1
|
Chen Z, Li N, Li L, Liu Z, Zhao W, Li Y, Huang X, Li X. BCDPi: An interpretable multitask deep neural network model for predicting chemical bioconcentration in fish. ENVIRONMENTAL RESEARCH 2025; 264:120356. [PMID: 39549907 DOI: 10.1016/j.envres.2024.120356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Predicting the bioconcentration of chemical compounds plays a crucial role in assessing environmental risks and toxicological impacts. This study presents a robust multitask deep learning model for predicting the bioconcentration potential. The model can predict the bioconcentration of compounds in multiple categories, including non-bioconcentrative (non-BC), weakly bioconcentrative (weak-BC), and strongly bioconcentrative (strong-BC). We also employed the SHapley Additive exPlanations (SHAP) technology for the model interpretation. The binary classification models (non-BC vs BC and weak-BC vs strong-BC) showed good predictive performance, which achieved accuracy values over 90% and area under the curve (AUC) values with 0.95. The final ternary classification model provided an overall accuracy with 91.11%. Comparative analysis of molecular physicochemical properties showed that the importance of molecular weight, polar surface area, solubility, and hydrogen bonding are important for chemical bioconcentration. Besides, we identified eight structural alerts responsible for chemical bioconcentration. We made the model available as an online tool named BCdpi-predictor, which is accessible at http://bcdpi.sapredictor.cn/. Users can predict the bioconcentration potential of chemical compounds freely. The model has significant implications for environmental policy and regulatory frameworks, such as REACH, by providing a more accurate and interpretable method for assessing chemical risks. We hope that the results of this study can provide helpful tools and meaningful information for chemical bioconcentration prediction in environmental risk assessment.
Collapse
Affiliation(s)
- Zhaoyang Chen
- Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Na Li
- Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Ling Li
- Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Zihan Liu
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250014, China
| | - Wenqiang Zhao
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250014, China
| | - Yan Li
- Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Xin Huang
- Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Xiao Li
- Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.
| |
Collapse
|
2
|
Li N, Shi J, Chen Z, Dong Z, Ma S, Li Y, Huang X, Li X. In silico prediction of drug-induced nephrotoxicity: current progress and pitfalls. Expert Opin Drug Metab Toxicol 2024:1-13. [PMID: 39360665 DOI: 10.1080/17425255.2024.2412629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/05/2024] [Accepted: 10/01/2024] [Indexed: 10/04/2024]
Abstract
INTRODUCTION Due to its role in absorption and metabolism, the kidney is an important target for drug toxicity. Drug-induced nephrotoxicity (DIN) presents a significant challenge in clinical practice and drug development. Conventional methods for assessing nephrotoxicity have limitations, highlighting the need for innovative approaches. In recent years, in silico methods have emerged as promising tools for predicting DIN. AREAS COVERED A literature search was performed using PubMed and Web of Science, from 2013 to February 2023 for this review. This review provides an overview of the current progress and pitfalls in the in silico prediction of DIN, which discusses the principles and methodologies of computational models. EXPERT OPINION Despite significant advancements, this review identified issues accentuates the pivotal imperatives of data fidelity, model optimization, interdisciplinary collaboration, and mechanistic comprehension in sculpting the vista of DIN prediction. Integration of multiple data sources and collaboration between disciplines are essential for improving predictive models. Ultimately, a holistic approach combining computational, experimental, and clinical methods will enhance our understanding and management of DIN.
Collapse
Affiliation(s)
- Na Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Juan Shi
- Department of Clinical Pharmacy, The First People's Hospital of Jinan, Jinan, China
| | - Zhaoyang Chen
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Zhonghua Dong
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Shiyu Ma
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Xin Huang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Xiao Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| |
Collapse
|
3
|
Huang X, Xie X, Huang S, Wu S, Huang L. Predicting non-chemotherapy drug-induced agranulocytosis toxicity through ensemble machine learning approaches. Front Pharmacol 2024; 15:1431941. [PMID: 39206259 PMCID: PMC11349714 DOI: 10.3389/fphar.2024.1431941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Agranulocytosis, induced by non-chemotherapy drugs, is a serious medical condition that presents a formidable challenge in predictive toxicology due to its idiosyncratic nature and complex mechanisms. In this study, we assembled a dataset of 759 compounds and applied a rigorous feature selection process prior to employing ensemble machine learning classifiers to forecast non-chemotherapy drug-induced agranulocytosis (NCDIA) toxicity. The balanced bagging classifier combined with a gradient boosting decision tree (BBC + GBDT), utilizing the combined descriptor set of DS and RDKit comprising 237 features, emerged as the top-performing model, with an external validation AUC of 0.9164, ACC of 83.55%, and MCC of 0.6095. The model's predictive reliability was further substantiated by an applicability domain analysis. Feature importance, assessed through permutation importance within the BBC + GBDT model, highlighted key molecular properties that significantly influence NCDIA toxicity. Additionally, 16 structural alerts identified by SARpy software further revealed potential molecular signatures associated with toxicity, enriching our understanding of the underlying mechanisms. We also applied the constructed models to assess the NCDIA toxicity of novel drugs approved by FDA. This study advances predictive toxicology by providing a framework to assess and mitigate agranulocytosis risks, ensuring the safety of pharmaceutical development and facilitating post-market surveillance of new drugs.
Collapse
Affiliation(s)
- Xiaojie Huang
- Department of Clinical Pharmacy, Jieyang People’s Hospital, Jieyang, China
| | | | | | | | | |
Collapse
|
4
|
Zhang L, Li M, Zhang D, Yue W, Qian Z. Prioritizing of potential environmental exposure carcinogens beyond IARC group 1-2B based on weight of evidence (WoE) approach. Regul Toxicol Pharmacol 2024; 150:105646. [PMID: 38777300 DOI: 10.1016/j.yrtph.2024.105646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/12/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Environmental exposures are the main cause of cancer, and their carcinogenicity has not been fully evaluated, identifying potential carcinogens that have not been evaluated is critical for safety. This study is the first to propose a weight of evidence (WoE) approach based on computational methods to prioritize potential carcinogens. Computational methods such as read across, structural alert, (Quantitative) structure-activity relationship and chemical-disease association were evaluated and integrated. Four different WoE approach was evaluated, compared to the best single method, the WoE-1 approach gained 0.21 and 0.39 improvement in the area under the receiver operating characteristic curve (AUC) and Matthew's correlation coefficient (MCC) value, respectively. The evaluation of 681 environmental exposures beyond IARC list 1-2B prioritized 52 chemicals of high carcinogenic concern, of which 21 compounds were known carcinogens or suspected carcinogens, and eight compounds were identified as potential carcinogens for the first time. This study illustrated that the WoE approach can effectively complement different computational methods, and can be used to prioritize chemicals of carcinogenic concern.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China; Tianjin Key Laboratory of Pathogenic Microbiology of Infectious Disease, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Min Li
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China; Tianjin Key Laboratory of Pathogenic Microbiology of Infectious Disease, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Dalong Zhang
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Wenbo Yue
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Zhiyong Qian
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China.
| |
Collapse
|
5
|
Chen Z, Zhang L, Zhang P, Guo H, Zhang R, Li L, Li X. Prediction of Cytochrome P450 Inhibition Using a Deep Learning Approach and Substructure Pattern Recognition. J Chem Inf Model 2024; 64:2528-2538. [PMID: 37864562 DOI: 10.1021/acs.jcim.3c01396] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
Cytochrome P450 (CYP) is a family of enzymes that are responsible for about 75% of all metabolic reactions. Among them, CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 participate in the metabolism of most drugs and mediate many adverse drug reactions. Therefore, it is necessary to estimate the chemical inhibition of Cytochrome P450 enzymes in drug discovery and the food industry. In the past few decades, many computational models have been reported, and some provided good performance. However, there are still several issues that should be resolved for these models, such as single isoform, models with unbalanced performance, lack of structural characteristics analysis, and poor availability. In the present study, the deep learning models based on python using the Keras framework and TensorFlow were developed for the chemical inhibition of each CYP isoform. These models were established based on a large data set containing 85715 compounds extracted from the PubChem bioassay database. On external validation, the models provided good AUC values with 0.97, 0.94, 0.94, 0.96, and 0.94 for CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, respectively. The models can be freely accessed on the Web server named CYPi-DNNpredictor (cypi.sapredictor.cn), and the codes for the model were made open source in the Supporting Information. In addition, we also analyzed the structural characteristics of chemicals with CYP450 inhibition and detected the structural alerts (SAs), which should be responsible for the inhibition. The SAs were also made available online, named CYPi-SAdetector (cypisa.sapredictor.cn). The models can be used as a powerful tool for the prediction of CYP450 inhibitors, and the SAs should provide useful information for the mechanisms of Cytochrome P450 inhibition.
Collapse
Affiliation(s)
- Zhaoyang Chen
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Le Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Pei Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Huizhu Guo
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Ruiqiu Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Ling Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Xiao Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| |
Collapse
|
6
|
Zhang L, Li M, Zhang D, Zhang S, Zhang L, Wang X, Qian Z. Developmental neurotoxicity (DNT) QSAR combination prediction model establishment and structural characteristics interpretation. Toxicol Res (Camb) 2024; 13:tfad116. [PMID: 38178999 PMCID: PMC10762666 DOI: 10.1093/toxres/tfad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 09/14/2023] [Accepted: 11/08/2023] [Indexed: 01/06/2024] Open
Abstract
With the incidence of neurodevelopmental disorders on the rise, it is imperative to screen and evaluate developmental neurotoxicity (DNT) compounds from a large number of environmental chemicals and understand their mechanisms. In this study, DNT qualitative structure-activity relationship (QSAR) study was carried out for the first time based on DNT data of mammals and structural characterization of DNT compounds was preliminarily illustrated. Five different classification algorithms and two feature selection methods were used to construct prediction models. The best model had good predictive ability on the external test set, but a small application domain (AD). Through combining of three different models, both MCC and AD values were improved. Furthermore, electronical properties, van der Waals volume-related properties and S, Cl or P containing substructure were found to be associated with DNT through modeling descriptors analysis and structure alerts (SAs) identification. This study lays a foundation for further DNT prediction of environmental exposures in human and contributes to the understanding of DNT mechanism.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Min Li
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Dalong Zhang
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Shujing Zhang
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Li Zhang
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Xiaojun Wang
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Zhiyong Qian
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| |
Collapse
|
7
|
Zhang R, Wang B, Li L, Li S, Guo H, Zhang P, Hua Y, Cui X, Li Y, Mu Y, Huang X, Li X. Modeling and insights into the structural characteristics of endocrine-disrupting chemicals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115251. [PMID: 37451095 DOI: 10.1016/j.ecoenv.2023.115251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) can cause serious harm to human health and the environment; therefore, it is important to rapidly and correctly identify EDCs. Different computational models have been proposed for the prediction of EDCs over the past few decades, but the reported models are not always easily available, and few studies have investigated the structural characteristics of EDCs. In the present study, we have developed a series of artificial intelligence models targeting EDC receptors: the androgen receptor (AR); estrogen receptor (ER); and pregnane X receptor (PXR). The consensus models achieved good predictive results for validation sets with balanced accuracy values of 87.37%, 90.13%, and 79.21% for AR, ER, and PXR binding assays, respectively. Analysis of the physical-chemical properties suggested that several chemical properties were significantly (p < 0.05) different between EDCs and non-EDCs. We also identified structural alerts that can indicate an EDC, which were integrated into the web server SApredictor. These models and structural characteristics can provide useful tools and information in the discrimination and mechanistic understanding of EDCs in drug discovery and environmental risk assessment.
Collapse
Affiliation(s)
- Ruiqiu Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Bailun Wang
- Department of Anesthesiology and perioperative medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Anesthesia and Respiratory Intensive Care Medicine, Jinan 250014, China
| | - Ling Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Shengjie Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Huizhu Guo
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Pei Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Yuqing Hua
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Xueyan Cui
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Yan Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Yan Mu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Xin Huang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Xiao Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China.
| |
Collapse
|
8
|
Zhang R, Chen Z, Wang B, Li Y, Mu Y, Li X. Modeling and Insights into the Structural Characteristics of Chemical Mitochondrial Toxicity. ACS OMEGA 2023; 8:31675-31682. [PMID: 37692239 PMCID: PMC10483523 DOI: 10.1021/acsomega.3c01725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023]
Abstract
Mitochondria are the energy metabolism center of cells and are involved in a number of other processes, such as cell differentiation and apoptosis, signal transduction, and regulation of cell cycle and cell proliferation. It is of great significance to evaluate the mitochondrial toxicity of drugs and other chemicals. In the present study, we aimed to propose easily available artificial intelligence (AI) models for the prediction of chemical mitochondrial toxicity and investigate the structural characteristics with the analysis of molecular properties and structural alerts. The consensus model achieved good predictive results with high total accuracy at 87.21% for validation sets. The models can be accessed freely via https://ochem.eu/article/158582. Besides, several commonly used chemical properties were significantly different between chemicals with and without mitochondrial toxicity. We also detected the structural alerts (SAs) responsible for mitochondrial toxicity and integrated them into the web-server SApredictor (www.sapredictor.cn). The study may provide useful tools for in silico estimation of mitochondrial toxicity and be helpful to understand the mechanisms of mitochondrial toxicity.
Collapse
Affiliation(s)
- Ruiqiu Zhang
- Department
of Clinical Pharmacy, The First Affiliated Hospital of Shandong First
Medical University & Shandong Provincial Qianfoshan Hospital,
Shandong Engineering and Technology Research Center for Pediatric
Drug Development, Shandong Medicine and
Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Zhaoyang Chen
- Department
of Clinical Pharmacy, The First Affiliated Hospital of Shandong First
Medical University & Shandong Provincial Qianfoshan Hospital,
Shandong Engineering and Technology Research Center for Pediatric
Drug Development, Shandong Medicine and
Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Baobao Wang
- Department
of Nephrology, The First Affiliated Hospital
of Shandong First Medical University & Shandong Provincial Qianfoshan
Hospital, Jinan 250014, China
| | - Yan Li
- Department
of Clinical Pharmacy, The First Affiliated Hospital of Shandong First
Medical University & Shandong Provincial Qianfoshan Hospital,
Shandong Engineering and Technology Research Center for Pediatric
Drug Development, Shandong Medicine and
Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Yan Mu
- Department
of Clinical Pharmacy, The First Affiliated Hospital of Shandong First
Medical University & Shandong Provincial Qianfoshan Hospital,
Shandong Engineering and Technology Research Center for Pediatric
Drug Development, Shandong Medicine and
Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Xiao Li
- Department
of Clinical Pharmacy, The First Affiliated Hospital of Shandong First
Medical University & Shandong Provincial Qianfoshan Hospital,
Shandong Engineering and Technology Research Center for Pediatric
Drug Development, Shandong Medicine and
Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| |
Collapse
|
9
|
Zhao X, Sun Y, Zhang R, Chen Z, Hua Y, Zhang P, Guo H, Cui X, Huang X, Li X. Machine Learning Modeling and Insights into the Structural Characteristics of Drug-Induced Neurotoxicity. J Chem Inf Model 2022; 62:6035-6045. [PMID: 36448818 DOI: 10.1021/acs.jcim.2c01131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Neurotoxicity can be resulted from many diverse clinical drugs, which has been a cause of concern to human populations across the world. The detection of drug-induced neurotoxicity (DINeurot) potential with biological experimental methods always required a lot of budget and time. In addition, few studies have addressed the structural characteristics of neurotoxic chemicals. In this study, we focused on the computational modeling for drug-induced neurotoxicity with machine learning methods and the insights into the structural characteristics of neurotoxic chemicals. Based on the clinical drug data with neurotoxicity effects, we developed 35 different classifiers by combining five different machine learning methods and seven fingerprint packages. The best-performing model achieved good results on both 5-fold cross-validation (balanced accuracy of 76.51%, AUC value of 0.83, and MCC value of 0.52) and external validation (balanced accuracy of 83.63%, AUC value of 0.87, and MCC value of 0.67). The model can be freely accessed on the web server DINeuroTpredictor (http://dineurot.sapredictor.cn/). We also analyzed the distribution of several key molecular properties between neurotoxic and non-neurotoxic structures. The results indicated that several physicochemical properties were significantly different between the neurotoxic and non-neurotoxic compounds, including molecular polar surface area (MPSA), AlogP, the number of hydrogen bond acceptors (nHAcc) and donors (nHDon), the number of rotatable bonds (nRotB), and the number of aromatic rings (nAR). In addition, 18 structural alerts responsible for chemical neurotoxicity were identified. The structural alerts have been integrated with our web server SApredictor (http://www.sapredictor.cn). The results of this study could provide useful information for the understanding of the structural characteristics and computational prediction for chemical neurotoxicity.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong250014, China
| | - Yuhao Sun
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong250014, China
| | - Ruiqiu Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong250014, China
| | - Zhaoyang Chen
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong250014, China
| | - Yuqing Hua
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong250014, China
| | - Pei Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong250014, China
| | - Huizhu Guo
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong250014, China
| | - Xueyan Cui
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong250014, China
| | - Xin Huang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong250014, China
| | - Xiao Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong250014, China
| |
Collapse
|