1
|
Ghosh M, Gupta PK, Jena S, Rana S. The interaction of methotrexate with the human C5a and its potential therapeutic implications. Comput Biol Chem 2025; 114:108283. [PMID: 39579472 DOI: 10.1016/j.compbiolchem.2024.108283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Methotrexate (MTX) is an antimetabolite drug that mimics folate and inhibits dihydrofolic acid reductase, resulting in the impairment of malignant growth in actively proliferating tissues. MTX is approved by the FDA for primarily treating non-Hodgkin lymphoma, lymphoblastic leukemia, and osteosarcoma. In addition, MTX is also prescribed as a preferred anti-rheumatic medication for the management of rheumatoid arthritis, including psoriasis, indicating that MTX has a multipronged mechanism of action. MTX is also known to exert anti-inflammatory effects, and interestingly, the role of C5a, a pro-inflammatory glycoprotein of the complement system, is well established in several chronic inflammatory diseases, including rheumatoid arthritis and psoriasis, through the recruitment of C5a receptors (C5aR1/C5aR2) expressed in both immune and non-immune cells. Notably, through drug repurposing studies, we have earlier shown that non-steroidal anti-inflammatory drugs (NSAIDS) can potentially neutralize the function of C5a. Though MTX binds to serum albumin and can affect the immune system, whether its interaction with C5a could be therapeutically beneficial due to the downregulation of both extracellular and intracellular signaling of C5a is not yet established in the literature. In the current study, we have hypothesized and provided preliminary evidence through computational studies that MTX can strongly bind to the hotspot regions on C5a involved in the interactions with its receptors, which is likely to alter the downstream signaling of C5a and contribute to the overall therapeutic efficacy of MTX.
Collapse
Affiliation(s)
- Manaswini Ghosh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Pulkit Kr Gupta
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Shobhan Jena
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India.
| |
Collapse
|
2
|
Takatani A, Kobayashi T, Iwamoto N, Aramaki T, Terada K, Izumikawa K, Ngwe Tun MM, Morita K, Ueki Y, Kawakami A, Eguchi K. Methotrexate prolonged the shedding of replicable SARS-CoV-2 with re-increased antigens in a rheumatoid arthritis patient. Scand J Rheumatol 2024:1-3. [PMID: 39229889 DOI: 10.1080/03009742.2024.2361994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/28/2024] [Indexed: 09/05/2024]
Affiliation(s)
- A Takatani
- Rheumatic Disease Center, Sasebo Chuo Hospital, Sasebo, Japan
| | - T Kobayashi
- Department of Respiratory Medicine, Sasebo Chuo Hospital, Sasebo, Japan
| | - N Iwamoto
- Rheumatic Disease Center, Sasebo Chuo Hospital, Sasebo, Japan
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - T Aramaki
- Rheumatic Disease Center, Sasebo Chuo Hospital, Sasebo, Japan
| | - K Terada
- Rheumatic Disease Center, Sasebo Chuo Hospital, Sasebo, Japan
| | - K Izumikawa
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - M M Ngwe Tun
- Department of Virology, Institute of Tropical Medicine, Dejima Infectious Disease Research Alliance, Nagasaki University, Nagasaki, Japan
| | - K Morita
- Department of Virology, Institute of Tropical Medicine, Dejima Infectious Disease Research Alliance, Nagasaki University, Nagasaki, Japan
| | - Y Ueki
- Rheumatic Disease Center, Sasebo Chuo Hospital, Sasebo, Japan
| | - A Kawakami
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - K Eguchi
- Rheumatic Disease Center, Sasebo Chuo Hospital, Sasebo, Japan
| |
Collapse
|
3
|
Lo SY, Lai MJ, Yang CH, Li HC. Unveiling the Connection: Viral Infections and Genes in dNTP Metabolism. Viruses 2024; 16:1412. [PMID: 39339888 PMCID: PMC11437409 DOI: 10.3390/v16091412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
Deoxynucleoside triphosphates (dNTPs) are crucial for the replication and maintenance of genomic information within cells. The balance of the dNTP pool involves several cellular enzymes, including dihydrofolate reductase (DHFR), ribonucleotide reductase (RNR), and SAM and HD domain-containing protein 1 (SAMHD1), among others. DHFR is vital for the de novo synthesis of purines and deoxythymidine monophosphate, which are necessary for DNA synthesis. SAMHD1, a ubiquitously expressed deoxynucleotide triphosphohydrolase, converts dNTPs into deoxynucleosides and inorganic triphosphates. This process counteracts the de novo dNTP synthesis primarily carried out by RNR and cellular deoxynucleoside kinases, which are most active during the S phase of the cell cycle. The intracellular levels of dNTPs can influence various viral infections. This review provides a concise summary of the interactions between different viruses and the genes involved in dNTP metabolism.
Collapse
Affiliation(s)
- Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| | - Meng-Jiun Lai
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
- Department of Microbiology and Immunology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Hui-Chun Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| |
Collapse
|
4
|
Liang S, Zheng YY, Pan Y. Blood transcriptome analysis uncovered COVID-19-myocarditis crosstalk. Microb Pathog 2024; 189:106587. [PMID: 38373644 DOI: 10.1016/j.micpath.2024.106587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND The condition of COVID-19-related myocarditis has emerged as a prominent contributor to COVID-19 mortality. As the epidemic persists, its incidence continues to rise. Despite ongoing efforts, the elucidation of COVID-19-related myocarditis underlying molecular mechanisms still requires further investigation. METHODS Hub genes for COVID-19-related myocarditis were screened by integrating gene expression profile analysis via differential expression in COVID-19 (GSE196822) and myocarditis (GSE148153 and GSE147517). After verification with independent datasets (GSE211979, GSE167028, GSE178491 and GSE215865), the hub genes were studied using a range of systems-biology approaches, such as ceRNA, TF-mRNA networks and PPI networks, as well as gene ontology, pathway enrichment, immune infiltration analysis and drug target identification. RESULTS TBKBP1 and ERGIC1 were identified as COVID-19-related myocarditis hub genes via integrated bioinformatics analysis. In addition, receiver operating characteristic curves constructed based on the expression levels of TBKBP1 and ERGIC1 could effectively distinguish healthy control individuals from patients with COVID-19. Functional enrichment analysis suggested several enriched biological pathways related to inflammation and immune response. Immune cell changes correlated with TBKBP1 and ERGIC1 levels in patients with COVID-19 or patients with COVID-19 and myocarditis. Tamibarotene, methotrexate and theophylline were identified as a potential drug targeting TBKBP1 and ERGIC1. CONCLUSION TBKBP1 and ERGIC1 were identified as crucial genes in the development of COVID-19-related myocarditis and have demonstrated a strong association with innate antiviral immunity. The present work may be helpful for further investigation of the molecular mechanisms and new therapeutic drug targets correlated with myocarditis in COVID-19.
Collapse
Affiliation(s)
- Shuang Liang
- Pharmacy Department, Hebei Medical University Third Hospital, Shijiazhuang, 050000, China.
| | - Ying-Ying Zheng
- Pharmacy Department, Hebei Medical University Third Hospital, Shijiazhuang, 050000, China
| | - Ying Pan
- Pharmacy Department, Hebei Medical University Third Hospital, Shijiazhuang, 050000, China
| |
Collapse
|
5
|
Kim SK, Suebka S, Gin A, Nguyen PD, Tang Y, Su J, Goddard WA. Methotrexate Inhibits the Binding of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Receptor Binding Domain to the Host-Cell Angiotensin-Converting Enzyme-2 (ACE-2) Receptor. ACS Pharmacol Transl Sci 2024; 7:348-362. [PMID: 38357278 PMCID: PMC10863433 DOI: 10.1021/acsptsci.3c00197] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024]
Abstract
As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus mutates, finding effective drugs becomes more challenging. In this study, we use ultrasensitive frequency locked microtoroid optical resonators in combination with in silico screening to search for COVID-19 drugs that can stop the virus from attaching to the human angiotensin-converting enzyme 2 (hACE2) receptor in the lungs. We found 29 promising candidates that could block the binding site and selected four of them that were likely to bind very strongly. We tested three of these candidates using frequency locked optical whispering evanescent resonator (FLOWER), a label-free sensing method based on microtoroid resonators. FLOWER has previously been used for sensing single macromolecules. Here we show, for the first time, that FLOWER can provide accurate binding affinities and sense the inhibition effect of small molecule drug candidates without labels, which can be prohibitive in drug discovery. One of the candidates, methotrexate, showed binding to the spike protein 1.8 million times greater than that to the receptor binding domain (RBD) binding to hACE2, making it difficult for the virus to enter cells. We tested methotrexate against different variants of the SARS-CoV-2 virus and found that it is effective against all four of the tested variants. People taking methotrexate for other conditions have also shown protection against the original SARS-CoV-2 virus. Normally, it is assumed that methotrexate inhibits the replication and release of the virus. However, our findings suggest that it may also block the virus from entering cells. These studies additionally demonstrate the possibility of extracting candidate ligands from large databases, followed by direct receptor-ligand binding experiments on the best candidates using microtoroid resonators, thus creating a workflow that enables the rapid discovery of new drug candidates for a variety of applications.
Collapse
Affiliation(s)
- Soo-Kyung Kim
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena, California 91125, United States
| | - Sartanee Suebka
- Wyant
College of Optical Sciences, The University
of Arizona, Tucson, Arizona 85721, United States
| | - Adley Gin
- Wyant
College of Optical Sciences, The University
of Arizona, Tucson, Arizona 85721, United States
- Department
of Biomedical Engineering, The University
of Arizona, Tucson, Arizona 85721, United States
| | - Phuong-Diem Nguyen
- Department
of Biomedical Engineering, The University
of Arizona, Tucson, Arizona 85721, United States
| | - Yisha Tang
- Department
of Biomedical Engineering, The University
of Arizona, Tucson, Arizona 85721, United States
| | - Judith Su
- Wyant
College of Optical Sciences, The University
of Arizona, Tucson, Arizona 85721, United States
| | - William A. Goddard
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|