1
|
Shi J, Tang J, Liu L, Zhang C, Chen W, Qi M, Han Z, Chen X. Integrative Analyses of Bulk and Single-Cell RNA Seq Identified the Shared Genes in Acute Respiratory Distress Syndrome and Rheumatoid Arthritis. Mol Biotechnol 2024:10.1007/s12033-024-01141-6. [PMID: 38656728 DOI: 10.1007/s12033-024-01141-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/06/2024] [Indexed: 04/26/2024]
Abstract
Acute respiratory distress syndrome (ARDS), a progressive status of acute lung injury (ALI), is primarily caused by an immune-mediated inflammatory disorder, which can be an acute pulmonary complication of rheumatoid arthritis (RA). As a chronic inflammatory disease regulated by the immune system, RA is closely associated with the occurrence and progression of respiratory diseases. However, it remains elusive whether there are shared genes between the molecular mechanisms underlying RA and ARDS. The objective of this study is to identify potential shared genes for further clinical drug discovery through integrated analysis of bulk RNA sequencing datasets obtained from the Gene Expression Omnibus database, employing differentially expressed genes (DEGs) analysis and weighted gene co-expression network analysis (WGCNA). The hub genes were identified through the intersection of common DEGs and WGCNA-derived genes. The Random Forest (RF) and least absolute shrinkage and selection operator (LASSO) algorithms were subsequently employed to identify key shared target genes associated with two diseases. Additionally, RA immune infiltration analysis and COVID-19 single-cell transcriptome analysis revealed the correlation between these key genes and immune cells. A total of 59 shared genes were identified from the intersection of DEGs and gene clusters obtained through WGCNA, which analyzed the integrated gene matrix of ALI/ARDS and RA. The RF and LASSO algorithms were employed to screen for target genes specific to ALI/ARDS and RA, respectively. The final set of overlapping genes (FCMR, ADAM28, HK3, GRB10, UBE2J1, HPSE, DDX24, BATF, and CST7) all exhibited a strong predictive effect with an area under the curve (AUC) value greater than 0.8. Then, the immune infiltration analysis revealed a strong correlation between UBE2J1 and plasma cells in RA. Furthermore, scRNA-seq analysis demonstrated differential expression of these nine target genes primarily in T cells and NK cells, with CST7 showing a significant positive correlation specifically with NK cells. Beyond that, transcriptome sequencing was conducted on lung tissue collected from ALI mice, confirming the substantial differential expression of FCMR, HK3, UBE2J1, and BATF. This study provides unprecedented evidence linking the pathophysiological mechanisms of ALI/ARDS and RA to immune regulation, which offers novel understanding for future clinical treatment and experimental research.
Collapse
Affiliation(s)
- Jun Shi
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Jiajia Tang
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Lu Liu
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Chunyang Zhang
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Wei Chen
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Man Qi
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Zhihai Han
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China.
| | - Xuxin Chen
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
2
|
Hussain M, Liu G. Eosinophilic Asthma: Pathophysiology and Therapeutic Horizons. Cells 2024; 13:384. [PMID: 38474348 PMCID: PMC10931088 DOI: 10.3390/cells13050384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Asthma is a prevalent chronic non-communicable disease, affecting approximately 300 million people worldwide. It is characterized by significant airway inflammation, hyperresponsiveness, obstruction, and remodeling. Eosinophilic asthma, a subtype of asthma, involves the accumulation of eosinophils in the airways. These eosinophils release mediators and cytokines, contributing to severe airway inflammation and tissue damage. Emerging evidence suggests that targeting eosinophils could reduce airway remodeling and slow the progression of asthma. To achieve this, it is essential to understand the immunopathology of asthma, identify specific eosinophil-associated biomarkers, and categorize patients more accurately based on the clinical characteristics (phenotypes) and underlying pathobiological mechanisms (endotypes). This review delves into the role of eosinophils in exacerbating severe asthma, exploring various phenotypes and endotypes, as well as biomarkers. It also examines the current and emerging biological agents that target eosinophils in eosinophilic asthma. By focusing on these aspects, both researchers and clinicians can advance the development of targeted therapies to combat eosinophilic pathology in severe asthma.
Collapse
Affiliation(s)
- Musaddique Hussain
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|