1
|
Scott L, Winzey KD, Moreira D, Bresee C, Vit JP, Tourtellotte WG, Karumanchi SA, Lahiri S. Microglia ameliorate delirium-like phenotypes in a murine model of acute ventilator-induced lung injury. J Neuroinflammation 2024; 21:270. [PMID: 39434161 PMCID: PMC11495074 DOI: 10.1186/s12974-024-03260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Delirium affects 50-85% of patients on mechanical ventilation and is associated with increased mortality, prolonged hospitalization, and a three-fold higher risk of dementia. Microglia, the resident immune cells of the brain, exhibit both neuroprotective and neurotoxic functions; however, their effects in mechanical ventilation-induced acute lung injury (VILI) are unknown. We hypothesize that in a model of short-term VILI, microglia play a neuroprotective role to ameliorate delirium-like phenotypes. METHODS Microglia depletion (n = 18) was accomplished using an orally administered colony stimulating factor 1 receptor inhibitor, while controls received a vehicle diet (n = 18). We then compared extent of neuronal injury in the frontal cortex and hippocampus using cleaved caspase-3 (CC3) and multiple delirium-like behaviors in microglia depleted and non-microglia depleted male mice (C57BL/6 J aged 4-9 months) following VILI. Delirium-like behaviors were evaluated using the Open Field, Elevated Plus Maze, and Y-maze assays. We subsequently evaluated whether repopulation of microglia (n = 14 repopulation, 14 vehicle) restored the phenotypes. RESULTS Frontal/hippocampal neuronal CC3 levels were significantly higher in microglia depleted VILI mice compared to vehicle-treated VILI controls (p < 0.01, p < 0.01, respectively). These structural changes were accompanied by worse delirium-like behaviors in microglia depleted VILI mice compared to vehicle controls. Specifically, microglia depleted VILI mice demonstrated: (1) significantly increased time in the periphery of the Open Field (p = 0.01), (2) significantly increased coefficient of variation (p = 0.02), (3) trend towards reduced time in the open arms of the Elevated Plus Maze (p = 0.09), and (4) significantly decreased spontaneous alternations on Y-maze (p < 0.01). There was a significant inverse correlation between frontal CC3 and percent spontaneous alternations (R2 = 0.51, p < 0.01). Microglia repopulation showed a near-complete return to vehicle levels of delirium like-behaviors. CONCLUSIONS This study demonstrates that microglia depletion exacerbates structural and functional delirium-like phenotypes after VILI, while subsequent repopulation of microglia restores these phenotypes. These findings suggest a neuroprotective role for microglia in ameliorating neuronal and functional delirium-like phenotypes and call for consideration of interventions that leverage endogenous microglia physiology to mitigate delirium.
Collapse
Affiliation(s)
- Landon Scott
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kevin D Winzey
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Debbie Moreira
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Catherine Bresee
- Biostatistics Shared Resources, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jean-Philippe Vit
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Warren G Tourtellotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Shouri Lahiri
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Hunt DPJ, Hofer MJ. Unweaving type I interferons in age-related neuroinflammation. Trends Neurosci 2024; 47:751-752. [PMID: 39237428 DOI: 10.1016/j.tins.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Neuroinflammation is a feature of both neurodegenerative disease and normal brain aging. The roles of type I interferon (IFN-I) in the aged brain are incompletely understood. A recent article by Roy et al. reveals pervasive IFN-I activity in normal mouse brain aging, and highlights the importance of microglial IFN-I signaling in neuroinflammation.
Collapse
Affiliation(s)
- David P J Hunt
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, EH16 4SB, UK; Centre for Clinical Brain Sciences at University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Markus J Hofer
- School of Life and Environmental Sciences and the Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
3
|
Meng P, Liu T, Zhong Z, Fang R, Qiu F, Luo Y, Yang K, Cai H, Mei Z, Zhang X, Ge J. A novel rat model of cerebral small vessel disease based on vascular risk factors of hypertension, aging, and cerebral hypoperfusion. Hypertens Res 2024; 47:2195-2210. [PMID: 38872026 DOI: 10.1038/s41440-024-01741-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
Cerebral small vessel disease (CSVD) is a major cause of vascular cognitive impairment and functional loss in elderly patients. Progressive remodeling of cerebral microvessels due to arterial hypertension or other vascular risk factors, such as aging, can cause dementia or stroke. Typical imaging characteristics of CSVD include cerebral microbleeds (CMB), brain atrophy, small subcortical infarctions, white matter hyperintensities (WMH), and enlarged perivascular spaces (EPVS). Nevertheless, no animal models that reflect all the different aspects of CSVD have been identified. Here, we generated a new CSVD animal model using D-galactose (D-gal) combined with cerebral hypoperfusion in spontaneously hypertensive rats (SHR), which showed all the hallmark pathological features of CSVD and was based on vascular risk factors. SHR were hypodermically injected with D-gal (400 mg/kg/d) and underwent modified microcoil bilateral common carotid artery stenosis surgery. Subsequently, neurological assessments and behavioral tests were performed, followed by vascular ultrasonography, electron microscopy, flow cytometry, and histological analyses. Our rat model showed multiple cerebrovascular pathologies, such as CMB, brain atrophy, subcortical small infarction, WMH, and EPVS, as well as the underlying causes of CSVD pathology, including oxidative stress injury, decreased cerebral blood flow, structural and functional damage to endothelial cells, increased blood-brain barrier permeability, and inflammation. The use of this animal model will help identify new therapeutic targets and subsequently aid the development and testing of novel therapeutic interventions. Main process of the study: Firstly, we screened for optimal conditions for mimicking aging by injecting D-gal into rats for 4 and 8 weeks. Subsequently, we performed modified microcoil BCAS intervention for 4 and 8 weeks in rats to screen for optimal hypoperfusion conditions. Finally, based on these results, we combined D-gal for 8 weeks and modified microcoil BCAS for 4 weeks to explore the changes in SHR.
Collapse
Affiliation(s)
- Pan Meng
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tongtong Liu
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ziyan Zhong
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Rui Fang
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Feng Qiu
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yan Luo
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Kailin Yang
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Huzhi Cai
- First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhigang Mei
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| | - Xi Zhang
- The Second People's Hospital of Hunan Province, Changsha, Hunan, China.
| | - Jinwen Ge
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
4
|
Viengkhou B, Hayashida E, McGlasson S, Emelianova K, Forbes D, Wiseman S, Wardlaw J, Verdillo R, Irani SR, Duffy D, Piehl F, Loo L, Pagenstecher A, Neely GG, Crow YJ, Campbell IL, Hunt DPJ, Hofer MJ. The brain microvasculature is a primary mediator of interferon-α neurotoxicity in human cerebral interferonopathies. Immunity 2024; 57:1696-1709.e10. [PMID: 38878770 PMCID: PMC11250091 DOI: 10.1016/j.immuni.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 01/10/2024] [Accepted: 05/17/2024] [Indexed: 07/12/2024]
Abstract
Aicardi-Goutières syndrome (AGS) is an autoinflammatory disease characterized by aberrant interferon (IFN)-α production. The major cause of morbidity in AGS is brain disease, yet the primary source and target of neurotoxic IFN-α remain unclear. Here, we demonstrated that the brain was the primary source of neurotoxic IFN-α in AGS and confirmed the neurotoxicity of intracerebral IFN-α using astrocyte-driven Ifna1 misexpression in mice. Using single-cell RNA sequencing, we demonstrated that intracerebral IFN-α-activated receptor (IFNAR) signaling within cerebral endothelial cells caused a distinctive cerebral small vessel disease similar to that observed in individuals with AGS. Magnetic resonance imaging (MRI) and single-molecule ELISA revealed that central and not peripheral IFN-α was the primary determinant of microvascular disease in humans. Ablation of endothelial Ifnar1 in mice rescued microvascular disease, stopped the development of diffuse brain disease, and prolonged lifespan. These results identify the cerebral microvasculature as a primary mediator of IFN-α neurotoxicity in AGS, representing an accessible target for therapeutic intervention.
Collapse
Affiliation(s)
- Barney Viengkhou
- School of Life and Environmental Sciences and the Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Emina Hayashida
- School of Life and Environmental Sciences and the Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sarah McGlasson
- UK Dementia Research Institute at University of Edinburgh, Edinburgh EH16 4SB, UK; Centre for Clinical Brain Sciences at University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Katie Emelianova
- UK Dementia Research Institute at University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Deborah Forbes
- UK Dementia Research Institute at University of Edinburgh, Edinburgh EH16 4SB, UK; Centre for Clinical Brain Sciences at University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Stewart Wiseman
- Centre for Clinical Brain Sciences at University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Joanna Wardlaw
- UK Dementia Research Institute at University of Edinburgh, Edinburgh EH16 4SB, UK; Centre for Clinical Brain Sciences at University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Rovin Verdillo
- School of Life and Environmental Sciences and the Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, University of Oxford, Oxford, UK
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Fredrik Piehl
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lipin Loo
- School of Life and Environmental Sciences and the Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Axel Pagenstecher
- Department of Neuropathology, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - G Greg Neely
- School of Life and Environmental Sciences and the Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yanick J Crow
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK; Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Université de Paris, Paris, France
| | - Iain L Campbell
- School of Life and Environmental Sciences and the Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - David P J Hunt
- UK Dementia Research Institute at University of Edinburgh, Edinburgh EH16 4SB, UK; Centre for Clinical Brain Sciences at University of Edinburgh, Edinburgh EH16 4SB, UK.
| | - Markus J Hofer
- School of Life and Environmental Sciences and the Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
5
|
Zhao Y, Huang Z, Gao L, Ma H, Chang R. Osteopontin/SPP1: a potential mediator between immune cells and vascular calcification. Front Immunol 2024; 15:1395596. [PMID: 38919629 PMCID: PMC11196619 DOI: 10.3389/fimmu.2024.1395596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Vascular calcification (VC) is considered a common pathological process in various vascular diseases. Accumulating studies have confirmed that VC is involved in the inflammatory response in heart disease, and SPP1+ macrophages play an important role in this process. In VC, studies have focused on the physiological and pathological functions of macrophages, such as pro-inflammatory or anti-inflammatory cytokines and pro-fibrotic vesicles. Additionally, macrophages and activated lymphocytes highly express SPP1 in atherosclerotic plaques, which promote the formation of fatty streaks and plaque development, and SPP1 is also involved in the calcification process of atherosclerotic plaques that results in heart failure, but the crosstalk between SPP1-mediated immune cells and VC has not been adequately addressed. In this review, we summarize the regulatory effect of SPP1 on VC in T cells, macrophages, and dendritic cells in different organs' VC, which could be a potential therapeutic target for VC.
Collapse
Affiliation(s)
- Yanli Zhao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Zujuan Huang
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Limei Gao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Hongbo Ma
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Rong Chang
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| |
Collapse
|
6
|
Aguilar K, Canal C, Comes G, Díaz-Clavero S, Llanos MA, Quintana A, Sanz E, Hidalgo J. Interleukin-6-elicited chronic neuroinflammation may decrease survival but is not sufficient to drive disease progression in a mouse model of Leigh syndrome. J Inflamm (Lond) 2024; 21:1. [PMID: 38212783 PMCID: PMC10782699 DOI: 10.1186/s12950-023-00369-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Mitochondrial diseases (MDs) are genetic disorders characterized by dysfunctions in mitochondria. Clinical data suggest that additional factors, beyond genetics, contribute to the onset and progression of this group of diseases, but these influencing factors remain largely unknown. Mounting evidence indicates that immune dysregulation or distress could play a role. Clinical observations have described the co-incidence of infection and the onset of the disease as well as the worsening of symptoms following infection. These findings highlight the complex interactions between MDs and immunity and underscore the need to better understand their underlying relationships. RESULTS We used Ndufs4 KO mice, a well-established mouse model of Leigh syndrome (one of the most relevant MDs), to test whether chronic induction of a neuroinflammatory state in the central nervous system before the development of neurological symptoms would affect both the onset and progression of the disease in Ndufs4 KO mice. To this aim, we took advantage of the GFAP-IL6 mouse, which overexpresses interleukin-6 (IL-6) in astrocytes and produces chronic glial reactivity, by generating a mouse line with IL-6 overexpression and NDUFS4 deficiency. IL-6 overexpression aggravated the mortality of female Ndufs4 KO mice but did not alter the main motor and respiratory phenotypes measured in any sex. Interestingly, an abnormal region-dependent microglial response to IL-6 overexpression was observed in Ndufs4 KO mice compared to controls. CONCLUSION Overall, our data indicate that chronic neuroinflammation may worsen the disease in Ndufs4 KO female mice, but not in males, and uncovers an abnormal microglial response due to OXPHOS dysfunction, which may have implications for our understanding of the effect of OXPHOS dysfunction in microglia.
Collapse
Affiliation(s)
- Kevin Aguilar
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 08193
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Present address: Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Carla Canal
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 08193
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Gemma Comes
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 08193
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Sandra Díaz-Clavero
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 08193
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Present address: Dementia Research Institute, Imperial College London, London, UK
| | - Maria Angeles Llanos
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 08193
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Albert Quintana
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 08193
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Elisenda Sanz
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 08193.
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| | - Juan Hidalgo
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 08193.
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| |
Collapse
|
7
|
Weyer MP, Strehle J, Schäfer MKE, Tegeder I. Repurposing of pexidartinib for microglia depletion and renewal. Pharmacol Ther 2024; 253:108565. [PMID: 38052308 DOI: 10.1016/j.pharmthera.2023.108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
Pexidartinib (PLX3397) is a small molecule receptor tyrosine kinase inhibitor of colony stimulating factor 1 receptor (CSF1R) with moderate selectivity over other members of the platelet derived growth factor receptor family. It is approved for treatment of tenosynovial giant cell tumors (TGCT). CSF1R is highly expressed by microglia, which are macrophages of the central nervous system (CNS) that defend the CNS against injury and pathogens and contribute to synapse development and plasticity. Challenged by pathogens, apoptotic cells, debris, or inflammatory molecules they adopt a responsive state to propagate the inflammation and eventually return to a homeostatic state. The phenotypic switch may fail, and disease-associated microglia contribute to the pathophysiology in neurodegenerative or neuropsychiatric diseases or long-lasting detrimental brain inflammation after brain, spinal cord or nerve injury or ischemia/hemorrhage. Microglia also contribute to the growth permissive tumor microenvironment of glioblastoma (GBM). In rodents, continuous treatment for 1-2 weeks via pexidartinib food pellets leads to a depletion of microglia and subsequent repopulation from the remaining fraction, which is aided by peripheral monocytes that search empty niches for engraftment. The putative therapeutic benefit of such microglia depletion or forced renewal has been assessed in almost any rodent model of CNS disease or injury or GBM with heterogeneous outcomes, but a tendency of partial beneficial effects. So far, microglia monitoring e.g. via positron emission imaging is not standard of care for patients receiving Pexidartinib (e.g. for TGCT), so that the depletion and repopulation efficiency in humans is still largely unknown. Considering the virtuous functions of microglia, continuous depletion is likely no therapeutic option but short-lasting transient partial depletion to stimulate microglia renewal or replace microglia in genetic disease in combination with e.g. stem cell transplantation or as part of a multimodal concept in treatment of glioblastoma appears feasible. The present review provides an overview of the preclinical evidence pro and contra microglia depletion as a therapeutic approach.
Collapse
Affiliation(s)
- Marc-Philipp Weyer
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Faculty of Medicine, Frankfurt, Germany
| | - Jenny Strehle
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Faculty of Medicine, Frankfurt, Germany.
| |
Collapse
|
8
|
Viengkhou B, Hofer MJ. Breaking down the cellular responses to type I interferon neurotoxicity in the brain. Front Immunol 2023; 14:1110593. [PMID: 36817430 PMCID: PMC9936317 DOI: 10.3389/fimmu.2023.1110593] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Since their original discovery, type I interferons (IFN-Is) have been closely associated with antiviral immune responses. However, their biological functions go far beyond this role, with balanced IFN-I activity being critical to maintain cellular and tissue homeostasis. Recent findings have uncovered a darker side of IFN-Is whereby chronically elevated levels induce devastating neuroinflammatory and neurodegenerative pathologies. The underlying causes of these 'interferonopathies' are diverse and include monogenetic syndromes, autoimmune disorders, as well as chronic infections. The prominent involvement of the CNS in these disorders indicates a particular susceptibility of brain cells to IFN-I toxicity. Here we will discuss the current knowledge of how IFN-Is mediate neurotoxicity in the brain by analyzing the cell-type specific responses to IFN-Is in the CNS, and secondly, by exploring the spectrum of neurological disorders arising from increased IFN-Is. Understanding the nature of IFN-I neurotoxicity is a crucial and fundamental step towards development of new therapeutic strategies for interferonopathies.
Collapse
Affiliation(s)
- Barney Viengkhou
- School of Life and Environmental Sciences and the Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|