1
|
Tian J, Li Y, Mao X, Xie K, Zheng Y, Yu Y, Yu Y. Effects of the PI3K/Akt/HO-1 pathway on autophagy in a sepsis-induced acute lung injury mouse model. Int Immunopharmacol 2023; 124:111063. [PMID: 37857120 DOI: 10.1016/j.intimp.2023.111063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/18/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Sepsis-induced lung injury is an acute hypoxic respiratory insufficiency caused by systemic infectious factors that results in alveolar epithelial cell and capillary endothelial cell injury, diffuse pulmonary interstitial edema, and alveolar edema. Heme oxygenase (HO)-1 is usually associated with inflammation and has anti-inflammatory effects. Autophagy is a degradation pathway that eliminates cellular metabolic waste and plays an important protective role during stress. The phosphatidylinositol 3-kinase/ protein kinase B (PI3K/Akt) signaling pathway plays a key role in mediating cellular responses to inflammatory reactions. Therefore, we hypothesized that HO-1 is associated with autophagy and regulated by the PI3K/Akt signaling pathway in mice with sepsis-induced lung injury. Sepsis-induced lung injury was induced in mice using cecal ligation and puncture (CLP). Hemin or Sn-protoporphyrin IX (SnPP) was administered via intraperitoneal injection before surgery. Survival rates were observed during days 1-7 after the surgery; lung histology was discerned 24 h after the surgery; pro-inflammatory and anti-inflammatory factors in plasma and lung tissue were measured using enzyme-linked immunosorbent assay (ELISA); HO-1, Beclin-1, microtubule-associated protein 1 light chain 3B (LC3B)-II, p62 and lysosome associated membrane protein (LAMP)2 protein expression levels were measured 24 h after the surgery; HO-1 and LC3B-II protein expression levels were observed using immunofluorescence 24 h after the surgery; and autophagosomes were detected using electron microscopy 24 h after the surgery. Furthermore, when PI3K inhibitors LY294002, PI3K activators Recilisib and hemin were administered before the surgery, Akt, p-Akt, HO-1, and LC3-II levels were measured 24 h post-surgery. We found that HO-1 overexpression increased the survival rate and inhibited sepsis-induced lung injury. HO-1 overexpression attenuated the levels of proinflammatory cytokines (TNF-α, IL-1β) and increased the anti-inflammatory cytokine (IL-10, HO-1) overexpression. Moreover, HO-1 overexpression was also associated with increased expression of Beclin-1, LC3B-II and LAMP2 protein expression; decreased p62 protein expression; and significantly increased autophagosome formation. The results for HO-1-downregulated mice contrasted with those mentioned above. LY294002 inhibited p-Akt/Akt, HO-1, and LC3B-II protein expression; and hemin reversed the inhibitory effect of LY294002. The protective effect of HO-1 was involved in the mediation of autophagy, which may be regulated by the PI3K/Akt signaling pathway during sepsis-induced lung injury in mice.
Collapse
Affiliation(s)
- Jing Tian
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Institute of Anesthesiology, Tianjin, China
| | - Yanan Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Institute of Anesthesiology, Tianjin, China
| | - Xing Mao
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Institute of Anesthesiology, Tianjin, China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Institute of Anesthesiology, Tianjin, China
| | - Yuxin Zheng
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Institute of Anesthesiology, Tianjin, China
| | - Yang Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Institute of Anesthesiology, Tianjin, China.
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Institute of Anesthesiology, Tianjin, China.
| |
Collapse
|
2
|
Catalanotto FR, Ippolito M, Mirasola A, Catalisano G, Milazzo M, Giarratano A, Cortegiani A. Hyperoxia in critically ill patients with sepsis and septic shock: a systematic review. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE (ONLINE) 2023; 3:12. [PMID: 37386595 DOI: 10.1186/s44158-023-00096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/27/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND In septic patients, hyperoxia may help with its bactericidal effects, but it may cause systemic impairments. The role of hyperoxia and the appropriate oxygen target in these patients is unknown. The aim of this systematic review was to summarize the available literature. METHODS We conducted a systematic search screening PubMed and Cochrane Library. Studies on adult patients with sepsis or septic shock and admitted to ICU addressing the topic of hyperoxia were included and described. RESULTS We included 12 studies, for a total of 15.782 included patients. Five studies were randomized controlled trials (RCTs) or analyses from RCTs, three were prospective observational studies, and four were retrospective observational studies. The definition of hyperoxia was heterogeneous across the included studies. Mortality was the most frequent outcome: six studies showed an increased rate or risk of mortality with hyperoxia, three found no differences, and one a protective effect of hyperoxia. At the critical appraisal assessment stage, no major methodological flaws were detected, except for a single-center, pilot study, with a lack of adjustment for confounders and imbalance between the groups. CONCLUSION The optimum range of oxygen level able to minimize risks and provide benefits in patients with sepsis or septic shock seems still unknown. Clinical equipoise between hyperoxia and normoxia is uncertain as conflicting evidence exists. Further studies should aim at identifying the best range of oxygenation and its optimal duration, investigating how effects of different levels of oxygen may vary according to identified pathogens, source of infection, and prescribed antibiotics in critically ill patients with sepsis and septic shock.
Collapse
Affiliation(s)
- Francesca Romana Catalanotto
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S), University of Palermo, 90127, Palermo, Italy
| | - Mariachiara Ippolito
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S), University of Palermo, 90127, Palermo, Italy
- Department of Anaesthesia, Intensive Care and Emergency, Policlinico Paolo Giaccone, Via del Vespro 129, 90127, Palermo, Italy
| | - Alice Mirasola
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S), University of Palermo, 90127, Palermo, Italy
- Azienda Ospedaliera Ospedali Riuniti Villa Sofia Cervello, Palermo, Italy
| | - Giulia Catalisano
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S), University of Palermo, 90127, Palermo, Italy
| | - Marta Milazzo
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S), University of Palermo, 90127, Palermo, Italy
| | - Antonino Giarratano
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S), University of Palermo, 90127, Palermo, Italy
- Department of Anaesthesia, Intensive Care and Emergency, Policlinico Paolo Giaccone, Via del Vespro 129, 90127, Palermo, Italy
| | - Andrea Cortegiani
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S), University of Palermo, 90127, Palermo, Italy.
- Department of Anaesthesia, Intensive Care and Emergency, Policlinico Paolo Giaccone, Via del Vespro 129, 90127, Palermo, Italy.
| |
Collapse
|