1
|
Palecki J, Bhasin A, Bernstein A, Mille PJ, Tester WJ, Kelly WK, Zarrabi KK. T-Cell redirecting bispecific antibodies: a review of a novel class of immuno-oncology for advanced prostate cancer. Cancer Biol Ther 2024; 25:2356820. [PMID: 38801069 PMCID: PMC11135853 DOI: 10.1080/15384047.2024.2356820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Novel T-cell immunotherapies such as bispecific T-cell engagers (BiTEs) are emerging as promising therapeutic strategies for prostate cancer. BiTEs are engineered bispecific antibodies containing two distinct binding domains that allow for concurrent binding to tumor-associated antigens (TAAs) as well as immune effector cells, thus promoting an immune response against cancer cells. Prostate cancer is rich in tumor associated antigens such as, but not limited to, PSMA, PSCA, hK2, and STEAP1 and there is strong biologic rationale for employment of T-cell redirecting BiTEs within the prostate cancer disease space. Early generation BiTE constructs employed in clinical study have demonstrated meaningful antitumor activity, but challenges related to drug delivery, immunogenicity, and treatment-associated adverse effects limited their success. The ongoing development of novel BiTE constructs continues to address these barriers and to yield promising results in terms of efficacy and safety. This review will highlight some of most recent developments of BiTE therapies for patients with advanced prostate cancer and the evolving data surrounding BiTE constructs undergoing clinical evaluation.
Collapse
Affiliation(s)
- Julia Palecki
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Amman Bhasin
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Andrew Bernstein
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Patrick J. Mille
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - William J. Tester
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Wm. Kevin Kelly
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Kevin K. Zarrabi
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| |
Collapse
|
2
|
Ma S, Xu M, Zhang J, Li T, Zhou Q, Xi Z, Wang Z, Wang J, Ge Y. Analysis and functional validations of multiple cell death patterns for prognosis in prostate cancer. Int Immunopharmacol 2024; 143:113216. [PMID: 39353397 DOI: 10.1016/j.intimp.2024.113216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Prostate cancer (PCa) has garnered significant attention due to its rising incidence, variable therapeutic outcomes, and the absence of reliable prognostic markers. The significance of different cell death patterns in tumor development underscores their potential as predictors of PCa prognosis. This study utilized The Cancer Genome Atlas (TCGA) datasets to evaluate the prognostic capabilities of 15 cell death patterns and established a Cell Death Index (CDI) signature based on necrosis and cuproptosis-related genes. The predictive efficacy of the CDI signature was validated in our PCa cohort and in two public datasets: Deutsches Krebsforschungszentrum (DKFZ) and Memorial Sloan-Kettering Cancer Center (MSKCC) PCa cohorts. Our comprehensive analysis examined the relationship between CDI signature and clinical characteristics, published prognostic signatures, gene mutations, immune cell infiltration, enrichment pathways, and drug sensitivity in PCa. In vitro and in vivo studies assessed the impact of EDA2R and LOXL2 on PCa progression. The CDI signature exhibited robust predictive performance across three independent validation sets, with 1-, 2-, 3-, 4-, and 5-year area under the curve (AUC) values in the TCGA cohort of 0.866, 0.77, 0.836, 0.776, and 0.787, respectively. Higher CDI scores were correlated with advanced T and N stages, elevated Gleason scores, increased immune cell infiltration, gene mutations, and drug sensitivity. EDA2R inhibited PCa cell proliferation and migration, related to tumor necrosis, while LOXL2 promoted these processes and was associated with cuproptosis. In summary, our study identified a novel CDI signature as an effective indicator for diagnosis, personalized treatment, and prognostic assessment in PCa.
Collapse
Affiliation(s)
- Sheng Ma
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mengyao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Junbiao Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Tengfei Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Qiang Zhou
- Department of Urology, Qinghai University Affiliated Hospital, Qinghai University Medical College, Xining, Qinghai 810001, China
| | - Zirui Xi
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhihua Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Jing Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Yue Ge
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
3
|
Li Z, Li Z, Luo Y, Chen W, Fang Y, Xiong Y, Zhang Q, Yuan D, Yan B, Zhu J. Application and new findings of scRNA-seq and ST-seq in prostate cancer. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:23. [PMID: 39470950 PMCID: PMC11522250 DOI: 10.1186/s13619-024-00206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/12/2024] [Indexed: 11/01/2024]
Abstract
Prostate cancer is a malignant tumor of the male urological system with the highest incidence rate in the world, which seriously threatens the life and health of middle-aged and elderly men. The progression of prostate cancer involves the interaction between tumor cells and tumor microenvironment. Understanding the mechanisms of prostate cancer pathogenesis and disease progression is important to guide diagnosis and therapy. The emergence of single-cell RNA sequencing (scRNA-seq) and spatial transcriptome sequencing (ST-seq) technologies has brought breakthroughs in the study of prostate cancer. It makes up for the defects of traditional techniques such as fluorescence-activated cell sorting that are difficult to elucidate cell-specific gene expression. This review summarized the heterogeneity and functional changes of prostate cancer and tumor microenvironment revealed by scRNA-seq and ST-seq, aims to provide a reference for the optimal diagnosis and treatment of prostate cancer.
Collapse
Affiliation(s)
- Zhuang Li
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang city, 550004, Guizhou Province, China
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang city, 550002, Guizhou Province, China
| | - Zhengnan Li
- Graduate School of Zunyi Medical University, Zunyi City, 563099, Guizhou Province, China
| | - Yuanyuan Luo
- Medical College of Guizhou University, Guiyang city, 550025, Guizhou Province, China
| | - Weiming Chen
- Medical College of Guizhou University, Guiyang city, 550025, Guizhou Province, China
| | - Yinyi Fang
- Medical College of Guizhou University, Guiyang city, 550025, Guizhou Province, China
| | - Yuliang Xiong
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang city, 550004, Guizhou Province, China
| | - Qinyi Zhang
- Graduate School of Zunyi Medical University, Zunyi City, 563099, Guizhou Province, China
| | - Dongbo Yuan
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang city, 550002, Guizhou Province, China
| | - Bo Yan
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang city, 550002, Guizhou Province, China
| | - Jianguo Zhu
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang city, 550004, Guizhou Province, China.
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang city, 550002, Guizhou Province, China.
- Graduate School of Zunyi Medical University, Zunyi City, 563099, Guizhou Province, China.
- Medical College of Guizhou University, Guiyang city, 550025, Guizhou Province, China.
| |
Collapse
|
4
|
Zhang K, Liu K, Hu B, Du G, Chen X, Xiao L, Zhang Y, Jiang L, Jing N, Cheng C, Wang J, Xu P, Wang Y, Ma P, Zhuang G, Zhao H, Sun Y, Wang D, Wang Q, Xue W, Gao WQ, Zhang P, Zhu HH. Iron-loaded cancer-associated fibroblasts induce immunosuppression in prostate cancer. Nat Commun 2024; 15:9050. [PMID: 39426954 PMCID: PMC11490570 DOI: 10.1038/s41467-024-53233-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Iron is an essential biomineral in the human body. Here, we describe a subset of iron-loaded cancer-associated fibroblasts, termed as FerroCAFs, that utilize iron to induce immunosuppression in prostate cancer and predict an unfavorable clinical outcome. FerroCAFs secrete myeloid cell-associated proteins, including CCL2, CSF1 and CXCL1, to recruit immunosuppressive myeloid cells. We report the presence of FerroCAFs in prostate cancer from both mice and human, as well as in human lung and ovarian cancers, and identify a conserved cell surface marker, the poliovirus receptor. Mechanistically, the accumulated iron in FerroCAFs is caused by Hmox1-mediated iron release from heme degradation. The intracellular iron activates the Kdm6b, an iron-dependent epigenetic enzyme, to induce an accessible chromatin state and transcription of myeloid cell-associated protein genes. Targeting the FerroCAFs by inhibiting the Hmox1/iron/Kdm6b signaling axis incurs anti-tumor immunity and tumor suppression. Collectively, we report an iron-loaded FerroCAF cluster that drives immunosuppression through an iron-dependent epigenetic reprogramming mechanism and reveal promising therapeutic targets to boost anti-tumor immunity.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiyuan Liu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Benxia Hu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Genyu Du
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Chen
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingling Xiao
- Department of Emergency Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingchao Zhang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luyao Jiang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Jing
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaping Cheng
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinming Wang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Penghui Xu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - You Wang
- Department of Obstetrics and Gynaecology, Shanghai Key Laboratory of Gynaecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengfei Ma
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanglei Zhuang
- Department of Obstetrics and Gynaecology, Shanghai Key Laboratory of Gynaecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huifang Zhao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujiao Sun
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Deng Wang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Wang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Xue
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengcheng Zhang
- School of Biomedical Engineering, Shanghai Tech University, Shanghai, China
| | - Helen He Zhu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Miyahira AK, Kamran SC, Jamaspishvili T, Marshall CH, Maxwell KN, Parolia A, Zorko NA, Pienta KJ, Soule HR. Disrupting prostate cancer research: Challenge accepted; report from the 2023 Coffey-Holden Prostate Cancer Academy Meeting. Prostate 2024; 84:993-1015. [PMID: 38682886 DOI: 10.1002/pros.24721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
INTRODUCTION The 2023 Coffey-Holden Prostate Cancer Academy (CHPCA) Meeting, themed "Disrupting Prostate Cancer Research: Challenge Accepted," was convened at the University of California, Los Angeles, Luskin Conference Center, in Los Angeles, CA, from June 22 to 25, 2023. METHODS The 2023 marked the 10th Annual CHPCA Meeting, a discussion-oriented scientific think-tank conference convened annually by the Prostate Cancer Foundation, which centers on innovative and emerging research topics deemed pivotal for advancing critical unmet needs in prostate cancer research and clinical care. The 2023 CHPCA Meeting was attended by 81 academic investigators and included 40 talks across 8 sessions. RESULTS The central topic areas covered at the meeting included: targeting transcription factor neo-enhancesomes in cancer, AR as a pro-differentiation and oncogenic transcription factor, why few are cured with androgen deprivation therapy and how to change dogma to cure metastatic prostate cancer without castration, reducing prostate cancer morbidity and mortality with genetics, opportunities for radiation to enhance therapeutic benefit in oligometastatic prostate cancer, novel immunotherapeutic approaches, and the new era of artificial intelligence-driven precision medicine. DISCUSSION This article provides an overview of the scientific presentations delivered at the 2023 CHPCA Meeting, such that this knowledge can help in facilitating the advancement of prostate cancer research worldwide.
Collapse
Affiliation(s)
- Andrea K Miyahira
- Science Department, Prostate Cancer Foundation, Santa Monica, California, USA
| | - Sophia C Kamran
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tamara Jamaspishvili
- Department of Pathology and Laboratory Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Catherine H Marshall
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kara N Maxwell
- Department of Medicine-Hematology/Oncology and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Medicine Service, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Abhijit Parolia
- Department of Pathology, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicholas A Zorko
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- University of Minnesota Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Howard R Soule
- Science Department, Prostate Cancer Foundation, Santa Monica, California, USA
| |
Collapse
|
6
|
Zhou T, Pan J, Yan C, Yuan J, Song H, Han Y. Unveiling shared biomarkers and therapeutic targets between systemic lupus erythematosus and heart failure through bioinformatics analysis. Front Med (Lausanne) 2024; 11:1402010. [PMID: 38912340 PMCID: PMC11190381 DOI: 10.3389/fmed.2024.1402010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024] Open
Abstract
Background Systemic lupus erythematosus (SLE) is frequently accompanied by various complications, with cardiovascular diseases being particularly concerning due to their high mortality rate. Although there is clinical evidence suggesting a potential correlation between SLE and heart failure (HF), the underlying shared mechanism is not fully understood. Therefore, it is imperative to explore the potential mechanisms and shared therapeutic targets between SLE and HF. Methods The SLE and HF datasets were downloaded from the NCBI Gene Expression Omnibus database. Differentially expressed genes (DEGs) in both SLE and HF were performed using "limma" R package. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genes (KEGG) analyses were conducted to analyze the enriched functions and pathways of DEGs in both SLE and HF datasets. Protein-Protein Interaction network (PPI) and the molecular complex detection (MCODE) plugins in the Cytoscape software were performed to identify the shared hub genes between SLE and HF datasets. R package "limma" was utilized to validate the expression of hub genes based on SLE (GSE122459) and HF (GSE196656) datasets. CIBERSORT algorithm was utilized to analyze the immune cell infiltration of SLE and HF samples based on SLE (GSE112087) and HF (GSE116250) datasets. A weighted gene co-expression network analysis (WGCNA) network was established to further validate the hub genes based on HF dataset (GSE116250). Molecular biology techniques were conducted to validate the hub genes. Results 999 shared DGEs were identified between SLE and HF datasets, which were mainly enriched in pathways related to Th17 cell differentiation. 5 shared hub genes among the common DGEs between SLE and HF datasets were screened and validated, including HSP90AB1, NEDD8, RPLP0, UBB, and UBC. Additionally, 5 hub genes were identified in the central part of the MEbrown module, showing the strongest correlation with dilated cardiomyopathy. HSP90AB1 and UBC were upregulated in failing hearts compared to non-failing hearts, while UBB, NEDD8, and RPLP0 did not show significant changes. Conclusion HSP90AB1 and UBC are closely related to the co-pathogenesis of SLE and HF mediated by immune cell infiltration. They serve as promising molecular markers and potential therapeutic targets for the treatment of SLE combined with HF.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jing Pan
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Chenghui Yan
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jing Yuan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haixu Song
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yaling Han
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
7
|
Xing W, Xu S, Zhang H. Establishment and validation of a prognostic scoring model based on disulfidptosis-related long non-coding RNAs in stomach adenocarcinoma. Transl Cancer Res 2024; 13:2357-2371. [PMID: 38881918 PMCID: PMC11170542 DOI: 10.21037/tcr-23-2067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/31/2024] [Indexed: 06/18/2024]
Abstract
Background Stomach adenocarcinoma (STAD), a frequently occurring gastrointestinal tumour, is often detected late and has a poor prognosis. Long non-coding RNAs (lncRNAs) significantly affect tumour development. Recent studies have identified disulfidptosis as a previously unexplained form of cell death. Herein, we aimed to examine the predictive value of disulfidptosis-related lncRNA models for the clinical prognosis and immunotherapy of STAD. Methods STAD-related transcriptomic data were obtained from The Cancer Genome Atlas (TCGA), whereas genes associated with disulfidptosis were identified from previously published papers. A risk prediction model for disulfidptosis-related lncRNAs was developed using the Cox regression and least absolute shrinkage selection algorithm methods. The accuracy of the model was confirmed using calibration curves, and the biological functions were analysed using Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA). Finally, the tumour mutation burden (TMB) and tumour immune dysfunction and exclusion (TIDE) algorithms were used to screen drugs that are sensitive to STAD. Results The risk prediction models were constructed using seven disulfidptosis-related lncRNAs. The validated results were consistent with the predicted ones, with significant survival differences. When combined with clinical data, the risk scores were used as independent prognostic markers. Based on the tumour mutation load, the high-risk patient group had a poorer survival rate as compared with the low-risk patient group. Further studies were conducted to understand the different groups' inconsistent responses to immune status; subsequently, relatively sensitive drugs were identified. Conclusions Overall, seven markers of disulfidptosis-related lncRNAs associated with STAD were found to facilitate prognostic prediction, suggesting new ideas for immunotherapy and clinical applications.
Collapse
Affiliation(s)
- Weiming Xing
- First Clinical College, Hainan Medical University, Haikou, China
| | - Shikai Xu
- First Clinical College, Hainan Medical University, Haikou, China
| | - Hao Zhang
- Department of General Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
8
|
Ullah A, Jiao W, Shen B. The role of proinflammatory cytokines and CXC chemokines (CXCL1-CXCL16) in the progression of prostate cancer: insights on their therapeutic management. Cell Mol Biol Lett 2024; 29:73. [PMID: 38745115 PMCID: PMC11094955 DOI: 10.1186/s11658-024-00591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Reproductive cancers are malignancies that develop in the reproductive organs. One of the leading cancers affecting the male reproductive system on a global scale is prostate cancer (PCa). The negative consequences of PCa metastases endure and are severe, significantly affecting mortality and life quality for those who are affected. The association between inflammation and PCa has captured interest for a while. Inflammatory cells, cytokines, CXC chemokines, signaling pathways, and other elements make up the tumor microenvironment (TME), which is characterized by inflammation. Inflammatory cytokines and CXC chemokines are especially crucial for PCa development and prognosis. Cytokines (interleukins) and CXC chemokines such as IL-1, IL-6, IL-7, IL-17, TGF-β, TNF-α, CXCL1-CXCL6, and CXCL8-CXCL16 are thought to be responsible for the pleiotropic effects of PCa, which include inflammation, progression, angiogenesis, leukocyte infiltration in advanced PCa, and therapeutic resistance. The inflammatory cytokine and CXC chemokines systems are also promising candidates for PCa suppression and immunotherapy. Therefore, the purpose of this work is to provide insight on how the spectra of inflammatory cytokines and CXC chemokines evolve as PCa develops and spreads. We also discussed recent developments in our awareness of the diverse molecular signaling pathways of these circulating cytokines and CXC chemokines, as well as their associated receptors, which may one day serve as PCa-targeted therapies. Moreover, the current status and potential of theranostic PCa therapies based on cytokines, CXC chemokines, and CXC receptors (CXCRs) are examined.
Collapse
Affiliation(s)
- Amin Ullah
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wang Jiao
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Deng Z, Li B, Yang M, Lu L, Shi X, Lovell JF, Zeng X, Hu W, Jin H. Irradiated microparticles suppress prostate cancer by tumor microenvironment reprogramming and ferroptosis. J Nanobiotechnology 2024; 22:225. [PMID: 38705987 PMCID: PMC11070086 DOI: 10.1186/s12951-024-02496-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
Immunogenic cell death (ICD) plays a crucial role in triggering the antitumor immune response in the tumor microenvironment (TME). Recently, considerable attention has been dedicated to ferroptosis, a type of ICD that is induced by intracellular iron and has been demonstrated to change the immune desert status of the TME. However, among cancers that are characterized by an immune desert, such as prostate cancer, strategies for inducing high levels of ferroptosis remain limited. Radiated tumor cell-derived microparticles (RMPs) are radiotherapy mimetics that have been shown to activate the cGAS-STING pathway, induce tumor cell ferroptosis, and inhibit M2 macrophage polarization. RMPs can also act as carriers of agents with biocompatibility. In the present study, we designed a therapeutic system wherein the ferroptosis inducer RSL-3 was loaded into RMPs, which were tested in in vitro and in vivo prostate carcinoma models established using RM-1 cells. The apoptosis inducer CT20 peptide (CT20p) was also added to the RMPs to aggravate ferroptosis. Our results showed that RSL-3- and CT20p-loaded RMPs (RC@RMPs) led to ferroptosis and apoptosis of RM-1 cells. Moreover, CT20p had a synergistic effect on ferroptosis by promoting reactive oxygen species (ROS) production, lipid hydroperoxide production, and mitochondrial instability. RC@RMPs elevated dendritic cell (DC) expression of MHCII, CD80, and CD86 and facilitated M1 macrophage polarization. In a subcutaneously transplanted RM-1 tumor model in mice, RC@RMPs inhibited tumor growth and prolonged survival time via DC activation, macrophage reprogramming, enhancement of CD8+ T cell infiltration, and proinflammatory cytokine production in the tumor. Moreover, combination treatment with anti-PD-1 improved RM-1 tumor inhibition. This study provides a strategy for the synergistic enhancement of ferroptosis for prostate cancer immunotherapies.
Collapse
Affiliation(s)
- Zihan Deng
- Department of Thoracic Surgery, ZhongNan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Binghui Li
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Muyang Yang
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lisen Lu
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiujuan Shi
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Xiantao Zeng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Weidong Hu
- Department of Thoracic Surgery, ZhongNan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
10
|
Dakal TC, George N, Xu C, Suravajhala P, Kumar A. Predictive and Prognostic Relevance of Tumor-Infiltrating Immune Cells: Tailoring Personalized Treatments against Different Cancer Types. Cancers (Basel) 2024; 16:1626. [PMID: 38730579 PMCID: PMC11082991 DOI: 10.3390/cancers16091626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
TIICs are critical components of the TME and are used to estimate prognostic and treatment responses in many malignancies. TIICs in the tumor microenvironment are assessed and quantified by categorizing immune cells into three subtypes: CD66b+ tumor-associated neutrophils (TANs), FoxP3+ regulatory T cells (Tregs), and CD163+ tumor-associated macrophages (TAMs). In addition, many cancers have tumor-infiltrating M1 and M2 macrophages, neutrophils (Neu), CD4+ T cells (T-helper), CD8+ T cells (T-cytotoxic), eosinophils, and mast cells. A variety of clinical treatments have linked tumor immune cell infiltration (ICI) to immunotherapy receptivity and prognosis. To improve the therapeutic effectiveness of immune-modulating drugs in a wider cancer patient population, immune cells and their interactions in the TME must be better understood. This study examines the clinicopathological effects of TIICs in overcoming tumor-mediated immunosuppression to boost antitumor immune responses and improve cancer prognosis. We successfully analyzed the predictive and prognostic usefulness of TIICs alongside TMB and ICI scores to identify cancer's varied immune landscapes. Traditionally, immune cell infiltration was quantified using flow cytometry, immunohistochemistry, gene set enrichment analysis (GSEA), CIBERSORT, ESTIMATE, and other platforms that use integrated immune gene sets from previously published studies. We have also thoroughly examined traditional limitations and newly created unsupervised clustering and deconvolution techniques (SpatialVizScore and ProTICS). These methods predict patient outcomes and treatment responses better. These models may also identify individuals who may benefit more from adjuvant or neoadjuvant treatment. Overall, we think that the significant contribution of TIICs in cancer will greatly benefit postoperative follow-up, therapy, interventions, and informed choices on customized cancer medicines.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Nancy George
- Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India;
| | - Caiming Xu
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of the City of Hope, Monrovia, CA 91010, USA;
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana P.O. 690525, Kerala, India;
| | - Abhishek Kumar
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India
| |
Collapse
|
11
|
Borikun T, Mushii O, Pavlova A, Burda T, Zadvornyi T. TUMOR MICROENVIRONMENT-ASSOCIATED miR-7-5p, miR-19a-3p, AND miR-23b-3p EXPRESSION IN PROSTATE CANCER WITH DIFFERENT PROGRESSION RISK. Exp Oncol 2024; 45:432-442. [PMID: 38328847 DOI: 10.15407/exp-oncology.2023.04.432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND The tumor microenvironment (TME) plays an important role in the occurrence and progression of prostate cancer (PCa). At the same time, the mechanisms and features of the interaction between tumor cells and individual components of the TME in PCa remain not fully elucidated. The aim was to study the expression levels of tumor-associated miR-7-5p, miR-19a-3p, and miR-23b-3p in the PCa tissue and to analyze their relationship with the features of TME. MATERIALS AND METHODS The work is based on the analysis of the results of the examination and treatment of 50 patients with PCa of stages II-IV. The expression of miRNA in the PCa tissue was analyzed by the real-time polymerase chain reaction. The expression of alpha-smooth muscle actin (α-SMA), vimentin (VIM), and CD68 in PCa tissue was determined by the immunohistochemical method. The identification of mast cells in the PCa tissue was assessed by the histochemical method. RESULTS The analysis of the expression levels of tumor-associated miRNAs demonstrated that the tumor tissue of patients with a high risk of PCa progression was characterized by 4.93 (p < 0.01) and 8.97 (p < 0.05) times higher levels of miR-19a-3p and miR-23b-3p, respectively, compared to similar indicators in the group of patients with a low risk of PCa progression. The levels of miR-7-5p and miR-19a-3p expression in the PCa tissue correlated with the expression level of α-SMA (r = 0.49 and r = 0.45, respectively; p < 0.05) and VIM (r = 0.45 and r = 0.46; respectively, p < 0.05). A direct relationship (r = 0.44; p < 0.05) was established between the level of miR-7-5p expression and the degree of infiltration of the prostate gland tissue by tumor-associated macrophages. CONCLUSIONS The features of the expression of tumor-associated miR-7-5p, miR-19a-3p, and miR-23b-3p indicated the prospect of their use as markers of the aggressiveness of the PCa course.
Collapse
Affiliation(s)
- T Borikun
- R.E. Kavetsky Institute of Experimental Pathology, Oncology, and Radiobiology, NAS of Ukraine, Kyiv, Ukraine
| | - O Mushii
- R.E. Kavetsky Institute of Experimental Pathology, Oncology, and Radiobiology, NAS of Ukraine, Kyiv, Ukraine
| | - A Pavlova
- R.E. Kavetsky Institute of Experimental Pathology, Oncology, and Radiobiology, NAS of Ukraine, Kyiv, Ukraine
| | - T Burda
- R.E. Kavetsky Institute of Experimental Pathology, Oncology, and Radiobiology, NAS of Ukraine, Kyiv, Ukraine
| | - T Zadvornyi
- R.E. Kavetsky Institute of Experimental Pathology, Oncology, and Radiobiology, NAS of Ukraine, Kyiv, Ukraine.
| |
Collapse
|
12
|
Dong P, Du X, Yang T, Li D, Du Y, Wei Y, Sun J. PEX13 is a potential immunotherapeutic indicator and prognostic biomarker for various tumors including PAAD. Oncol Lett 2023; 26:512. [PMID: 37920431 PMCID: PMC10618920 DOI: 10.3892/ol.2023.14099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/07/2023] [Indexed: 11/04/2023] Open
Abstract
The peroxisome serves a significant role in the occurrence and development of cancers. Specifically, the peroxisomal biogenesis factor 13 (PEX13) is crucial to the occurrence of peroxisomes. However, the biological function of PEX13 in cancers remains unclear. To address this, various portals and databases such as The Cancer Genome Atlas Program, The Genotype-Tissue Expression project, the Gene Expression Profiling Interactive Analysis 2, cBioPortal, the Genomic Identification of Significant Targets In Cancer 2.0, Tumor Immune Estimation Resource 2, SangerBox, LinkedOmics, DAVID and STRING were applied to extract and analyze PEX13 data in tumors. The correlations between PEX13 and prognosis, genetic alterations, PEX13-related gene enrichment analysis, weighted gene co-expression network analysis (WGCNA), protein interaction, long non-coding (lnc)RNA/circular (circ)RNA-micro (mi)RNA network and tumor immunity were explored in various tumors. The lncRNA-miRNA-PEX13 and circRNA-miRNA-PEX13 regulatory networks were identified via miRabel, miRDB, TargetScan and ENCORI portals and Cytoscape tool. In vitro assays were applied to verify the biological functions of PEX13 in pancreatic adenocarcinoma (PAAD) cells. The findings revealed that PEX13 is upregulated in various tumors and high PEX13 mRNA expression is associated with poor prognosis in patients with multiple cancers. Genetic alterations in PEX13 such as amplification, mutation and deep deletion have been found in multiple cancers. PEX13-related genes were associated with T cell receptor, signaling pathway and hippo signaling pathway through 'biological process' subontology of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Through WGCNA analysis, it was discovered that PEX13 hub genes were mainly enriched in the Rap1, ErbB and AMPK signaling pathways in PAAD. Immune analysis showed that PEX13 was significantly related to tumor infiltration immune cells, immune checkpoint genes, microsatellite instability, TMB and tumor purity in a variety of tumors. Cell Counting Kit-8, wound healing, Transwell and colony formation assays displayed that PEX13 knockdown could suppress PAAD cell proliferation, migration, invasion, and colony formation in vitro, respectively. Overall, PEX13 is a potential predictor of immunotherapeutic and prognostic biomarkers in various malignant tumors, including ACC, KICH, LGG, LIHC and PAAD.
Collapse
Affiliation(s)
- Penggang Dong
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
- Department of Hepatobiliary Surgery, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Xuezhi Du
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Ting Yang
- Central Laboratory, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Dandan Li
- Central Laboratory, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Yunyi Du
- Department of Oncology, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Yaqing Wei
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Jinjin Sun
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
13
|
Ma X, Peng L, Wang J, Gao L, Zhang W, Lu X, Liu J, Yang L. Autologous CIK cells combined with chemotherapy as the first-line treatment for locally advanced or metastatic gastric cancer is safe and feasible. Front Immunol 2023; 14:1267369. [PMID: 38022664 PMCID: PMC10646377 DOI: 10.3389/fimmu.2023.1267369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Aim To evaluate the safety and initial efficacy of autologous cytokine-induced killer (CIK) cells combined with S-1+oxaliplatin (SOX) as the first-line treatment for locally advanced or metastatic gastric cancer (GC). Materials and methods In this two-arm, single-center exploratory trial, patients with locally advanced or metastatic GC were randomly assigned (1:1) to receive autologous CIK cells in combination with SOX (CIK-SOX) or SOX alone. The primary endpoint was the incidence of adverse events (AEs). Progression-free survival (PFS), overall survival (OS), objective response rate (ORR), and disease control rate (DCR) served as the secondary endpoints. Results Fifty-nine patients were enrolled in the study between November 20, 2014 and September 6, 2017. A total of 31 patients received CIK-SOX and 28 patients received SOX. The most common AEs in both groups were gastrointestinal reaction, leucopenia, neutropenia, anemia, thrombocytopenia, hyperbilirubinemia, and elevated aspartate transaminase concentration, with a higher incidence of these conditions in the SOX group. The median PFS for the CIK-SOX and SOX groups was 6.9 and 4.9 months, respectively (hazard ratio (HR) 0.80, p=0.45). The respective median OS values were 17.8 and 9.75 months (HR 0.76, p=0.34). Patients who received more than three injections of specific lymphocyte subsets benefited the most from this combination therapy. Cox univariate and multivariate analyses showed that tumor metastasis to more than two organs was the main risk factor for PFS and OS. A total of 29 patients in the CIK-SOX group and 25 in the SOX group had measurable lesions. The ORR for the CIK-SOX and SOX groups was 55.2% and 32.0%, while the DCR was 93.1% and 88.0%, respectively. Conclusion The safety of CIK-SOX as the first-line treatment for patients with locally advanced or metastatic GC was good. Although the PFS and OS in the CIK-SOX group were not statistically significantly different compared to the values in the SOX alone group, this treatment increased the PFS and OS duration, with the absolute improvement in OS of about 8.05 months. Continuous benefit from the CIK-SOX treatment was observed during long-term follow-up. Clinical trial registration https://clinicaltrials.gov/study/NCT02504229?term=NCT02504229&rank=1, identifier ChiCTR-IPR-15005923; NCT02504229.
Collapse
Affiliation(s)
- Xiaoting Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liming Peng
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junqing Wang
- Department of Medical Oncology, Beijing Chaoyang Huanxing Cancer Hospital, Beijing, China
| | - Lizhen Gao
- Department of Medical Oncology, Beijing Chaoyang Huanxing Cancer Hospital, Beijing, China
| | - Wen Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Lu
- Department of Oncology, Beijing Biohealthcare Biotechnology Co., Ltd, Beijing, China
| | - Jingwei Liu
- Department of Oncology, Beijing Biohealthcare Biotechnology Co., Ltd, Beijing, China
| | - Lin Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Cordier C, Haustrate A, Prevarskaya N, Lehen’kyi V. Characterization of the TRPV6 calcium channel-specific phenotype by RNA-seq in castration-resistant human prostate cancer cells. Front Genet 2023; 14:1215645. [PMID: 37576552 PMCID: PMC10415680 DOI: 10.3389/fgene.2023.1215645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Background: Transient receptor potential vanilloid subfamily member 6 (TRPV6), a highly calcium-selective channel, has been shown to play a significant role in calcium homeostasis and to participate both in vitro and in vivo in growth, cell survival, and drug resistance of prostate cancer. Its role and the corresponding calcium-dependent pathways were mainly studied in hormone-dependent human prostate cancer cell lines, often used as a model of early-stage prostate cancers. The goal of the present study was to describe the TRPV6-specific phenotype and signaling pathways it is involved in, using castration-resistant prostate cancer cell lines. Methods: RNA sequencing (RNA-seq) was used to study the gene expression impacted by TRPV6 using PC3Mtrpv6-/- versus PC3Mtrpv6+/+ and its derivative PC3M-luc-C6trpv6+/+ cell line in its native and TRPV6 overexpressed form. In addition to the whole-cell RNA sequencing, immunoblotting, quantitative PCR, and calcium imaging were used to validate trpv6 gene status and functional consequences, in both trpv6 -/- and TRPV6 overexpression cell lines. Results: trpv6 -/- status was validated using both immunoblotting and quantitative PCR, and the functional consequences of either trpv6 gene deletion or TRPV6 overexpression were shown using calcium imaging. RNA-seq analysis demonstrated that the calcium channel TRPV6, being a crucial player of calcium signaling, significantly impacts the expression of genes involved in cancer progression, such as cell cycle regulation, chemotaxis, migration, invasion, apoptosis, ferroptosis as well as drug resistance, and extracellular matrix (ECM) re-organization. Conclusion: Our data suggest that the trpv6 gene is involved in and regulates multiple pathways related to tumor progression and drug resistance in castration-resistant prostate cancer cells.
Collapse
Affiliation(s)
| | | | | | - V’yacheslav Lehen’kyi
- Department of Biology, Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channel Science and Therapeutics, Faculty of Science and Technologies, University of Lille, Villeneuve d’Ascq, France
| |
Collapse
|