1
|
Chen X, Fang M, Hong J, Guo Y. JNK Pathway-Associated Phosphatase Deficiency Facilitates Atherosclerotic Progression by Inducing T-Helper 1 and 17 Polarization and Inflammation in an ERK- and NF-κB Pathway-Dependent Manner. J Atheroscler Thromb 2024; 31:1460-1478. [PMID: 38797677 PMCID: PMC11456371 DOI: 10.5551/jat.64754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
AIM JNK pathway-associated phosphatase (JKAP) regulates T cell-mediated immunity and inflammation, which are involved in atherosclerosis pathogenesis. This study investigated the effects of JKAP on T-helper (Th) cell polarization, inflammation, and atherosclerotic progression. METHODS Serum JKAP levels were measured in 30 patients with coronary heart disease (CHD) and 30 controls. CHD blood naïve CD4+ T cells were acquired, followed by JKAP overexpression and knockdown with or without treatment with PD98059 (ERK inhibitor) or BAY-11-7082 (NF-κB inhibitor) in vitro. CD4+ T-cell conditional JKAP ablation mice were established in vivo, followed by the construction of an atherosclerosis model. RESULTS JKAP was reduced and negatively correlated with the Gensini score, CRP, Th1 cells, Th17 cells, and proinflammatory cytokines in patients with CHD. In vitro, JKAP overexpression suppressed Th1 and Th17 cell differentiation and proinflammatory cytokines, whereas JKAP knockdown exerted the opposite effect; however, JKAP modification did not affect Th2 cell differentiation. Interestingly, JKAP negatively regulated the ERK and NF-κB pathways; meanwhile, the PD98059 and BAY-11-7082 treatments repressed Th1 and Th17 cell differentiation, and attenuated the effect of JKAP knockdown on these indices. In vivo, conditional CD4+ T-cell JKAP ablation increased Th1 and Th17 cell polarization in the spleen, lymph node, blood, and/or aortic root. Furthermore, CD4+ T-cell conditional JKAP ablation exaggerated atherosclerotic lesions in the aorta, elevated CD4+ cell infiltration and proinflammatory cytokines in the aortic root, and activated the ERK and NF-κB pathways in the aortic root. CONCLUSION JKAP ablation facilitates atherosclerosis progression by promoting Th1 and 17 polarization and inflammation through regulation of the ERK and NF-κB pathways.
Collapse
Affiliation(s)
- Xinjing Chen
- Department of Cardiology, Provincial Clinical Medical College of Fujian Medical University, Fujian Institute of Cardiovascular Disease, Fujian Provincial Hospital
| | - Mingcheng Fang
- Department of Cardiology, Provincial Clinical Medical College of Fujian Medical University, Fujian Institute of Cardiovascular Disease, Fujian Provincial Hospital
| | - Jingxuan Hong
- Department of Cardiology, Provincial Clinical Medical College of Fujian Medical University, Fujian Institute of Cardiovascular Disease, Fujian Provincial Hospital
| | - Yansong Guo
- Department of Cardiology, Provincial Clinical Medical College of Fujian Medical University, Fujian Institute of Cardiovascular Disease, Fujian Provincial Hospital
| |
Collapse
|
2
|
Miranda S, Vermeesen R, Janssen A, Rehnberg E, Etlioglu E, Baatout S, Tabury K, Baselet B. Effects of simulated space conditions on CD4+ T cells: a multi modal analysis. Front Immunol 2024; 15:1443936. [PMID: 39286254 PMCID: PMC11402665 DOI: 10.3389/fimmu.2024.1443936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/08/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction The immune system is an intricate network of cellular components that safeguards against pathogens and aberrant cells, with CD4+ T cells playing a central role in this process. Human space travel presents unique health challenges, such as heavy ion ionizing radiation, microgravity, and psychological stress, which can collectively impede immune function. The aim of this research was to examine the consequences of simulated space stressors on CD4+ T cell activation, cytokine production, and gene expression. Methods CD4+ T cells were obtained from healthy individuals and subjected to Fe ion particle radiation, Photon irradiation, simulated microgravity, and hydrocortisone, either individually or in different combinations. Cytokine levels for Th1 and Th2 cells were determined using multiplex Luminex assays, and RNA sequencing was used to investigate gene expression patterns and identify essential genes and pathways impacted by these stressors. Results Simulated microgravity exposure resulted in an apparent Th1 to Th2 shift, evidenced on the level of cytokine secretion as well as altered gene expression. RNA sequencing analysis showed that several gene pathways were altered, particularly in response to Fe ions irradiation and simulated microgravity exposures. Individually, each space stressor caused differential gene expression, while the combination of stressors revealed complex interactions. Discussion The research findings underscore the substantial influence of the space exposome on immune function, particularly in the regulation of T cell responses. Future work should focus expanding the limited knowledge in this field. Comprehending these modifications will be essential for devising effective strategies to safeguard the health of astronauts during extended space missions. Conclusion The effects of simulated space stressors on CD4+ T cell function are substantial, implying that space travel poses a potential threat to immune health. Additional research is necessary to investigate the intricate relationship between space stressors and to develop effective countermeasures to mitigate these consequences.
Collapse
Affiliation(s)
- Silvana Miranda
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Randy Vermeesen
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Ann Janssen
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Emil Rehnberg
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Emre Etlioglu
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, United States
| | - Bjorn Baselet
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| |
Collapse
|
3
|
Suryan V, Chandra NC. Cholesterol and Cytokines: Molecular Links to Atherosclerosis and Carcinogenesis. Cell Biochem Biophys 2024; 82:1837-1844. [PMID: 38943010 DOI: 10.1007/s12013-024-01383-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
An increase of cholesterol concentration within the artery obstructs arterial blood flow once it deposits alongside the arterial wall. This results in atherosclerosis. Carcinogenesis causes a quicker clearance of vascular cholesterol to meet the demands of tumour cell development. Both illnesses have an increased concentration of pro-inflammatory cytokines in the blood. To search the comparative characteristics of cholesterol and pro-inflammatory cytokines in the pathogenesis of atherosclerosis and carcinogenesis, a comprehensive online survey using MEDLINE, Scopus, PubMed, and Google Scholar was conducted for relevant journals with key search term cholesterol and cytokines in atherosclerotic and cancerous patients. According to reports, hypercholesterolaemia related dyslipidemia causes atherosclerosis in blood arteries and hypercholesterolaemia in cell nucleus is a reason for developing carcinogenesis. It is also noted that pro-inflammatory cytokines are involved in both of the aforementioned pathogenesis. Changes in anti-inflammatory cytokines are only the characteristic features of each kind. Thus, Cholesterol and pro-inflammatory cytokines are intensely interlinked in the genesis of atherosclerotic and carcinogenic consequences.
Collapse
Affiliation(s)
- Varsha Suryan
- Department of Biochemistry, Faculty of Medicine & Health Sciences, Shree Guru Gobind Singh Tricentenary University, Budhera, Gurugram (Delhi-NCR), Haryana, 122505, India
- Department of Paramedical Science, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary University, Budhera, Gurugram (Delhi-NCR), Haryana, 122505, India
| | - Nimai Chand Chandra
- Department of Biochemistry, Faculty of Medicine & Health Sciences, Shree Guru Gobind Singh Tricentenary University, Budhera, Gurugram (Delhi-NCR), Haryana, 122505, India.
| |
Collapse
|
4
|
Liu T, Chen Y, Hou L, Yu Y, Ma D, Jiang T, Zhao G. Immune cell-mediated features of atherosclerosis. Front Cardiovasc Med 2024; 11:1450737. [PMID: 39234608 PMCID: PMC11371689 DOI: 10.3389/fcvm.2024.1450737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by innate and adaptive immune responses, which seriously threatens human life and health. It is a primary cause of coronary heart disease, myocardial infarction, and peripheral vascular disease. Research has demonstrated that immune cells are fundamental to the development of atherosclerosis and chronic inflammation. Therefore, it is anticipated that immunotherapy targeting immune cells will be a novel technique in the management of atherosclerosis. This article reviews the growth of research on the regulatory role of immune cells in atherosclerosis and targeted therapy approaches. The purpose is to offer new therapeutic approaches for the control and treatment of cardiovascular illnesses caused by atherosclerosis.
Collapse
Affiliation(s)
- Tingting Liu
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Yanjun Chen
- Department of Pathology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lianjie Hou
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Yulu Yu
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Dan Ma
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ting Jiang
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Guojun Zhao
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| |
Collapse
|
5
|
Chang S, Wang Z, An T. T-Cell Metabolic Reprogramming in Atherosclerosis. Biomedicines 2024; 12:1844. [PMID: 39200308 PMCID: PMC11352190 DOI: 10.3390/biomedicines12081844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Atherosclerosis is a key pathological basis for cardiovascular diseases, significantly influenced by T-cell-mediated immune responses. T-cells differentiate into various subtypes, such as pro-inflammatory Th1/Th17 and anti-inflammatory Th2/Treg cells. The imbalance between these subtypes is critical for the progression of atherosclerosis (AS). Recent studies indicate that metabolic reprogramming within various microenvironments can shift T-cell differentiation towards pro-inflammatory or anti-inflammatory phenotypes, thus influencing AS progression. This review examines the roles of pro-inflammatory and anti-inflammatory T-cells in atherosclerosis, focusing on how their metabolic reprogramming regulates AS progression and the associated molecular mechanisms of mTOR and AMPK signaling pathways.
Collapse
Affiliation(s)
| | | | - Tianhui An
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.C.); (Z.W.)
| |
Collapse
|
6
|
Mickael ME, Kubick N, Dragan M, Atanasov AG, Ławiński M, Paszkiewicz J, Horbańczuk JO, Religa P, Thorne A, Sacharczuk M. The impact of BDNF and CD4 + T cell crosstalk on depression. Immunol Res 2024:10.1007/s12026-024-09514-4. [PMID: 38980567 DOI: 10.1007/s12026-024-09514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Affiliation(s)
- Michel-Edwar Mickael
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552, JastrzebiecMagdalenka, Poland.
| | - Norwin Kubick
- Department of Biology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Małgorzata Dragan
- Faculty of Psychology, University of Warsaw, Krakowskie Przedmieście26/28, 00-927, Warsaw, Poland
| | - Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552, JastrzebiecMagdalenka, Poland
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Michał Ławiński
- Department of General, Gastroenterology and Oncologic Surgery, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Justyna Paszkiewicz
- Department of Health, John Paul II University of Applied Sciences in Biala Podlaska, Sidorska 95/97, 21-500, Biała Podlaska, Poland
| | - Jarosław Olav Horbańczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552, JastrzebiecMagdalenka, Poland
| | - Piotr Religa
- Department of Medicine, Karolinska Institute, 171 77, Solna, Sweden
| | - Ana Thorne
- Medical Faculty, University of Nis, Bulevar Dr Zorana Djidjica 81, 18000, Nis, Serbia
| | - Mariusz Sacharczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552, JastrzebiecMagdalenka, Poland.
| |
Collapse
|
7
|
Lusta KA, Summerhill VI, Khotina VA, Sukhorukov VN, Glanz VY, Orekhov AN. The Role of Bacterial Extracellular Membrane Nanovesicles in Atherosclerosis: Unraveling a Potential Trigger. Curr Atheroscler Rep 2024; 26:289-304. [PMID: 38805145 DOI: 10.1007/s11883-024-01206-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
PURPOSE OF REVIEW In this review, we explore the intriguing and evolving connections between bacterial extracellular membrane nanovesicles (BEMNs) and atherosclerosis development, highlighting the evidence on molecular mechanisms by which BEMNs can promote the athero-inflammatory process that is central to the progression of atherosclerosis. RECENT FINDINGS Atherosclerosis is a chronic inflammatory disease primarily driven by metabolic and lifestyle factors; however, some studies have suggested that bacterial infections may contribute to the development of both atherogenesis and inflammation in atherosclerotic lesions. In particular, the participation of BEMNs in atherosclerosis pathogenesis has attracted special attention. We provide some general insights into how the immune system responds to potential threats such as BEMNs during the development of atherosclerosis. A comprehensive understanding of contribution of BEMNs to atherosclerosis pathogenesis may lead to the development of targeted interventions for the prevention and treatment of the disease.
Collapse
Affiliation(s)
- Konstantin A Lusta
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky Russian National Center of Surgery, Moscow, 119991, Russia
| | - Volha I Summerhill
- Department of Research and Development, Institute for Atherosclerosis Research, Moscow, 121609, Russia.
| | - Victoria A Khotina
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky Russian National Center of Surgery, Moscow, 119991, Russia
| | - Vasily N Sukhorukov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky Russian National Center of Surgery, Moscow, 119991, Russia
| | - Victor Y Glanz
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky Russian National Center of Surgery, Moscow, 119991, Russia
| | - Alexander N Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky Russian National Center of Surgery, Moscow, 119991, Russia.
- Department of Research and Development, Institute for Atherosclerosis Research, Moscow, 121609, Russia.
| |
Collapse
|
8
|
Chen X, Fang M, Hong J, Guo Y. Longitudinal Variations in Th and Treg Cells Before and After Percutaneous Coronary Intervention, and Their Intercorrelations and Prognostic Value in Acute Syndrome Patients. Inflammation 2024:10.1007/s10753-024-02062-x. [PMID: 38874809 DOI: 10.1007/s10753-024-02062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024]
Abstract
T helper (Th) and regulatory T (Treg) cells regulate atherosclerosis, plaque, inflammation to involve in acute coronary syndrome (ACS). The current study aimed to investigate the clinical implications of Th and Treg cells in ACS patients receiving percutaneous coronary intervention (PCI). Blood Th1, Th2, Th17 and Treg cells were detected in 160 ACS patients before PCI, after PCI, at 1 month (M). Short physical performance battery (SPPB) at M1/M3 and major adverse cardiac event (MACE) during follow-ups were evaluated. Th1 and Th17 both showed upward trends during PCI, then greatly declined at M1 (P < 0.001). Th2 exhibited an upward trend during PCI but decreased slightly at M1 (P < 0.001). Treg remained stable during PCI but elevated at M1 (P < 0.001). Moreover, a positive correlation between Th1 and Th17, a negative correlation between Th17 and Treg, were discovered at several timepoints (most P < 0.050). Interestingly, the receiver operating curve (ROC) analyses revealed that Th1 [area under curve (AUC) between 0.633-0.645] and Th17 (AUC between 0.626-0.699) exhibited values estimating SPPB score <= 6 points at M1 or M3 to some extent. Importantly, Th1 (AUC between 0.708-0.710), Th17 (AUC between 0.694-0.783), and Treg (AUC between 0.706-0.729) predicted MACE risk. Multivariate models involving Th and Treg cells along with other characteristics revealed acceptable values estimating SPPB score <= 6 points at M1 or M3 (AUC between 0.690-0.813), and good values predicting MACE risk (AUC between 0.830-0.971). Dynamic variations in Th and Treg cells can predict the prognosis of ACS patients receiving PCI.
Collapse
Affiliation(s)
- Xinjing Chen
- Department of Cardiology, Provincial Clinical Medical College of Fujian Medical University, Provincial Hospital Affiliated to Fuzhou University, Fujian Institute of Cardiovascular Disease, Fujian Provincial Hospital, 134 East Street, Fuzhou, 350001, China.
| | - Mingcheng Fang
- Department of Cardiology, Provincial Clinical Medical College of Fujian Medical University, Provincial Hospital Affiliated to Fuzhou University, Fujian Institute of Cardiovascular Disease, Fujian Provincial Hospital, 134 East Street, Fuzhou, 350001, China
| | - Jingxuan Hong
- Department of Cardiology, Provincial Clinical Medical College of Fujian Medical University, Provincial Hospital Affiliated to Fuzhou University, Fujian Institute of Cardiovascular Disease, Fujian Provincial Hospital, 134 East Street, Fuzhou, 350001, China
| | - Yansong Guo
- Department of Cardiology, Provincial Clinical Medical College of Fujian Medical University, Provincial Hospital Affiliated to Fuzhou University, Fujian Institute of Cardiovascular Disease, Fujian Provincial Hospital, 134 East Street, Fuzhou, 350001, China
| |
Collapse
|
9
|
Madaudo C, Coppola G, Parlati ALM, Corrado E. Discovering Inflammation in Atherosclerosis: Insights from Pathogenic Pathways to Clinical Practice. Int J Mol Sci 2024; 25:6016. [PMID: 38892201 PMCID: PMC11173271 DOI: 10.3390/ijms25116016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
This comprehensive review explores the various scenarios of atherosclerosis, a systemic and chronic arterial disease that underlies most cardiovascular disorders. Starting from an overview of its insidious development, often asymptomatic until it reaches advanced stages, the review delves into the pathophysiological evolution of atherosclerotic lesions, highlighting the central role of inflammation. Insights into clinical manifestations, including heart attacks and strokes, highlight the disease's significant burden on global health. Emphasis is placed on carotid atherosclerosis, clarifying its epidemiology, clinical implications, and association with cognitive decline. Prevention strategies, lifestyle modifications, risk factor management, and nuanced antithrombotic treatment considerations are critical to managing cardiovascular complications, thus addressing a crucial aspect of cardiovascular health.
Collapse
Affiliation(s)
- Cristina Madaudo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Cardiology Unit, University of Palermo, University Hospital P. Giaccone, 90127 Palermo, Italy; (C.M.)
| | - Giuseppe Coppola
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Cardiology Unit, University of Palermo, University Hospital P. Giaccone, 90127 Palermo, Italy; (C.M.)
| | | | - Egle Corrado
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Cardiology Unit, University of Palermo, University Hospital P. Giaccone, 90127 Palermo, Italy; (C.M.)
| |
Collapse
|
10
|
Fularski P, Czarnik W, Dąbek B, Lisińska W, Radzioch E, Witkowska A, Młynarska E, Rysz J, Franczyk B. Broader Perspective on Atherosclerosis-Selected Risk Factors, Biomarkers, and Therapeutic Approach. Int J Mol Sci 2024; 25:5212. [PMID: 38791250 PMCID: PMC11121693 DOI: 10.3390/ijms25105212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) stands as the leading cause of mortality worldwide. At its core lies a progressive process of atherosclerosis, influenced by multiple factors. Among them, lifestyle-related factors are highlighted, with inadequate diet being one of the foremost, alongside factors such as cigarette smoking, low physical activity, and sleep deprivation. Another substantial group of risk factors comprises comorbidities. Amongst others, conditions such as hypertension, diabetes mellitus (DM), chronic kidney disease (CKD), or familial hypercholesterolemia (FH) are included here. Extremely significant in the context of halting progression is counteracting the mentioned risk factors, including through treatment of the underlying disease. What is more, in recent years, there has been increasing attention paid to perceiving atherosclerosis as an inflammation-related disease. Consequently, efforts are directed towards exploring new anti-inflammatory medications to limit ASCVD progression. Simultaneously, research is underway to identify biomarkers capable of providing insights into the ongoing process of atherosclerotic plaque formation. The aim of this study is to provide a broader perspective on ASCVD, particularly focusing on its characteristics, traditional and novel treatment methods, and biomarkers that can facilitate its early detection.
Collapse
Affiliation(s)
- Piotr Fularski
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Witold Czarnik
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Bartłomiej Dąbek
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Wiktoria Lisińska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewa Radzioch
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Alicja Witkowska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
11
|
Trinh J, Shin J, Rai V, Agrawal DK. Targeting Oncostatin M Receptor to Attenuate Carotid Artery Plaque Vulnerability in Hypercholesterolemic Microswine. CARDIOLOGY AND CARDIOVASCULAR MEDICINE 2024; 8:206-214. [PMID: 38817407 PMCID: PMC11138392 DOI: 10.26502/fccm.92920380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease that leads to acute embolism via the formation of atherosclerotic plaques. Plaque formation is first induced by fatty deposition along the arterial intima. Inflammation, bacterial infection, and the released endotoxins can lead to dysfunction and phenotypic changes of vascular smooth muscle cells (VSMCs), advancing the plaque from stable to unstable form and prone to rupture. Stable plaques are characterized by increased VSMCs and less inflammation while vulnerable plaques develop due to chronic inflammation and less VSMCs. Oncostatin M (OSM), an inflammatory cytokine, plays a role in endothelial cells and VSMC proliferation. This effect of OSM could be modulated by p27KIP1, a cyclin-dependent kinase (CDK) inhibitor. However, the role of OSM in plaque vulnerability has not been investigated. To better understand the role of OSM and its downstream signaling including p27KIP1 in plaque vulnerability, we characterized the previously collected carotid arteries from hyperlipidemic Yucatan microswine using hematoxylin and eosin stain, Movat Pentachrome stain, and gene and protein expression of OSM and p27KIP1 using immunostaining and real-time polymerase chain reaction. OSM and p27KIP1 expression in carotid arteries with angioplasty and treatment with either scrambled peptide or LR12, an inhibitor of triggering receptor expressed on myeloid cell (TREM)-1, were compared between the experimental groups and with contralateral carotid artery. The results of this study elucidated the presence of OSM and p27KIP1 in carotid arteries with plaque and their association with arterial plaque and vulnerability. The findings suggest that targeting OSM and p27KIP1 axis regulating VSMC proliferation may have therapeutic significance to stabilize plaque.
Collapse
Affiliation(s)
- Jerry Trinh
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| | - Jennifer Shin
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| |
Collapse
|
12
|
Xiong X, Yan Z, Yan L, Yang X, Li D, Lin G. Oxidized low-density lipoproteins impair the pro-atherosclerotic effect of granulocyte-macrophage-colony-stimulating factor-producing T helper cells on macrophages. Scand J Immunol 2024; 99:e13362. [PMID: 38605563 DOI: 10.1111/sji.13362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/10/2024] [Accepted: 02/02/2024] [Indexed: 04/13/2024]
Abstract
T cells contribute to the pathogenesis of atherosclerosis. However, the presence and function of granulocyte-macrophage-colony-stimulating factor (GM-CSF)-producing T helper (ThGM) cells in atherosclerosis development is unknown. This study aims to characterize the phenotype and function of ThGM cells in experimental atherosclerosis. Atherosclerosis was induced by feeding apolipoprotein E knockout (ApoE-/-) mice with a high-fat diet. Aortic ThGM cells were detected and sorted by flow cytometry. The effect of oxidized low-density lipoprotein (oxLDL) on ThGM cells and the impact of ThGM cells on macrophages were evaluated by flow cytometry, quantitative RT-PCR, oxLDL binding/uptake assay, immunoblotting and foam cell formation assay. We found that GM-CSF+IFN-γ- ThGM cells existed in atherosclerotic aortas. Live ThGM cells were enriched in aortic CD4+CCR6-CCR8-CXCR3-CCR10+ T cells. Aortic ThGM cells triggered the expression of interleukin-1β (IL-1β), tumour necrosis factor (TNF), interleukin-6 (IL-6) and C-C motif chemokine ligand 2 (CCL2) in macrophages. Besides, aortic ThGM cells expressed higher CD69 than other T cells and bound to oxLDL. oxLDL suppressed the cytokine expression in ThGM cells probably via inhibiting the signal transducer and activator of transcription 5 (STAT5) signalling. Furthermore, oxLDL alleviated the effect of ThGM cells on inducing macrophages to produce pro-inflammatory cytokines and generate foam cells. The nuclear receptor subfamily 4 group A (NR4A) members NR4A1 and NR4A2 were involved in the suppressive effect of oxLDL on ThGM cells. Collectively, oxLDL suppressed the supportive effect of ThGM cells on pro-atherosclerotic macrophages.
Collapse
Affiliation(s)
- Xiaofang Xiong
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuchang, Hubei Province, China
| | - Zheng Yan
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuchang, Hubei Province, China
| | - Long Yan
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuchang, Hubei Province, China
| | - Xuexue Yang
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuchang, Hubei Province, China
| | - Dongsheng Li
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuchang, Hubei Province, China
| | - Guizhen Lin
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuchang, Hubei Province, China
| |
Collapse
|
13
|
Rani D, Kaur S, Shahjahan, Dey JK, Dey SK. Engineering immune response to regulate cardiovascular disease and cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:381-417. [PMID: 38762276 DOI: 10.1016/bs.apcsb.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Cardiovascular disease (CVD) and cancer are major contributors to global morbidity and mortality. This book chapter delves into the intricate relationship between the immune system and the pathogenesis of both cardiovascular and cancer diseases, exploring the roles of innate and adaptive immunities, immune regulation, and immunotherapy in these complex conditions. The innate immune system acts as the first line of defense against tissue damage and infection, with a significant impact on the initiation and progression of CVD and cancer. Endothelial dysfunction, a hallmark in CVD, shares commonalities with the tumor microenvironment in cancer, emphasizing the parallel involvement of the immune system in both conditions. The adaptive immune system, particularly T cells, contributes to prolonged inflammation in both CVD and cancer. Regulatory T cells and the intricate balance between different T cell subtypes influence disease progression, wound healing, and the outcomes of ischemic injury and cancer immunosurveillance. Dysregulation of immune homeostasis can lead to chronic inflammation, contributing to the development and progression of both CVD and cancer. Thus, immunotherapy emerged as a promising avenue for preventing and managing these diseases, with strategies targeting immune cell modulation, cytokine manipulation, immune checkpoint blockade, and tolerance induction. The impact of gut microbiota on CVD and cancer too is explored in this chapter, highlighting the role of gut leakiness, microbial metabolites, and the potential for microbiome-based interventions in cardiovascular and cancer immunotherapies. In conclusion, immunomodulatory strategies and immunotherapy hold promise in reshaping the landscape of cardiovascular and cancer health. Additionally, harnessing the gut microbiota for immune modulation presents a novel approach to prevent and manage these complex diseases, emphasizing the importance of personalized and precision medicine in healthcare. Ongoing research and clinical trials are expected to further elucidate the complex immunological underpinnings of CVD and cancer thereby refining these innovative approaches.
Collapse
Affiliation(s)
- Diksha Rani
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, Delhi, India
| | - Smaranjot Kaur
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, Delhi, India
| | - Shahjahan
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, Delhi, India
| | - Joy Kumar Dey
- Central Council for Research in Homoeopathy, Ministry of Ayush, Govt. of India, New Delhi, Delhi, India
| | - Sanjay Kumar Dey
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, Delhi, India.
| |
Collapse
|
14
|
Attiq A, Afzal S, Ahmad W, Kandeel M. Hegemony of inflammation in atherosclerosis and coronary artery disease. Eur J Pharmacol 2024; 966:176338. [PMID: 38242225 DOI: 10.1016/j.ejphar.2024.176338] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/30/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Inflammation drives coronary artery disease and atherosclerosis implications. Lipoprotein entry, retention, and oxidative modification cause endothelial damage, triggering innate and adaptive immune responses. Recruited immune cells orchestrate the early atherosclerotic lesions by releasing proinflammatory cytokines, expediting the foam cell formation, intraplaque haemorrhage, secretion of matrix-degrading enzymes, and lesion progression, eventually promoting coronary artery syndrome via various inflammatory cascades. In addition, soluble mediators disrupt the dynamic anti- and prothrombotic balance maintained by endothelial cells and pave the way for coronary artery disease such as angina pectoris. Recent studies have established a relationship between elevated levels of inflammatory markers, including C-reactive protein (CRP), interleukins (IL-6, IL-1β), and tumour necrosis factor-alpha (TNF-α) with the severity of CAD and the possibility of future cardiovascular events. High-sensitivity C-reactive protein (hs-CRP) is a marker for assessing systemic inflammation and predicting the risk of developing CAD based on its peak plasma levels. Hence, understanding cross-talk interactions of inflammation, atherogenesis, and CAD is highly warranted to recalculate the risk factors that activate and propagate arterial lesions and devise therapeutic strategies accordingly. Cholesterol-inflammation lowering agents (statins), monoclonal antibodies targeting IL-1 and IL-6 (canakinumab and tocilizumab), disease-modifying antirheumatic drugs (methotrexate), sodium-glucose transport protein-2 (SGLT2) inhibitors, colchicine and xanthene oxidase inhibitor (allopurinol) have shown promising results in reducing inflammation, regressing atherogenic plaque and modifying the course of CAD. Here, we review the complex interplay between inflammatory, endothelial, smooth muscle and foam cells. Moreover, the putative role of inflammation in atherosclerotic CAD, underlying mechanisms and potential therapeutic implications are also discussed herein.
Collapse
Affiliation(s)
- Ali Attiq
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia.
| | - Sheryar Afzal
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, 31982, Al Ahsa, Saudi Arabia.
| | - Waqas Ahmad
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, 31982, Al Ahsa, Saudi Arabia
| |
Collapse
|
15
|
Vos WG, van Os BW, den Toom M, Beckers L, van Roomen CP, van Tiel CM, Mohapatra BC, Band H, Nitz K, Weber C, Atzler D, de Winther MP, Bosmans LA, Lutgens E, Seijkens TT. T cell specific deletion of Casitas B lineage lymphoma-b reduces atherosclerosis, but increases plaque T cell infiltration and systemic T cell activation. Front Immunol 2024; 15:1297893. [PMID: 38504977 PMCID: PMC10949527 DOI: 10.3389/fimmu.2024.1297893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Introduction Atherosclerosis is a lipid-driven inflammatory disease of the arterial wall, and the underlying cause of the majority of cardiovascular diseases. Recent advances in high-parametric immunophenotyping of immune cells indicate that T cells constitute the major leukocyte population in the atherosclerotic plaque. The E3 ubiquitin ligase Casitas B-lymphoma proto-oncogene-B (CBL-B) is a critical intracellular regulator that sets the threshold for T cell activation, making CBL-B a potential therapeutic target to modulate inflammation in atherosclerosis. We previously demonstrated that complete knock-out of CBL-B aggravated atherosclerosis in Apoe-/- mice, which was attributed to increased macrophage recruitment and increased CD8+ T cell activation in the plaque. Methods To further study the T cell specific role of CBL-B in atherosclerosis, Apoe-/- CD4cre Cblb fl/fl (Cbl-bcKO) mice and Apoe-/-CD4WTCblbfl/fl littermates (Cbl-bfl/fl) were fed a high cholesterol diet for ten weeks. Results Cbl-bcKO mice had smaller atherosclerotic lesions in the aortic arch and root compared to Cbl-bfl/fl, and a substantial increase in CD3+ T cells in the plaque. Collagen content in the plaque was decreased, while other plaque characteristics including plaque necrotic core, macrophage content, and smooth muscle cell content, remained unchanged. Mice lacking T cell CBL-B had a 1.4-fold increase in CD8+ T cells and a 1.8-fold increase in regulatory T cells in the spleen. Splenic CD4+ and CD8+ T cells had increased expression of C-X-C Motif Chemokine Receptor 3 (CXCR3) and interferon-γ (IFN-γ), indicating a T helper 1 (Th1)-like/effector CD8+ T cell-like phenotype. Conclusion In conclusion, Cbl-bcKO mice have reduced atherosclerosis but show increased T cell accumulation in the plaque accompanied by systemic T cell activation.
Collapse
Affiliation(s)
- Winnie G. Vos
- Department of Medical Biochemistry, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Amsterdam Immunity and Infection, Inflammatory Diseases, Amsterdam, Netherlands
| | - Bram W. van Os
- Department of Medical Biochemistry, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Amsterdam Immunity and Infection, Inflammatory Diseases, Amsterdam, Netherlands
| | - Myrthe den Toom
- Department of Medical Biochemistry, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
| | - Linda Beckers
- Department of Medical Biochemistry, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
| | - Cindy P.A.A. van Roomen
- Department of Medical Biochemistry, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
| | - Claudia M. van Tiel
- Department of Medical Biochemistry, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
| | - Bhopal C. Mohapatra
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Hamid Band
- Eppley Institute for Research in Cancer and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Katrin Nitz
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Department of Cardiovascular Medicine and Immunology, Mayo Clinic, Rochester, MN, United States
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Walther Straub Institute of Parmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Menno P.J. de Winther
- Department of Medical Biochemistry, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Amsterdam Immunity and Infection, Inflammatory Diseases, Amsterdam, Netherlands
| | - Laura A. Bosmans
- Department of Medical Biochemistry, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Amsterdam Immunity and Infection, Inflammatory Diseases, Amsterdam, Netherlands
| | - Esther Lutgens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Department of Cardiovascular Medicine and Immunology, Mayo Clinic, Rochester, MN, United States
| | - Tom T.P. Seijkens
- Department of Medical Biochemistry, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
16
|
Son Y, Choi E, Hwang Y, Kim K. The role of 27-hydroxycholesterol in meta-inflammation. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:107-112. [PMID: 38414393 PMCID: PMC10902588 DOI: 10.4196/kjpp.2024.28.2.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 02/29/2024]
Abstract
27-Hydroxycholesterol (27OHChol), a prominent cholesterol metabolite present in the bloodstream and peripheral tissues, is a kind of immune oxysterol that elicits immune response. Recent research indicates the involvement of 27OHChol in metabolic inflammation (meta-inflammation) characterized by chronic responses associated with metabolic irregularities. 27OHChol activates monocytic cells such that they secrete pro-inflammatory cytokines and chemokines, and increase the expression of cell surface molecules such as pattern-recognition receptors that play key roles in immune cell-cell communication and sensing metabolism-associated danger signals. Levels of 27OHChol increase when cholesterol metabolism is disrupted, and the resulting inflammatory responses can contribute to the development and complications of metabolic syndrome, including obesity, insulin resistance, and cardiovascular diseases. Since 27OHChol can induce chronic immune response by activating monocyte-macrophage lineage cells that play a crucial role in meta-inflammation, it is essential to understand the 27OHChol-induced inflammatory responses to unravel the roles and mechanisms of action of this cholesterol metabolite in chronic metabolic disorders.
Collapse
Affiliation(s)
- Yonghae Son
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Eunbeen Choi
- Department of Medicine, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Yujin Hwang
- Department of Medicine, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| |
Collapse
|
17
|
Zheng H, Jiao A, Liu H, Lei L, Ding R, Feng Z, Zhang D, Zhang L, Zhang B. Effect of Med1 on T cell development and CD4 + T cell differentiation in immune response. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1296-1303. [PMID: 38044640 PMCID: PMC10929871 DOI: 10.11817/j.issn.1672-7347.2023.220633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 12/05/2023]
Abstract
OBJECTIVES The differentiation of CD4+ T cells is regulated by a complex and fine signaling pathway composed of many molecules during immune response, and the molecular mechanism for regulating T-bet expression is unclear. Mediator complex subunit 1 (Med1) can combine with a variety of co-factors to regulate gene transcription, promote cell proliferation and survival, and affect invariant natural killer T cell (iNKT) development. This study aims to investigate the effect of Med1 on T cell development and CD4+ T cell differentiation in immune response. METHODS Mice with T cell-specific knockout of Med1 gene (Med1F/FCD4cre+, KO) were constructed and verified. The percentage and number of CD4+ and CD8+ T cells in thymus, spleen, and lymph nodes of KO mice and control (Con) mice (Med1F/FCD4cre-) were detected by flow cytometry. After 8 days of infection with lymphocytic choriomeningitis virus (LCMV), the percentage and number of CD4+ T cells or antigen-specific (GP66+) CD4+ T cells, the percentage and number of Th1 cells (Ly6c+PSGL1+) in CD4+ T cells or antigen-specific CD4+ T cells were examined in the spleen of mice. Moreover, the fluorescence intensity of T-bet in CD4+ T cells or antigen-specific CD4+ T cells was analyzed. RESULTS Compared with the Con group, the percentage and number of CD4+ T cells and CD8+ T cells in the thymus, CD4+ T cells in the spleen and lymph nodes of the KO group showed no significant differences (all P>0.05), but the percentage and number of CD8+ T cells in the spleen and lymph nodes of the KO group were diminished significantly (all P<0.05). After 8 days of infection with LCMV, there was no significant difference in the percentage and number of CD4+ T cells or antigen-specific CD4+ T cells in the spleen between the KO group and the Con group (all P>0.05), while in comparison with the Con group, the percentage and number of Th1 cells in CD4+ T cells or antigen-specific CD4+ T cells, and the expression of T-bet in CD4+ T cells or antigen-specific CD4+ T cells were significantly reduced in the spleen of the KO group (all P<0.05). CONCLUSIONS Specific knockout of Med1 in T cells does not affect the development of CD4+ and CD8+ T cells in the thymus, but does affect the maintenance of peripheral CD8+ T cells. In the immune response, Med1 gene deletion affects the expression of transcription factor T-bet, which in turn to reduce Th1 cell differentiation.
Collapse
Affiliation(s)
- Huiqiang Zheng
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061.
- Department of Laboratory Medicine, Xi'an Chest Hospital, Xi'an 710100.
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061
| | - Haiyan Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061
| | - Lei Lei
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061
| | - Renyi Ding
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061
| | - Zhao Feng
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061
| | - Dan Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061
| | - Lianjun Zhang
- Suzhou Institute of Systems Medicine, Suzhou Jiangshu 215123
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061.
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China.
| |
Collapse
|
18
|
Li Q, Zhang H. Bioinformatics analysis to identify potential biomarkers for the pulmonary artery hypertension associated with the basement membrane. Open Life Sci 2023; 18:20220730. [PMID: 37772261 PMCID: PMC10523280 DOI: 10.1515/biol-2022-0730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/07/2023] [Accepted: 08/26/2023] [Indexed: 09/30/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rapidly progressing cardiopulmonary disease. It is characterized by increased pulmonary artery pressure and vascular resistance. The most notable histopathological characteristic is vascular remodeling. The changes in the basement membrane (BM) are believed to be related to vascular remodeling. It is crucial to identify potential biomarkers associated with the BM in PAH, to guide its treatment. The microarray datasets GSE117261 and GSE113439 were downloaded from the Gene Expression Omnibus. Two data sets were examined to identify genes associated with the BM by analyzing gene expression changes. Next, we analyzed the relevant genes in the Kyoto Encyclopedia of Genes and Genomes using Gene Ontology and Disease Ontology annotationand conducted pathway enrichment analysis. We conducted a protein-protein interaction network analysis on the genes related to BMs and used the cell cytoHubba plug-in to identify the hub genes. Furthermore, we conducted an immune infiltration analysis and implemented a histogram model. Finally, we predicted and analyzed potential therapeutic drugs for PAH and set up a miRNA network of genetic markers. Six candidate genes related to BMs, namely Integrin Subunit Alpha V, Integrin Subunit Alpha 4, ITGA2, ITGA9, Thrombospondin 1, and Collagen Type IV Alpha 3 Chain, were identified as potential modulators of the immune process in PAH. Furthermore, ginsenoside Rh1 was found to significantly impact drug targeting based on its interactions with the six BM-related genes identified earlier. A novel biomarker related to the BM, which plays a crucial role in the development of PAH, has been identified.
Collapse
Affiliation(s)
- Qian Li
- Department of Cardiac Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming650000, China
| | - Hu Zhang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming650000, China
| |
Collapse
|
19
|
Hinkley H, Counts DA, VonCanon E, Lacy M. T Cells in Atherosclerosis: Key Players in the Pathogenesis of Vascular Disease. Cells 2023; 12:2152. [PMID: 37681883 PMCID: PMC10486666 DOI: 10.3390/cells12172152] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipid-rich plaques within arterial walls. T cells play a pivotal role in the pathogenesis of atherosclerosis in which they help orchestrate immune responses and contribute to plaque development and instability. Here, we discuss the recognition of atherosclerosis-related antigens that may trigger T cell activation together with additional signaling from co-stimulatory molecules and lesional cytokines. Although few studies have indicated candidates for the antigen specificity of T cells in atherosclerosis, further research is needed. Furthermore, we describe the pro-atherogenic and atheroprotective roles of diverse subsets of T cells such as CD4+ helper, CD8+ cytotoxic, invariant natural killer, and γδ T cells. To classify and quantify T cell subsets in atherosclerosis, we summarize current methods to analyze cellular heterogeneity including single cell RNA sequencing and T cell receptor (TCR) sequencing. Further insights into T cell biology will help shed light on the immunopathology of atherosclerosis, inform potential therapeutic interventions, and pave the way for precision medicine approaches in combating cardiovascular disease.
Collapse
Affiliation(s)
| | | | | | - Michael Lacy
- Department of Medical Laboratory Sciences, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
20
|
Xu J, Yang Y, Li X, Ding S, Zheng L, Xiong C, Yang Y. Pleiotropic activities of succinate: The interplay between gut microbiota and cardiovascular diseases. IMETA 2023; 2:e124. [PMID: 38867936 PMCID: PMC10989957 DOI: 10.1002/imt2.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2024]
Abstract
Cardiovascular diseases (CVDs) continue to be a significant contributor to global mortality, imposing a substantial burden and emphasizing the urgent need for disease control to save lives and prevent disability. With advancements in technology and scientific research, novel mechanisms underlying CVDs have been uncovered, leading to the exploration of promising treatment targets aimed at reducing the global burden of the disease. One of the most intriguing findings is the relationship between CVDs and gut microbiota, challenging the traditional understanding of CVDs mechanisms and introducing the concept of the gut-heart axis. The gut microbiota, through changes in microbial compositions and functions, plays a crucial role in influencing local and systemic effects on host physiology and disease development, with its metabolites acting as key regulators. In previous studies, we have emphasized the importance of specific metabolites such as betaine, putrescine, trimethylamine oxide, and N,N,N-trimethyl-5-aminovaleric acid in the potential treatment of CVDs. Particularly noteworthy is the gut microbiota-associated metabolite succinate, which has garnered significant attention due to its involvement in various pathophysiological pathways closely related to CVDs pathogenesis, including immunoinflammatory responses, oxidative stress, and energy metabolism. Furthermore, we have identified succinate as a potential biomarker, highlighting its therapeutic feasibility in managing aortic dissection and aneurysm. This review aims to comprehensively outline the characteristics of succinate, including its biosynthetic process, summarize the current evidence linking it to CVDs causation, and emphasize the host-microbial crosstalk involved in modulating CVDs. The insights presented here offer a novel paradigm for future management and control of CVDs.
Collapse
Affiliation(s)
- Jing Xu
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yicheng Yang
- Respiratory and Pulmonary Vascular Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xin Li
- Respiratory and Pulmonary Vascular Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shusi Ding
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain ProtectionThe Capital Medical UniversityBeijingChina
| | - Lemin Zheng
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain ProtectionThe Capital Medical UniversityBeijingChina
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Health Science CenterPeking UniversityBeijingChina
| | - Changming Xiong
- Respiratory and Pulmonary Vascular Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yuejin Yang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
21
|
Khanolkar S, Hirani S, Mishra A, Vardhan S, Hirani S, Prasad R, Wanjari M. Exploring the Role of Vitamin D in Atherosclerosis and Its Impact on Cardiovascular Events: A Comprehensive Review. Cureus 2023; 15:e42470. [PMID: 37637551 PMCID: PMC10450567 DOI: 10.7759/cureus.42470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
This review explores the role of vitamin D in atherosclerosis and its impact on cardiovascular events. Atherosclerosis, a chronic inflammatory disease characterized by plaque accumulation in arterial walls, is a major contributor to cardiovascular events such as heart attacks and strokes. Vitamin D has emerged as a multifunctional hormone with pleiotropic effects, extending beyond its traditional role in calcium and bone metabolism. Through its anti-inflammatory, immunomodulatory, and antioxidative properties, vitamin D may influence the development and progression of atherosclerosis. The association between vitamin D deficiency and atherosclerosis has been extensively studied. Observational studies consistently report an inverse relationship between vitamin D levels, atherosclerotic risk factors, and markers of subclinical atherosclerosis. Mechanistically, vitamin D exerts anti-inflammatory effects, modulates immune responses, improves endothelial function, and influences lipid metabolism, all of which play critical roles in atherosclerosis development and plaque stability. Furthermore, vitamin D deficiency has been linked to an increased risk of cardiovascular events. Vitamin D influences thrombosis, platelet aggregation, arterial stiffness, blood pressure regulation, and overall vascular health, collectively contributing to cardiovascular event risk. However, the clinical implications of vitamin D for managing atherosclerosis and reducing cardiovascular event risk are still being explored. Randomized controlled trials investigating the cardiovascular benefits of vitamin D supplementation have yielded mixed results, necessitating further research to determine optimal dosages, durations, and patient populations. The review also addresses public health recommendations and future directions. Examining current guidelines, identifying research gaps, and considering public health implications are crucial for translating scientific knowledge into effective interventions. Raising awareness, implementing population-level strategies, and integrating vitamin D assessment into routine clinical practice are key to improving cardiovascular outcomes.
Collapse
Affiliation(s)
- Shubham Khanolkar
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sajid Hirani
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Aditi Mishra
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sauvik Vardhan
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Shoyeb Hirani
- Medicine, Mahatma Gandhi Mission (MGM) Medical College and Hospital, Aurangabad, IND
| | - Roshan Prasad
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Mayur Wanjari
- Research and Development, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
22
|
Gusev E, Sarapultsev A. Atherosclerosis and Inflammation: Insights from the Theory of General Pathological Processes. Int J Mol Sci 2023; 24:ijms24097910. [PMID: 37175617 PMCID: PMC10178362 DOI: 10.3390/ijms24097910] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Recent advances have greatly improved our understanding of the molecular mechanisms behind atherosclerosis pathogenesis. However, there is still a need to systematize this data from a general pathology perspective, particularly with regard to atherogenesis patterns in the context of both canonical and non-classical inflammation types. In this review, we analyze various typical phenomena and outcomes of cellular pro-inflammatory stress in atherosclerosis, as well as the role of endothelial dysfunction in local and systemic manifestations of low-grade inflammation. We also present the features of immune mechanisms in the development of productive inflammation in stable and unstable plaques, along with their similarities and differences compared to canonical inflammation. There are numerous factors that act as inducers of the inflammatory process in atherosclerosis, including vascular endothelium aging, metabolic dysfunctions, autoimmune, and in some cases, infectious damage factors. Life-critical complications of atherosclerosis, such as cardiogenic shock and severe strokes, are associated with the development of acute systemic hyperinflammation. Additionally, critical atherosclerotic ischemia of the lower extremities induces paracoagulation and the development of chronic systemic inflammation. Conversely, sepsis, other critical conditions, and severe systemic chronic diseases contribute to atherogenesis. In summary, atherosclerosis can be characterized as an independent form of inflammation, sharing similarities but also having fundamental differences from low-grade inflammation and various variants of canonical inflammation (classic vasculitis).
Collapse
Affiliation(s)
- Evgenii Gusev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080 Chelyabinsk, Russia
| |
Collapse
|
23
|
Amezcua-Guerra LM, Espinosa-Bautista F, Hopf-Estandía K, Valdivieso-Ruiz M, Coronel D, Robledo S, Ramos-Rosillo V, Del Rocío Martínez-Alvarado M, Patlán M, Páez A, Silveira LH, Tavera-Alonso C, Massó F, Soto-Fajardo C, Pineda C. Senescent CD4 +CD28 null cells are increased in chronic hyperuricemia, show aberrant effector phenotypes, and are reversed after allopurinol therapy: a proof-of-concept pilot study. Clin Rheumatol 2023:10.1007/s10067-023-06595-8. [PMID: 37072512 DOI: 10.1007/s10067-023-06595-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/20/2023]
Abstract
To characterize CD4+CD28null cells in chronic hyperuricemia and investigate whether allopurinol could restore CD28 expression and the balance of T helper phenotypes. Asymptomatic individuals with chronic hyperuricemia and ultrasonographic findings evocative of urate deposition in the joints. Age- and gender-matched normouricemic individuals were also studied. Oral allopurinol at 150 mg/day for 4 weeks, followed by 300 mg/day through week 12. Color-flow cytometry on peripheral blood mononuclear cells (PBMC) with antibodies against CD4, CD28, T-bet (Th1), GATA-3 (Th2), and RORγt (Th17). Six patients (five men, median age of 53 years) and seven controls were studied. At baseline, hyperuricemic patients had more CD4+CD28null/CD4+ cells than normouricemic subjects (36.8% vs. 6.1%; p = 0.001), with a predominance of T-bet+ cells (98.5% vs. 6.6%; p = 0.001) and few RORγt+ cells (0.7% vs. 89.4%; p = 0.014). In hyperuricemic patients, the number of CD4+ cells/10,000 PBMC was similar before and after allopurinol (3378 vs. 3954; p = 0.843). Conversely, CD4+CD28null cells decreased from 36.8% (23.0-43.7) to 15.8% (4.7-28.1; p = 0.031). CD4+CD28nullT-bet+ cells decreased from 98.5% (95.0-99.4) to 88.3% (75.2-98.9; p = 0.062), CD4+CD28nullGATA-3+ cells increased from 0% (0-4.0) to 2.8% (0.1-15.6; p = 0.156), and CD4+CD28nullRORγt+ cells increased from 0.7% (0.4-7.0) to 4.5% (1.3-28.1; p = 0.031). The CD4+CD28null cell subset is abnormally expanded in chronic hyperuricemia, despite the absence of overt urate-related disease. Allopurinol may partially restore CD28 expression on CD4+ cells while enhancing the homeostatic balance of T helper phenotypes. ClinicalTrials.gov, number NCT04012294.
Collapse
Affiliation(s)
- Luis M Amezcua-Guerra
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, 14080, Mexico City, Mexico.
- Health Care Department, Universidad Autónoma Metropolitana Xochimilco, Mexico City, Mexico.
| | - Fernanda Espinosa-Bautista
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, 14080, Mexico City, Mexico
- Master in Chemobiological Sciences, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Red MEDICI, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Karen Hopf-Estandía
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Melisa Valdivieso-Ruiz
- Rheumatology Division, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Dania Coronel
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Sandra Robledo
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, 14080, Mexico City, Mexico
- Master in Chemobiological Sciences, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Red MEDICI, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Varna Ramos-Rosillo
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | | | - Mariana Patlán
- UNAM/INC Translational Research Unit, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Araceli Páez
- UNAM/INC Translational Research Unit, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Luis H Silveira
- Rheumatology Department, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | | | - Felipe Massó
- UNAM/INC Translational Research Unit, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Carina Soto-Fajardo
- Rheumatology Division, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Carlos Pineda
- Rheumatology Division, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| |
Collapse
|