1
|
Dorfer S, Ressler JM, Riebenbauer K, Kancz S, Purkhauser K, Bachmayr V, Cataisson C, Kirnbauer R, Petzelbauer P, Wiesmueller M, Egg M, Hoeller C, Handisurya A. BRAF Inhibition and UVB Light Synergistically Promote Mus musculus Papillomavirus 1-Induced Skin Tumorigenesis. Cancers (Basel) 2024; 16:3133. [PMID: 39335105 PMCID: PMC11440113 DOI: 10.3390/cancers16183133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The development of keratinocytic skin tumors, presumably attributable to paradoxical activation of the MAPK pathway, represents a relevant side effect of targeted therapies with BRAF inhibitors (BRAFis). The role of cutaneous papillomavirus infection in BRAFi-associated skin carcinogenesis, however, is still inconclusive. Employing the Mus musculus papillomavirus 1 (MmuPV1) skin infection model, the impact of BRAFis and UVB exposure on papillomavirus induced skin tumorigenesis was investigated in immunocompetent FVB/NCrl mice. Systemic BRAF inhibition in combination with UVB light induced skin tumors in 62% of the MmuPV1-infected animals. In contrast, significantly fewer tumors were observed in the absence of either BRAF inhibition, UVB irradiation or virus infection, as demonstrated by lesional outgrowth in 20%, 5% and 0% of the mice, respectively. Combinatory exposure to BRAFis and UVB favored productive viral infection, which was shown by high numbers of MmuPV1 genome copies and E1^E4 spliced transcripts and an abundance of E6/E7 oncogene mRNA and viral capsid proteins. BRAF inhibition, but not viral infection or UVB light, activated ERK1/2, whereas γH2AX expression, inducible by UVB light, remained unaltered by BRAFis. These results provide experimental evidence that BRAF inhibition and UVB irradiation synergistically promote MmuPV1-induced skin tumor development in vivo. This indicates an alternative pathway by which papillomavirus skin infection may contribute to BRAFi-associated skin tumorigenesis.
Collapse
Affiliation(s)
- Sonja Dorfer
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (S.D.); (J.M.R.); (K.P.); (V.B.); (R.K.); (P.P.); (M.W.); (M.E.); (C.H.)
| | - Julia Maria Ressler
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (S.D.); (J.M.R.); (K.P.); (V.B.); (R.K.); (P.P.); (M.W.); (M.E.); (C.H.)
| | - Katharina Riebenbauer
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (S.D.); (J.M.R.); (K.P.); (V.B.); (R.K.); (P.P.); (M.W.); (M.E.); (C.H.)
| | - Stefanie Kancz
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (S.D.); (J.M.R.); (K.P.); (V.B.); (R.K.); (P.P.); (M.W.); (M.E.); (C.H.)
| | - Kim Purkhauser
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (S.D.); (J.M.R.); (K.P.); (V.B.); (R.K.); (P.P.); (M.W.); (M.E.); (C.H.)
| | - Victoria Bachmayr
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (S.D.); (J.M.R.); (K.P.); (V.B.); (R.K.); (P.P.); (M.W.); (M.E.); (C.H.)
| | - Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Reinhard Kirnbauer
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (S.D.); (J.M.R.); (K.P.); (V.B.); (R.K.); (P.P.); (M.W.); (M.E.); (C.H.)
| | - Peter Petzelbauer
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (S.D.); (J.M.R.); (K.P.); (V.B.); (R.K.); (P.P.); (M.W.); (M.E.); (C.H.)
| | - Markus Wiesmueller
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (S.D.); (J.M.R.); (K.P.); (V.B.); (R.K.); (P.P.); (M.W.); (M.E.); (C.H.)
| | - Maximilian Egg
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (S.D.); (J.M.R.); (K.P.); (V.B.); (R.K.); (P.P.); (M.W.); (M.E.); (C.H.)
| | - Christoph Hoeller
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (S.D.); (J.M.R.); (K.P.); (V.B.); (R.K.); (P.P.); (M.W.); (M.E.); (C.H.)
| | - Alessandra Handisurya
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (S.D.); (J.M.R.); (K.P.); (V.B.); (R.K.); (P.P.); (M.W.); (M.E.); (C.H.)
| |
Collapse
|
2
|
Han Z, Wang S, Mu T, Zhao P, Song L, Zhang Y, Zhao J, Yin W, Wu Y, Wang H, Gong B, Ji M, Roden RBS, Yang Y, Klein M, Wu K. Vaccination with a Human Papillomavirus L2 Multimer Provides Broad Protection against 17 Human Papillomavirus Types in the Mouse Cervicovaginal Challenge Model. Vaccines (Basel) 2024; 12:689. [PMID: 38932417 PMCID: PMC11209485 DOI: 10.3390/vaccines12060689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Human papillomavirus (HPV) is a prevalent cause of mucosal and cutaneous infections and underlying conditions ranging from benign warts to anogenital and oropharyngeal cancers affecting both males and females, notably cervical cancer. Cervical cancer is the fourth leading cause of cancer deaths among women globally and is the most impactful in low- and middle-income countries (LMICs), where the costs of screening and licensed L1-based HPV vaccines pose significant barriers to comprehensive administration. Additionally, the licensed L1-based HPV vaccines fail to protect against all oncogenic HPV types. This study generated three independent lots of an L2-based target antigen (LBTA), which was engineered from conserved linear L2-protective epitopes (aa11-88) from five human alphapapillomavirus genotypes in E. coli under cGMP conditions and adjuvanted with aluminum phosphate. Vaccination of rabbits with LBTA generated high neutralizing antibody titers against all 17 HPV types tested, surpassing the nine types covered by Gardasil®9. Passive transfer of naïve mice with LBTA antiserum revealed its capacity to confer protection against vaginal challenge with all 17 αHPV types tested. LBTA shows stability at room temperature over >1 month. Standard in vitro and in vivo toxicology studies suggest a promising safety profile. These findings suggest LBTA's promise as a next-generation vaccine with comprehensive coverage aimed at reducing the economic and healthcare burden of cervical and other HPV+ cancers in LMICs, and it has received regulatory approval for a first-in-human clinical study (NCT05672966).
Collapse
Affiliation(s)
- Zhenwei Han
- Project Management Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China;
| | - Shen Wang
- Regulatory and Medical Affairs Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (S.W.); (L.S.); (B.G.); (M.J.)
| | - Ting Mu
- Innovative Discovery Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (T.M.); (Y.Z.); (H.W.)
| | - Ping Zhao
- Test Development Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (P.Z.); (Y.W.)
| | - Lingli Song
- Regulatory and Medical Affairs Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (S.W.); (L.S.); (B.G.); (M.J.)
| | - Ying Zhang
- Innovative Discovery Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (T.M.); (Y.Z.); (H.W.)
| | - Jin Zhao
- Test Development Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (P.Z.); (Y.W.)
| | - Wen Yin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China;
| | - Yue Wu
- Test Development Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (P.Z.); (Y.W.)
| | - Huan Wang
- Innovative Discovery Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (T.M.); (Y.Z.); (H.W.)
| | - Bo Gong
- Regulatory and Medical Affairs Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (S.W.); (L.S.); (B.G.); (M.J.)
| | - Min Ji
- Regulatory and Medical Affairs Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (S.W.); (L.S.); (B.G.); (M.J.)
| | - Richard B. S. Roden
- Departments of Pathology, Oncology and Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, MD 21287, USA
| | - Yanping Yang
- Executive Office, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
- Executive Office, Shanghai BravoBio Co., Ltd., Shanghai 200000, China
| | - Michel Klein
- Executive Office, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
- Executive Office, Shanghai BravoBio Co., Ltd., Shanghai 200000, China
| | - Ke Wu
- Executive Office, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
- Executive Office, Shanghai BravoBio Co., Ltd., Shanghai 200000, China
| |
Collapse
|
3
|
Zhang Y, Mariz FC, Sehr P, Spagnoli G, Koenig KM, Çelikyürekli S, Kreuziger T, Zhao X, Bolchi A, Ottonello S, Müller M. Inter-epitope spacer variation within polytopic L2-based human papillomavirus antigens affects immunogenicity. NPJ Vaccines 2024; 9:44. [PMID: 38402256 PMCID: PMC10894200 DOI: 10.1038/s41541-024-00832-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/05/2024] [Indexed: 02/26/2024] Open
Abstract
The human papillomavirus minor capsid protein L2 is being extensively explored in pre-clinical studies as an attractive vaccine antigen capable of inducing broad-spectrum prophylactic antibody responses. Recently, we have developed two HPV vaccine antigens - PANHPVAX and CUT-PANHPVAX- both based on heptameric nanoparticle antigens displaying polytopes of the L2 major cross-neutralizing epitopes of eight mucosal and twelve cutaneous HPV types, respectively. Prompted by the variable neutralizing antibody responses against some of the HPV types targeted by the antigens observed in previous studies, here we investigated the influence on immunogenicity of six distinct glycine-proline spacers inserted upstream to a specific L2 epitope. We show that spacer variants differentially influence antigen immunogenicity in a mouse model, with the antigen constructs M8merV6 and C12merV6 displaying a superior ability in the induction of neutralizing antibodies as determined by pseudovirus-based neutralization assays (PBNAs). L2-peptide enzyme-linked immunosorbent assay (ELISA) assessments determined the total anti-L2 antibody level for each antigen variant, showing for the majority of sera a correlation with their repective neutralizing antibody level. Surface Plasmon Resonance revealed that L2 epitope-specific, neutralizing monoclonal antibodies (mAbs) display distinct avidities to different antigen spacer variants. Furthermore, mAb affinity toward individual spacer variants was well correlated with their neutralizing antibody induction capacity, indicating that the mAb affinity assay predicts L2-based antigen immunogenicity. These observations provide insights on the development and optimization of L2-based HPV vaccines.
Collapse
Affiliation(s)
- Yueru Zhang
- German Cancer Research Center, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Filipe Colaco Mariz
- German Cancer Research Center, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Peter Sehr
- EMBL-DKFZ Chemical Biology Core Facility, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Gloria Spagnoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Karl Moritz Koenig
- German Cancer Research Center, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Simay Çelikyürekli
- German Cancer Research Center, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Tim Kreuziger
- Ruprecht-Karls University Heidelberg, Heidelberg, Germany
| | - Xueer Zhao
- German Cancer Research Center, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Angelo Bolchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Simone Ottonello
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Martin Müller
- German Cancer Research Center, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| |
Collapse
|
4
|
Aggarwal S, Agarwal P, Gupta N. A comprehensive narrative review of challenges and facilitators in the implementation of various HPV vaccination program worldwide. Cancer Med 2024; 13:e6862. [PMID: 38213086 PMCID: PMC10911072 DOI: 10.1002/cam4.6862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/08/2023] [Accepted: 11/25/2023] [Indexed: 01/13/2024] Open
Abstract
INTRODUCTION Cervical cancer has been considered as one of the most common cancers in women (15-44 years) globally, but the advent of the human papilloma virus (HPV) vaccine has raised the anticipation that eradication of cervical carcinoma might be achieved in the near future as several prophylactic cervical carcinoma vaccines have already been currently licensed in various countries. Countries should devise strategies, practices and policies to attain and sustain higher levels of HPV immunization coverage as still 68% countries have introduced HPV vaccine in their national immunization programs even after 17 years following the licensure of the first prophylactic HPV vaccine. METHODOLOGY A comprehensive literature analysis was conducted using various databases and search engines, to include the most relevant research articles and data available and critically discussed the operational gaps that need to be answered to achieve adequate coverage of HPV vaccination. RESULTS The present review highlights the existing HPV vaccination strategies, unmet needs and challenges needed to be addressed for proper implementation framework as well as the collaborations required to achieve decent vaccination coverage. Well-coordinated vaccination strategy with focus on adolescent girls and if possible, boys can lead to dramatic impact on disease reduction around the world.
Collapse
Affiliation(s)
- Sumit Aggarwal
- Division of ECD, Indian Council of Medical ResearchNew DelhiIndia
| | - Pragati Agarwal
- Division of ECD, Indian Council of Medical ResearchNew DelhiIndia
| | - Nivedita Gupta
- Division of ECD, Indian Council of Medical ResearchNew DelhiIndia
| |
Collapse
|
5
|
Mariz FC, Putzker K, Sehr P, Müller M. Advances on two serological assays for human papillomavirus provide insights on the reactivity of antibodies against a cross-neutralization epitope of the minor capsid protein L2. Front Immunol 2023; 14:1272018. [PMID: 38022617 PMCID: PMC10663238 DOI: 10.3389/fimmu.2023.1272018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction A second generation of prophylactic human papillomavirus (HPV) vaccines based on the minor capsid protein L2 has entered clinical trials as promising alternative to meet the gaps left out by the current vaccines concerning type-restricted protection, high costs and low penetrance in immunization programs of lowand middle-income countries. Most of the serological assays available to assess anti-HPV humoral responses are, however, not well suited for measuring vaccine-induced anti-L2 antibody responses. Methods In this work, we have advanced our automated, purely add-on High-Throughput Pseudovirion-Based Neutralization Assay (HT-PBNA) in an L2-oriented approach for measuring antibody-mediated neutralization of HPV types 6/16/18/31/33/52/58. Results and discussion With the optimized settings, we observed 24- to 120-fold higher sensitivity for detection of neutralizing Ab to the L2 protein of HPV6, HPV16, HPV18, and HPV31, compared to the standard HT-PBNA. Alternatively, we have also developed a highly sensitive, cell-free, colorimetric L2-peptide capture ELISA for which the results were strongly concordant with those of the advanced neutralization assay, named HT-fc-PBNA. These two high-throughput scalable assays represent attractive approaches to determine antibody-based correlates of protection for the HPV L2 vaccines that are to come.
Collapse
Affiliation(s)
- Filipe Colaco Mariz
- Tumorvirus-Specific Vaccination Strategies (F035), Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Kerstin Putzker
- EMBL-DKFZ Chemical Biology Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Peter Sehr
- EMBL-DKFZ Chemical Biology Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Martin Müller
- Tumorvirus-Specific Vaccination Strategies (F035), Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
6
|
Li Y, Tang C, Zhang Y, Li Z, Wang G, Peng R, Huang Y, Hu X, Xin H, Feng B, Cao X, He Y, Guo T, He Y, Su H, Cui X, Niu L, Wu Z, Yang J, Yang F, Lu G, Gao L, Jin Q, Xiao M, Yin F, Du J. Diversity and independent evolutionary profiling of rodent-borne viruses in Hainan, a tropical island of China. Virol Sin 2023; 38:651-662. [PMID: 37572844 PMCID: PMC10590688 DOI: 10.1016/j.virs.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023] Open
Abstract
The risk of emerging infectious diseases (EID) is increasing globally. More than 60% of EIDs worldwide are caused by animal-borne pathogens. This study aimed to characterize the virome, analyze the phylogenetic evolution, and determine the diversity of rodent-borne viruses in Hainan Province, China. We collected 682 anal and throat samples from rodents, combined them into 28 pools according to their species and location, and processed them for next-generation sequencing and bioinformatics analysis. The diverse viral contigs closely related to mammals were assigned to 22 viral families. Molecular clues of the important rodent-borne viruses were further identified by polymerase chain reaction for phylogenetic analysis and annotation of genetic characteristics such as arenavirus, coronavirus, astrovirus, pestivirus, parvovirus, and papillomavirus. We identified pestivirus and bocavirus in Leopoldoms edwardsi from Huangjinjiaoling, and bocavirus in Rattus andamanensis from the national nature reserves of Bangxi with low amino acid identity to known pathogens are proposed as the novel species, and their rodent hosts have not been previously reported to carry these viruses. These results expand our knowledge of viral classification and host range and suggest that there are highly diverse, undiscovered viruses that have evolved independently in their unique wildlife hosts in inaccessible areas.
Collapse
Affiliation(s)
- Youyou Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Chuanning Tang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Yun Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Zihan Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Gaoyu Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Ruoyan Peng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Yi Huang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Xiaoyuan Hu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Henan Xin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Boxuan Feng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Xuefang Cao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Yongpeng He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Tonglei Guo
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Yijun He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Haoxiang Su
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Xiuji Cui
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Lina Niu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Zhiqiang Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Fan Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Gang Lu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Lei Gao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Meifang Xiao
- Department of Clinical Laboratory, Center for Laboratory Medicine, Hainan Women and Children's Medical Center, Haikou, 571199, China.
| | - Feifei Yin
- Department of Clinical Laboratory, Center for Laboratory Medicine, Hainan Women and Children's Medical Center, Haikou, 571199, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China.
| | - Jiang Du
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
7
|
Schäfer M, Schneider M, Müller T, Franz N, Braspenning-Wesch I, Stephan S, Schmidt G, Krijgsveld J, Helm D, Rösl F, Hasche D. Spatial tissue proteomics reveals distinct landscapes of heterogeneity in cutaneous papillomavirus-induced keratinocyte carcinomas. J Med Virol 2023; 95:e28850. [PMID: 37322807 DOI: 10.1002/jmv.28850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023]
Abstract
Infection with certain cutaneous human papillomaviruses (HPV), in conjunction with chronic ultraviolet (UV) exposure, are the major cofactors of non-melanoma skin cancer (NMSC), the most frequent cancer type worldwide. Cutaneous squamous cell carcinomas (SCCs) as well as tumors in general represent three-dimensional entities determined by both temporal and spatial constraints. Whole tissue proteomics is a straightforward approach to understand tumorigenesis in better detail, but studies focusing on different progression states toward a dedifferentiated SCC phenotype on a spatial level are rare. Here, we applied an innovative proteomic workflow on formalin-fixed, paraffin-embedded (FFPE) epithelial tumors derived from the preclinical animal model Mastomys coucha. This rodent is naturally infected with its genuine cutaneous papillomavirus and closely mimics skin carcinogenesis in the context of cutaneous HPV infections in humans. We deciphered cellular networks by comparing diverse epithelial tissues with respect to their differentiation level and infection status. Our study reveals novel regulatory proteins and pathways associated with virus-induced tumor initiation and progression of SCCs. This approach provides the basis to better comprehend the multistep process of skin carcinogenesis.
Collapse
Affiliation(s)
- Miriam Schäfer
- Division of Viral Transformation Mechanisms, Research Program "Infection, Inflammation and Cancer", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Schneider
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Torsten Müller
- Division Proteomics of Stem Cells and Cancer, Research Program "Functional and Structural Genomics", German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Natascha Franz
- Division of Viral Transformation Mechanisms, Research Program "Infection, Inflammation and Cancer", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ilona Braspenning-Wesch
- Division of Viral Transformation Mechanisms, Research Program "Infection, Inflammation and Cancer", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sonja Stephan
- Division of Viral Transformation Mechanisms, Research Program "Infection, Inflammation and Cancer", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gabriele Schmidt
- Core Facility Unit Light Microscopy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division Proteomics of Stem Cells and Cancer, Research Program "Functional and Structural Genomics", German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Dominic Helm
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Rösl
- Division of Viral Transformation Mechanisms, Research Program "Infection, Inflammation and Cancer", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Hasche
- Division of Viral Transformation Mechanisms, Research Program "Infection, Inflammation and Cancer", German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
8
|
Hasche D, Akgül B. Prevention and Treatment of HPV-Induced Skin Tumors. Cancers (Basel) 2023; 15:cancers15061709. [PMID: 36980594 PMCID: PMC10046090 DOI: 10.3390/cancers15061709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Non-melanoma skin cancer (NMSC) is the most common cancer in humans with increasing incidence. Meanwhile, a growing body of evidence has provided a link between skin infections with HPV of the genus beta (betaHPV) and the development of cutaneous squamous cell carcinomas (cSCCs). Based on this association, the development of vaccines against betaHPV has become an important research topic. This review summarizes the current advances in prophylactic and therapeutic betaHPV vaccines, including progresses made in preclinical testing and clinical trials.
Collapse
Affiliation(s)
- Daniel Hasche
- Division of Viral Transformation Mechanisms, Research Program “Infection, Inflammation and Cancer”, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Baki Akgül
- Institute of Virology, Medical Faculty and University Hospital Cologne, University of Cologne, Fürst-Pückler-Str. 56, 50935 Cologne, Germany
- Correspondence:
| |
Collapse
|