1
|
Fang C, You Y, Luo F, Li Z, Shen Y, Wang F, Zhang J, Gan RY, Ye Y. Silk Fibroin Encapsulated Icariin Nanoparticles Mitigate Bisphenol A-Induced Spermatogenesis Dysfunction. Adv Healthc Mater 2024; 13:e2302899. [PMID: 37940136 DOI: 10.1002/adhm.202302899] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/28/2023] [Indexed: 11/10/2023]
Abstract
Bisphenol A (BPA) is a prevalent endocrine disruptor found in natural environments. Exposure to BPA has been associated with male infertility. The natural phytochemical icariin (ICA) has demonstrated significant promise for the treatment of male infertility. However, its effectiveness is limited due to its low bioavailability, poor water solubility, and insufficient targeting abilities. Herein, novel nanoparticles are generated from the natural silk fibroin, which are used to load ICA. The efficient drug delivery system (ICA-SNPs) result in significantly focused drug distribution to spermatogonium, enhancing the anti-infertility properties of ICA, and can effectively mitigate spermatogenesis dysfunction induced by BPA, control serum sex hormone levels, and enhance testicular ultrastructure. Additionally, the ICA-SNPs restore spermatogenesis dysfunction primarily via the hormone biosynthesis, spermatogonium meiosis process, and glycerophospholipid metabolism.
Collapse
Affiliation(s)
- Chunyan Fang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
- Tea Research Institute, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Yaodong You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Fan Luo
- Tea Research Institute, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Zheng Li
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yifeng Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Fangyue Wang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jingyi Zhang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Ren-You Gan
- Principal Scientist, Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore, 138669, Singapore
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
| | - Yulong Ye
- Tea Research Institute, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| |
Collapse
|
2
|
Wang Z, Pu D, Zheng J, Li P, Lü H, Wei X, Li M, Li D, Gao L. Hypoxia-induced physiological responses in fish: From organism to tissue to molecular levels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115609. [PMID: 39492173 DOI: 10.1016/j.ecoenv.2023.115609] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 11/05/2024]
Abstract
Dissolved oxygen (DO) in water bodies is a prerequisite for fish survival and plays a crucial role in fish growth, development, and physiological processes. However, with increasing eutrophication, greenhouse effects, and extreme weather conditions, DO levels in aquatic environments often become lower than normal. This leads to stress in fish, causing them to exhibit escape behavior, inhibits their growth and development, and causes tissue damage. Moreover, oxidative stress, decreased immune function, and altered metabolism have been observed. Severe hypoxia can cause massive fish mortality, resulting in significant economic losses to the aquaculture industry. In response to hypoxia, fish exhibit a series of behavioral and physiological changes that are self-protective mechanisms formed through long-term evolution. This review summarizes the effects of hypoxic stress on fish, including the asphyxiation point, behavior, growth and reproduction, tissue structure, physiological and biochemical processes, and regulation of gene expression. Furthermore, future research directions are discussed to provide new insights and references.
Collapse
Affiliation(s)
- Zhengxi Wang
- Key Laboratory of Smart Agricultural Technology in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-construction by Ministry and Province), Chongqing Academy of Agricultural Sciences, Chongqing 400715, China
| | - Decheng Pu
- Key Laboratory of Smart Agricultural Technology in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-construction by Ministry and Province), Chongqing Academy of Agricultural Sciences, Chongqing 400715, China
| | - Jishu Zheng
- Key Laboratory of Smart Agricultural Technology in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-construction by Ministry and Province), Chongqing Academy of Agricultural Sciences, Chongqing 400715, China
| | - Peiyuan Li
- Key Laboratory of Smart Agricultural Technology in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-construction by Ministry and Province), Chongqing Academy of Agricultural Sciences, Chongqing 400715, China
| | - Hongjian Lü
- Research Center of Fishery Resources and Environment, Conservation and Research Center for Aquatic Biodiversity in the Upper Reaches of Yangtze River Ministry of Agriculture and Rural Affairs, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Xiuli Wei
- Key Laboratory of Smart Agricultural Technology in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-construction by Ministry and Province), Chongqing Academy of Agricultural Sciences, Chongqing 400715, China
| | - Mai Li
- Key Laboratory of Smart Agricultural Technology in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-construction by Ministry and Province), Chongqing Academy of Agricultural Sciences, Chongqing 400715, China
| | - Dongsheng Li
- Key Laboratory of Smart Agricultural Technology in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-construction by Ministry and Province), Chongqing Academy of Agricultural Sciences, Chongqing 400715, China
| | - Lihong Gao
- Key Laboratory of Smart Agricultural Technology in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-construction by Ministry and Province), Chongqing Academy of Agricultural Sciences, Chongqing 400715, China.
| |
Collapse
|
3
|
Hao J, Wang X, Shi Y, Li L, Chu J, Li J, Lin W, Yu T, Hou D. Integrated omic profiling of the medicinal mushroom Inonotus obliquus under submerged conditions. BMC Genomics 2023; 24:554. [PMID: 37726686 PMCID: PMC10507853 DOI: 10.1186/s12864-023-09656-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND The Inonotus obliquus mushroom, a wondrous fungus boasting edible and medicinal qualities, has been widely used as a folk medicine and shown to have many potential pharmacological secondary metabolites. The purpose of this study was to supply a global landscape of genome-based integrated omic analysis of the fungus under lab-growth conditions. RESULTS This study presented a genome with high accuracy and completeness using the Pacbio Sequel II third-generation sequencing method. The de novo assembled fungal genome was 36.13 Mb, and contained 8352 predicted protein-coding genes, of which 365 carbohydrate-active enzyme (CAZyme)-coding genes and 19 biosynthetic gene clusters (BCGs) for secondary metabolites were identified. Comparative transcriptomic and proteomic analysis revealed a global view of differential metabolic change between seed and fermentation culture, and demonstrated positive correlations between transcription and expression levels of 157 differentially expressed genes involved in the metabolism of amino acids, fatty acids, secondary metabolites, antioxidant and immune responses. Facilitated by the widely targeted metabolomic approach, a total of 307 secondary substances were identified and quantified, with a significant increase in the production of antioxidant polyphenols. CONCLUSION This study provided the comprehensive analysis of the fungus Inonotus obliquus, and supplied fundamental information for further screening of promising target metabolites and exploring the link between the genome and metabolites.
Collapse
Affiliation(s)
- Jinghua Hao
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China
| | - Xiaoli Wang
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China
| | - Yanhua Shi
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China
| | - Lingjun Li
- School of Modern Agriculture and Environment, Weifang Institute of Technology, Weifang, 261053, China
| | - Jinxin Chu
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China
| | - Junjie Li
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China
| | - Weiping Lin
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China.
| | - Tao Yu
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China.
| | - Dianhai Hou
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|
4
|
Zhang Y, Shen W, Ding J, Gao X, Wu X, Zhu J. Comparative Transcriptome Analysis of Head Kidney of Aeromonas hydrophila-infected Hypoxia-tolerant and Normal Large Yellow Croaker. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:1039-1054. [PMID: 36129638 DOI: 10.1007/s10126-022-10158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The large yellow croaker (Larimichthys crocea) is one of the most economically important marine fish on the southeast coast of China and much of its yield is usually lost by hypoxia. To address this problem and lay a foundation for culturing a new strain of large yellow croaker with hypoxia tolerance, our research group screened a hypoxia-tolerant population of L. crocea. Surprisingly, we also found that hypoxia-tolerant population exhibited higher survival when infected with pathogens compared to the normal population during the farming operation. In order to understand the mechanism underlying the higher survival rate of the hypoxia-tolerant population and enrich the head kidney immune mechanism of L. crocea infected with pathogens, we compared and analyzed the head kidney transcriptome of the hypoxia-tolerant and normal individuals under Aeromonas hydrophila infection. We obtained 159.68 GB high-quality reads, of which more than 87.61% were successfully localized to the reference genome of L. crocea. KEGG analysis revealed differentially expressed genes in the signaling pathways involving immunity, cell growth and death, transport and catabolism, and metabolism. Among these, the toll-like receptor signaling pathway, Nod-like receptor signaling pathway, cytokine-cytokine receptor interaction, phagosome, apoptosis, and OXPHOS pathways were enriched in both groups after infection compared to before, and were enriched in infected tolerant individuals compared to normal individuals. In addition, we found that the expression of hif1α and its downstream genes were higher in the hypoxia-sensitive group of fish than in the normal group. In conclusion, our results showed some signaling pathways and hub genes, which may participate in A. hydrophila defense in the head kidney of two populations, and may contribute to the higher survival rate in the hypoxia-tolerant population. Overall, these findings increase our understanding of the defense mechanism within the head kidney of L. crocea under A. hydrophila infection, and suggest a preliminary hypothesis for why hypoxia-tolerant individuals may exhibit a higher survival rates after infection. Our study provides scientific evidence for the breeding of a new hypoxia-tolerant strain of L. crocea for aquaculture.
Collapse
Affiliation(s)
- Yibo Zhang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Weiliang Shen
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China.
| | - Jie Ding
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Xinming Gao
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xiongfei Wu
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Junquan Zhu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
5
|
Qiao X, Lu Y, Xu J, Deng N, Lai W, Wu Z, Lin H, Zhang Y, Lu D. Integrative analyses of mRNA and microRNA expression profiles reveal the innate immune mechanism for the resistance to Vibrio parahaemolyticus infection in Epinephelus coioides. Front Immunol 2022; 13:982973. [PMID: 36059501 PMCID: PMC9437975 DOI: 10.3389/fimmu.2022.982973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Vibrio parahaemolyticus, as one of the main pathogens of marine vibriosis, has brought huge losses to aquaculture. However, the interaction mechanism between V. parahaemolyticus and Epinephelus coioides remains unclear. Moreover, there is a lack of comprehensive multi-omics analysis of the immune response of grouper spleen to V. parahaemolyticus. Herein, E. coioides was artificially injected with V. parahaemolyticus, and it was found that the mortality was 16.7% in the early stage of infection, and accompanied by obvious histopathological lesions in the spleen. Furthermore, 1586 differentially expressed genes were screened by mRNA-seq. KEGG analysis showed that genes were significantly enriched in immune-related pathways, Acute-phase immune response, Apoptosis, Complement system and Cytokine-cytokine receptor interaction. As for miRNA-seq analysis, a total of 55 significantly different miRNAs were identified. Further functional annotation analysis indicated that the target genes of differentially expressed miRNAs were enriched in three important pathways (Phosphatidylinositol signaling system, Lysosome and Focal adhesions). Through mRNA-miRNA integrated analysis, 1427 significant miRNA–mRNA pairs were obtained and “p53 signaling pathway”, “Intestinal immune network for IgA production” were considered as two crucial pathways. Finally, miR-144-y, miR-497-x, novel-m0459-5p, miR-7133-y, miR-378-y, novel-m0440-5p and novel-m0084-3p may be as key miRNAs to regulate immune signaling pathways via the miRNA-mRNA interaction network. The above results suggest that the mRNA-miRNA integrated analysis not only sheds new light on the molecular mechanisms underlying the interaction between host and V. parahaemolyticus but also provides valuable and new insights into resistance to vibrio infection.
Collapse
Affiliation(s)
- Xifeng Qiao
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
| | - Yuyou Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Jiachang Xu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Niuniu Deng
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Wenjie Lai
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Ziyi Wu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Ocean, Haikou, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Yong Zhang, ; Danqi Lu,
| | - Danqi Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Yong Zhang, ; Danqi Lu,
| |
Collapse
|