during infection, secreted CPn0572 also colocalized with altered microtubules, suggesting that this protein also affects microtubule dynamics during infection. Our analysis points to a crosstalk between actin and microtubule cytoskeletons via chlamydial CPn0572.
Collapse
Affiliation(s)
- Mona Höhler
- Eukaryotic Microbiology, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | | | - Katharina Schenk
- Eukaryotic Microbiology, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | | | - Corinna Braun
- Institute of Functional Microbial Genomics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Rafat Zrieq
- Department of Public Health, College of Public Health and Health Informatics, University of Ha'il, Ha'il City 2440, Saudi Arabia
- Applied Science Research Centre, Applied Science Private University, Amman 11931, Jordan
| | - Katja Mölleken
- Institute of Functional Microbial Genomics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Johannes H Hegemann
- Institute of Functional Microbial Genomics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Ursula Fleig
- Eukaryotic Microbiology, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Liu J, Wang Y, Tang N, He C, Li F. CRISPR/Cas9-edited duck enteritis virus expressing Pmp17G of Chlamydia psittaci induced protective immunity in ducklings. Pathog Dis 2024; 82:ftae027. [PMID: 39400699 PMCID: PMC11558845 DOI: 10.1093/femspd/ftae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/21/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024] Open
Abstract
Chlamydia psittaci is threatening to the animal industry and human beings. Live attenuated duck enteritis virus (DEV) is considered a good vaccine vector. In the present study, the Pmp17G antigen of C. psittaci was expressed in DEV to construct a recombinant DEV-Pmp17G vaccine. The growing curve of the rDEV-Pmp17G vaccine was comparable to the parental DEV strain, and Pmp17G protein expression was detected in the cytosol and membrane of the infected host cells. A total of 30 ducklings assigned to 5 groups were used to evaluate the vaccine efficacy. The birds in the vaccine groups received 15 000 plaque forming units of the rDEV-Pmp17G vaccine via hypodermic injection. In contrast, the control groups received intramuscular inoculation with 1 × 103 embryo lethal dose of DEV vector or 50 µg of commercial recombinant major outer membrane protein (MOMP) vaccine. The rDEV-Pmp17G vaccine induced significantly higher levels of IgG antibodies than the commercial MOMP did on day 14, and the IgG antibodies persisted for 28 days. Moreover, the rDEV-Pmp17G vaccine also induced higher levels of lymphocyte proliferations compared to the DEV vector. The vaccinated animals significantly reduced lesions and enhanced bacterial clearance in the lungs and throats compared to the MOMP immunization. Thus, the rDEV-Pmp17G vaccine induced persistent IgG antibodies and lymphocyte proliferation against C. psittaci infection.
Collapse
Affiliation(s)
- Jiaqi Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100163, China
| | - Yihui Wang
- Pratt School of Engineering, Duke University, Durham, NC 27708, United States
| | - Na Tang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou 256600, China
| | - Cheng He
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100163, China
| | - Fuhuang Li
- Beijing Animal Husbandry Station, Beijing Municipal Bureau of Agriculture and Rural Affairs, Beijing 100107, China
| |
Collapse
|
4
|
Santry LA, van Vloten JP, AuYeung AWK, Mould RC, Yates JGE, McAusland TM, Petrik JJ, Major PP, Bridle BW, Wootton SK. Recombinant Newcastle disease viruses expressing immunological checkpoint inhibitors induce a pro-inflammatory state and enhance tumor-specific immune responses in two murine models of cancer. Front Microbiol 2024; 15:1325558. [PMID: 38328418 PMCID: PMC10847535 DOI: 10.3389/fmicb.2024.1325558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024] Open
Abstract
Introduction Tumor microenvironments are immunosuppressive due to progressive accumulation of mutations in cancer cells that can drive expression of a range of inhibitory ligands and cytokines, and recruitment of immunomodulatory cells, including myeloid-derived suppressor cells (MDSC), tumor-associated macrophages, and regulatory T cells (Tregs). Methods To reverse this immunosuppression, we engineered mesogenic Newcastle disease virus (NDV) to express immunological checkpoint inhibitors anti-cytotoxic T lymphocyte antigen-4 and soluble programmed death protein-1. Results Intratumoral administration of recombinant NDV (rNDV) to mice bearing intradermal B16-F10 melanomas or subcutaneous CT26LacZ colon carcinomas led to significant changes in the tumor-infiltrating lymphocyte profiles. Vectorizing immunological checkpoint inhibitors in NDV increased activation of intratumoral natural killer cells and cytotoxic T cells and decreased Tregs and MDSCs, suggesting induction of a pro-inflammatory state with greater infiltration of activated CD8+ T cells. These notable changes translated to higher ratios of activated effector/suppressor tumor-infiltrating lymphocytes in both cancer models, which is a promising prognostic marker. Whereas all rNDV-treated groups showed evidence of tumor regression and increased survival in the CT26LacZ and B16-F10, only treatment with NDV expressing immunological checkpoint blockades led to complete responses compared to tumors treated with NDV only. Discussion These data demonstrated that NDV expressing immunological checkpoint inhibitors could reverse the immunosuppressive state of tumor microenvironments and enhance tumor-specific T cell responses.
Collapse
Affiliation(s)
- Lisa A. Santry
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jacob P. van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Amanda W. K. AuYeung
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Robert C. Mould
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jacob G. E. Yates
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Thomas M. McAusland
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - James J. Petrik
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Byram W. Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sarah K. Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
5
|
Gujju R, Dewanjee S, Singh K, Andugulapati SB, Tirunavalli SK, Jaina VK, Kandimalla R, Misra S, Puvvada N. Carbon Dots' Potential in Wound Healing: Inducing M2 Macrophage Polarization and Demonstrating Antibacterial Properties for Accelerated Recovery. ACS APPLIED BIO MATERIALS 2023; 6:4814-4827. [PMID: 37886889 DOI: 10.1021/acsabm.3c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Bacterial infections and persistent inflammation can impede the intrinsic healing process of wounds. To combat this issue, researchers have delved into the potential use of carbon dots (CDs) in the regulation of inflammation and counteract infections. These CDs were synthesized using a microwave-assisted hydrothermal process and have demonstrated outstanding antibacterial and antibiofilm properties against Gram-positive and Gram-negative bacteria. Additionally, CDs displayed biocompatibility at therapeutic concentrations and the ability to specifically target mitochondria. CD treatment effectively nullified lipopolysaccharide-triggered reactive oxygen species production by macrophages, while simultaneously promoting macrophage polarization toward an anti-inflammatory phenotype (M2), leading to a reduction in inflammation and an acceleration in wound healing. In vitro scratch assays also revealed that CDs facilitated the tissue-repairing process by stimulating epithelial cell migration during reepithelialization. In vivo studies using CDs topically applied to lipopolysaccharide (LPS)-stimulated wounds in C57/BL6 mice demonstrated significant improvements in wound healing due to enhanced fibroblast proliferation, angiogenesis, and collagen deposition. Crucially, histological investigations showed no indications of systemic toxicity in vital organs. Collectively, the application of CDs has shown immense potential in speeding up the wound-healing process by regulating inflammation, preventing bacterial infections, and promoting tissue repair. These results suggest that further clinical translation of CDs should be considered.
Collapse
Affiliation(s)
- Rajesh Gujju
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Kamini Singh
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - Sai Balaji Andugulapati
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Satya Krishna Tirunavalli
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vinod Kumar Jaina
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana 506007, India
| | - Sunil Misra
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nagaprasad Puvvada
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Department of Chemistry, School of Advanced Science, VIT-AP University, Amaravati, Andhra Pradesh 522237, India
| |
Collapse
|
6
|
Turman BJ, Darville T, O'Connell CM. Plasmid-mediated virulence in Chlamydia. Front Cell Infect Microbiol 2023; 13:1251135. [PMID: 37662000 PMCID: PMC10469868 DOI: 10.3389/fcimb.2023.1251135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Chlamydia trachomatis infection of ocular conjunctiva can lead to blindness, while infection of the female genital tract can lead to chronic pelvic pain, ectopic pregnancy, and/or infertility. Conjunctival and fallopian tube inflammation and the resulting disease sequelae are attributed to immune responses induced by chlamydial infection at these mucosal sites. The conserved chlamydial plasmid has been implicated in enhancing infection, via improved host cell entry and exit, and accelerating innate inflammatory responses that lead to tissue damage. The chlamydial plasmid encodes eight open reading frames, three of which have been associated with virulence: a secreted protein, Pgp3, and putative transcriptional regulators, Pgp4 and Pgp5. Although Pgp3 is an important plasmid-encoded virulence factor, recent studies suggest that chlamydial plasmid-mediated virulence extends beyond the expression of Pgp3. In this review, we discuss studies of genital, ocular, and gastrointestinal infection with C. trachomatis or C. muridarum that shed light on the role of the plasmid in disease development, and the potential for tissue and species-specific differences in plasmid-mediated pathogenesis. We also review evidence that plasmid-associated inflammation can be independent of bacterial burden. The functions of each of the plasmid-encoded proteins and potential molecular mechanisms for their role(s) in chlamydial virulence are discussed. Although the understanding of plasmid-associated virulence has expanded within the last decade, many questions related to how and to what extent the plasmid influences chlamydial infectivity and inflammation remain unknown, particularly with respect to human infections. Elucidating the answers to these questions could improve our understanding of how chlamydia augment infection and inflammation to cause disease.
Collapse
Affiliation(s)
- Breanna J. Turman
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Toni Darville
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, United States
| | | |
Collapse
|
7
|
Zhang J, Zhu Y, Zhou Y, Gao F, Qiu X, Li J, Yuan H, Jin W, Lin W. Pediatric adenovirus pneumonia: clinical practice and current treatment. Front Med (Lausanne) 2023; 10:1207568. [PMID: 37476615 PMCID: PMC10354292 DOI: 10.3389/fmed.2023.1207568] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Adenovirus pneumonia is common in pediatric upper respiratory tract infection, which is comparatively easy to develop into severe cases and has a high mortality rate with many influential sequelae. As for pathogenesis, adenoviruses can directly damage target cells and activate the immune response to varying degrees. Early clinical recognition depends on patients' symptoms and laboratory tests, including those under 2 years old, dyspnea with systemic toxic symptoms, atelectasis or emphysema in CT image, decreased leukocytes, and significantly increased C-reaction protein (CRP) and procalcitonin (PCT), indicating the possibility of severe cases. Until now, there is no specific drug for adenovirus pneumonia, so in clinical practice, current treatment comprises antiviral drugs, respiratory support and bronchoscopy, immunomodulatory therapy, and blood purification. Additionally, post-infectious bronchiolitis obliterans (PIBO), hemophagocytic syndrome, and death should be carefully noted. Independent risk factors associated with the development of PIBO are invasive mechanical ventilation, intravenous steroid use, duration of fever, and male gender. Meanwhile, hypoxemia, hypercapnia, invasive mechanical ventilation, and low serum albumin levels are related to death. Among these, viral load and serological identification are not only "gold standard" for adenovirus pneumonia, but are also related to the severity and prognosis. Here, we discuss the progress of pathogenesis, early recognition, therapy, and risk factors for poor outcomes regarding severe pediatric adenovirus pneumonia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wei Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
8
|
Aslam M, Alkheraije KA. The prevalence of foot-and-mouth disease in Asia. Front Vet Sci 2023; 10:1201578. [PMID: 37456961 PMCID: PMC10347409 DOI: 10.3389/fvets.2023.1201578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Foot-and-mouth disease (FMD) is listed among the highly contagious diseases in animals and is endemic throughout the Asian continent. The disease is caused by the Foot-and-mouth disease virus (FMDV) and affects a wide variety of domesticated animals as well as wild ungulates. Clinically, the disease is described as a vesicular lesion on the tongue, muzzle, lips, gum, dental pad, interdigital cleft, coronary band, and heel of the foot. Sometimes these lesions give rise to lameness. Mastitis is also caused due to teat lesions. A biochemical test reveals that during FMD infection, there are elevated levels of interleukin-1 (IL-1), tumor necrosis factor-alpha, interferon-gamma (IFN-γ), interleukin-6, serum amyloid A protein, lactoferrin, mannose-binding lectin, and monocytes chemo-attractant protein-1 in the serum of infected animals. There is no specific treatment for FMD although some antivirals are given as prophylaxis and antibiotics are given to prevent secondary bacterial infection. This review presents comprehensive data on the prevalence of FMD and serotypes of FMDV that are attributable to the cause of FMD from a regional point of view. It also explains the worldwide dynamics of the seven serotypes of FMD and tries to identify epidemiological clusters of FMD in various geographical areas. Furthermore, the pathology associated with the foot and mouth disease virus along with the pathophysiology is discussed. The continent-wide prevalence and diversity patterns of FMD suggest that there is a need for stringent policies and legislation implementation regarding research and development aimed at manufacturing strain-specific vaccination, infection prevention, and control of the disease.
Collapse
Affiliation(s)
- Munazza Aslam
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Khalid A. Alkheraije
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
9
|
Liu X, Hu H, Liu J, Chen J, Chu J, Cheng H. Physcion, a novel anthraquinone derivative against Chlamydia psittaci infection. Vet Microbiol 2023; 279:109664. [PMID: 36716634 DOI: 10.1016/j.vetmic.2023.109664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/04/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023]
Abstract
Physcion, a natural anthraquinone derivative, has been reported to exert remarkable antibacterial activities against Staphylococcus aureus,Staphylococcus epidermidis and Pseudomonas aeruginosa. However, it is not fully illustrated as anti-Chlamydia substance. In the present study, minimum inhibitory concentration(MIC)values for physcion against Chlamydia psittaci(C.psittaci) 6BC, C.psittaci SBL and C.psittaci HJ were 128 μg/mL,256 μg/mL and 128 μg/mL while minimum bactericidal concentration (MBC) values were 256 μg/mL,512 μg/mL and 256 μg/mL,respectively. Moreover, Chlamydial adhesion to Hela 229 cells was blocked in a dose-dependent manner and RB-to-EB differentiation was inhibited by physcion from 28 to 48 hpi.Post treatment,upregulation of LC3-II was in a dose-dependent manner, indicating physcion activated autophagy and bacterial clearance.To validate clinical efficacy,49 SPF chickens aged 21days were divided into 5 groups and infected intra-laryngeally with 0.2 mL of 1 × 107 IFU/mL C.psittaci 6 BCE.Three days later, birds received orally with serial doses of physcion (4 mg/kg to 9 mg/kg), or 3 mg/kg of doxycycline for 6 days.Chickens with difficulty in breathing were alleviated significantly with increasing concentrations of physicon.Postmortem,lesions of air sacs were reduced significantly in a dose-dependent manner.More importantly,birds with 9 mg/kg of physcion could alleviate lesions of air sacs and lungs, and reduce bacterial loads in spleens, which was comparable to doxycycline treatment. Based on above evidences, physcion is a promising cost-effective natural drug by blocking Chlamydial adhesions to host cells, RB-to-EB differentiation and activating bacterial autophagy and it will be a good alternative to doxycycline combating virulent C.psittaci infection, contributing to eradication of Chlamydial transmission from animals to human beings.
Collapse
Affiliation(s)
- Xinyi Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huilong Hu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiaqi Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiaqi Chen
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jun Chu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - He Cheng
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
10
|
Li Q, Chen S, Yan Z, Fang H, Wang Z, He C. A Novel Intranasal Vaccine With PmpGs + MOMP Induces Robust Protections Both in Respiratory Tract and Genital System Post Chlamydia psittaci Infection. Front Vet Sci 2022; 9:855447. [PMID: 35529835 PMCID: PMC9072866 DOI: 10.3389/fvets.2022.855447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Chlamydia psittaci (C. psittaci) is a crucial zoonotic pathogen that causes severe respiratory and reproductive system disease in humans and animals. In our pioneer study, polymorphic membrane protein G (PmpG) mediated attachment to host cells as the adhesions and induced immunity against C. psittaci infection. We hypothesize that multiple PmpG antigens adjuvanted with Vibrio cholerae ghost (VCG) and chitosan gel might trigger full protection via the intranasal route (i.n). In the present study, 40 SPF chickens were randomly divided into four groups, including the PmpGs + MOMP group (i.n), major outer membrane protein (MOMP) group (i.n), PmpGs (Pmp17G + Pmp20G + Pmp21G) group (i.n), and control groups (VCG + chitosan gel) (i.n). Post twice immunizations, the PmpGs + MOMP group yielded highly level-specific IgG, IgA antibodies, and lymphocyte proliferation. As for cytokines, IFN-γ expression was upregulated significantly, while IL-10 concentration was downregulated in the PmpGs + MOMP group compared with other groups. Post challenge, exudate inflammations in air sacs, bacterial loads in lungs, and bacterial shedding in throat swabs were reduced significantly in the PmpGs + MOMP group. In the second experiment, 100 breeder ducks were divided into the PmpGs + MOMP group (i.n), the commercial MOMP group (via intramuscular injection, i.m), the inactivated EBs group (i.n), and the control group (i.n), 25 ducks per group. Post challenge, the reduced egg production recovered soon in the inactivated EBs group and the PmpGs + MOMP group. Moreover, the aforementioned two groups induced higher robust IgG antibodies, lymphocyte proliferation, and IFN-γ secretions than the commercial MOMP vaccine did. Postmortem, lower bacterial loads of spleens were determined in the PmpGs + MOMP group and the inactivated EBs group. However, bacterial clearance of follicular membranes and shedding from the vaginal tract were not significant differences among the three tested groups. Furthermore, the PmpGs + MOMP group induced lower inflammations in the follicles and oviducts. Based on the above evidence, the combination of PmpGs and MOMP adjuvanted with chitosan gel and VCG via intranasal route could induce full protection both in the respiratory system and genital tract post C. psittaci infection. More importantly, the combination antigens are superior to the inactivated EBs antigen due to no contamination to the environment and less genital inflammation. The combination of PmpGs + MOMP adjuvanted with VCG and chitosan gel might be a promising novel vaccine by blocking C. psittaci infection from animals to human beings.
Collapse
Affiliation(s)
- Qiang Li
- College of Life Science and Engineering, Foshan University, Foshan, China
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Siyu Chen
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhuanqiang Yan
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Yunfu, China
| | - Huanxin Fang
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Yunfu, China
| | - Zhanxin Wang
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Yunfu, China
- *Correspondence: Zhanxin Wang
| | - Cheng He
- College of Life Science and Engineering, Foshan University, Foshan, China
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Cheng He
| |
Collapse
|