1
|
Mohammadi D, Ghasemi M, Manouchehrian N, Zafarmand M, Akbari M, Boroumand AB. COVID-19 vaccines: current and future challenges. Front Pharmacol 2024; 15:1434181. [PMID: 39568586 PMCID: PMC11576167 DOI: 10.3389/fphar.2024.1434181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/18/2024] [Indexed: 11/22/2024] Open
Abstract
As of December 2020, around 200 vaccine candidates for Coronavirus Disease 2019 (COVID-19) are being developed. COVID-19 vaccines have been created on a number of platforms and are still being developed. Nucleic acid (DNA, RNA) vaccines, viral vector vaccines, inactivated vaccines, protein subunit vaccines, and live attenuated vaccines are among the COVID-19 vaccine modalities. At this time, at least 52 candidate vaccines are being studied. Spike protein is the primary protein that COVID-19 vaccines are targeting. Therefore, it is critical to determine whether immunizations provide complete or fractional protection, whether this varies with age, whether vaccinated people are protected from reoccurring diseases, and whether they need booster shots if they've already been inoculated. Despite the enormous achievement of bringing several vaccine candidates to market in less than a year, acquiring herd immunity at the national level and much more so at the global level remains a major challenge. Therefore, we gathered information on the mechanism of action of presently available COVID-19 vaccines in this review and essential data on the vaccines' advantages and downsides and their future possibilities.
Collapse
Affiliation(s)
| | - Matin Ghasemi
- Islamic Azad University Tonekabon, Tonekabon, Mazandaran, Iran
| | - Nahid Manouchehrian
- Department of Anesthesilogy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mitra Akbari
- Eye Research Center, Department of Eye, Amiralmomenin Hospital, School of Medicine, Guilan University of Medical Science, Rasht, Iran
| | | |
Collapse
|
2
|
Pacheco-García U, Varela-López E, Serafín-López J. Immune Stimulation with Imiquimod to Best Face SARS-CoV-2 Infection and Prevent Long COVID. Int J Mol Sci 2024; 25:7661. [PMID: 39062904 PMCID: PMC11277483 DOI: 10.3390/ijms25147661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Through widespread immunization against SARS-CoV-2 prior to or post-infection, a substantial segment of the global population has acquired both humoral and cellular immunity, and there has been a notable reduction in the incidence of severe and fatal cases linked to this virus and accelerated recovery times for those infected. Nonetheless, a significant demographic, comprising around 20% to 30% of the adult population, remains unimmunized due to diverse factors. Furthermore, alongside those recovered from the infection, there is a subset of the population experiencing persistent symptoms referred to as Long COVID. This condition is more prevalent among individuals with underlying health conditions and immune system impairments. Some Long COVID pathologies stem from direct damage inflicted by the viral infection, whereas others arise from inadequate immune system control over the infection or suboptimal immunoregulation. There are differences in the serum cytokines and miRNA profiles between infected individuals who develop severe COVID-19 or Long COVID and those who control adequately the infection. This review delves into the advantages and constraints associated with employing imiquimod in human subjects to enhance the immune response during SARS-CoV-2 immunization. Restoration of the immune system can modify it towards a profile of non-susceptibility to SARS-CoV-2. An adequate immune system has the potential to curb viral propagation, mitigate symptoms, and ameliorate the severe consequences of the infection.
Collapse
Affiliation(s)
- Ursino Pacheco-García
- Department of Cardio-Renal Pathophysiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico
| | - Elvira Varela-López
- Laboratory of Translational Medicine, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico;
| | - Jeanet Serafín-López
- Department of Immunology, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico;
| |
Collapse
|
3
|
Wang P, Yang X, Zhang L, Sha S, Huang J, Peng J, Gu J, Pearson JA, Hu Y, Zhao H, Wong FS, Wang Q, Wen L. Tlr9 deficiency in B cells leads to obesity by promoting inflammation and gut dysbiosis. Nat Commun 2024; 15:4232. [PMID: 38762479 PMCID: PMC11102548 DOI: 10.1038/s41467-024-48611-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/02/2024] [Indexed: 05/20/2024] Open
Abstract
Toll-like receptor 9 (TLR9) recognizes bacterial, viral and self DNA and play an important role in immunity and inflammation. However, the role of TLR9 in obesity is less well-studied. Here, we generate B-cell-specific Tlr9-deficient (Tlr9fl/fl/Cd19Cre+/-, KO) B6 mice and model obesity using a high-fat diet. Compared with control mice, B-cell-specific-Tlr9-deficient mice exhibited increased fat tissue inflammation, weight gain, and impaired glucose and insulin tolerance. Furthermore, the frequencies of IL-10-producing-B cells and marginal zone B cells were reduced, and those of follicular and germinal center B cells were increased. This was associated with increased frequencies of IFNγ-producing-T cells and increased follicular helper cells. In addition, gut microbiota from the KO mice induced a pro-inflammatory state leading to immunological and metabolic dysregulation when transferred to germ-free mice. Using 16 S rRNA gene sequencing, we identify altered gut microbial communities including reduced Lachnospiraceae, which may play a role in altered metabolism in KO mice. We identify an important network involving Tlr9, Irf4 and Il-10 interconnecting metabolic homeostasis, with the function of B and T cells, and gut microbiota in obesity.
Collapse
Affiliation(s)
- Pai Wang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Xin Yang
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Luyao Zhang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Sha Sha
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Juan Huang
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Jian Peng
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Jianlei Gu
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - James Alexander Pearson
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Division of Infection and Immunity, School of Medicine and Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | - Youjia Hu
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - F Susan Wong
- Division of Infection and Immunity, School of Medicine and Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | - Quan Wang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Li Wen
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
4
|
Zhang Z, Yang W, Chen Z, Chi H, Wu S, Zheng W, Jin R, Wang B, Wang Y, Huo N, Zhang J, Song X, Xu L, Zhang J, Hou L, Chen W. A causal multiomics study discriminates the early immune features of Ad5-vectored Ebola vaccine recipients. Innovation (N Y) 2024; 5:100603. [PMID: 38745762 PMCID: PMC11092886 DOI: 10.1016/j.xinn.2024.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/28/2024] [Indexed: 05/16/2024] Open
Abstract
The vaccine-induced innate immune response is essential for the generation of an antibody response. To date, how Ad5-vectored vaccines are influenced by preexisting anti-Ad5 antibodies during activation of the early immune response remains unclear. Here, we investigated the specific alterations in GP1,2-specific IgG-related elements of the early immune response at the genetic, molecular, and cellular levels on days 0, 1, 3, and 7 after Ad5-EBOV vaccination. In a causal multiomics analysis, distinct early immune responses associated with GP1,2-specific IgG were observed in Ad5-EBOV recipients with a low level of preexisting anti-Ad5 antibodies. This study revealed the correlates of the Ad5-EBOV-induced IgG response and provided mechanistic evidence for overcoming preexisting Ad5 immunity during the administration of Ad5-vectored vaccines.
Collapse
Affiliation(s)
- Zhe Zhang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wenjing Yang
- Department of Intelligent Data Science, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Zhengshan Chen
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Haoang Chi
- Department of Intelligent Data Science, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
- Intelligent Game and Decision Lab, Academy of Military Science, Beijing 100091, China
| | - Shipo Wu
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wanru Zheng
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Ruochun Jin
- Department of Intelligent Data Science, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Busen Wang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yudong Wang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Nan Huo
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Jinlong Zhang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiaohong Song
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Liyang Xu
- Department of Intelligent Data Science, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Jun Zhang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Lihua Hou
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wei Chen
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| |
Collapse
|
5
|
Sampson OL, Jay C, Adland E, Csala A, Lim N, Ebbrecht SM, Gilligan LC, Taylor AE, George SS, Longet S, Jones LC, Barnes E, Frater J, Klenerman P, Dunachie S, Carrol M, Hawley J, Arlt W, Groll A, Goulder P. Gonadal androgens are associated with decreased type I interferon production by plasmacytoid dendritic cells and increased IgG titres to BNT162b2 following co-vaccination with live attenuated influenza vaccine in adolescents. Front Immunol 2024; 15:1329805. [PMID: 38481993 PMCID: PMC10933029 DOI: 10.3389/fimmu.2024.1329805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/13/2024] [Indexed: 04/09/2024] Open
Abstract
mRNA vaccine technologies introduced following the SARS-CoV-2 pandemic have highlighted the need to better understand the interaction of adjuvants and the early innate immune response. Type I interferon (IFN-I) is an integral part of this early innate response that primes several components of the adaptive immune response. Women are widely reported to respond better than men to tri- and quadrivalent influenza vaccines. Plasmacytoid dendritic cells (pDCs) are the primary cell type responsible for IFN-I production, and female pDCs produce more IFN-I than male pDCs since the upstream pattern recognition receptor Toll-like receptor 7 (TLR7) is encoded by X chromosome and is biallelically expressed by up to 30% of female immune cells. Additionally, the TLR7 promoter contains several putative androgen response elements, and androgens have been reported to suppress pDC IFN-I in vitro. Unexpectedly, therefore, we recently observed that male adolescents mount stronger antibody responses to the Pfizer BNT162b2 mRNA vaccine than female adolescents after controlling for natural SARS-CoV-2 infection. We here examined pDC behaviour in this same cohort to determine the impact of IFN-I on anti-spike and anti-receptor-binding domain IgG titres to BNT162b2. Through flow cytometry and least absolute shrinkage and selection operator (LASSO) modelling, we determined that serum-free testosterone was associated with reduced pDC IFN-I, but contrary to the well-described immunosuppressive role for androgens, the most bioactive androgen dihydrotestosterone was associated with increased IgG titres to BNT162b2. Also unexpectedly, we observed that co-vaccination with live attenuated influenza vaccine boosted the magnitude of IgG responses to BNT162b2. Together, these data support a model where systemic IFN-I increases vaccine-mediated immune responses, yet for vaccines with intracellular stages, modulation of the local IFN-I response may alter antigen longevity and consequently improve vaccine-driven immunity.
Collapse
Affiliation(s)
- Oliver L. Sampson
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Cecilia Jay
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Emily Adland
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Anna Csala
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Nicholas Lim
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Stella M. Ebbrecht
- Department of Statistics, Technical University of Dortmund, Dortmund, Germany
| | - Lorna C. Gilligan
- Steroid Metabolome Analysis Core, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Angela E. Taylor
- Steroid Metabolome Analysis Core, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Sherley Sherafin George
- Biochemistry Department, Clinical Science Building, Wythenshawe Hospital, Manchester, United Kingdom
| | - Stephanie Longet
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Lucy C. Jones
- Department of Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Ellie Barnes
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - John Frater
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Susie Dunachie
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Miles Carrol
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - James Hawley
- Biochemistry Department, Clinical Science Building, Wythenshawe Hospital, Manchester, United Kingdom
| | - Wiebke Arlt
- Steroid Metabolome Analysis Core, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Medical Research Council London Institute of Medical Sciences (MRC LMS), Imperial College London, London, United Kingdom
| | - Andreas Groll
- Department of Statistics, Technical University of Dortmund, Dortmund, Germany
| | - Philip Goulder
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Muslimov A, Tereshchenko V, Shevyrev D, Rogova A, Lepik K, Reshetnikov V, Ivanov R. The Dual Role of the Innate Immune System in the Effectiveness of mRNA Therapeutics. Int J Mol Sci 2023; 24:14820. [PMID: 37834268 PMCID: PMC10573212 DOI: 10.3390/ijms241914820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Advances in molecular biology have revolutionized the use of messenger RNA (mRNA) as a therapeutic. The concept of nucleic acid therapy with mRNA originated in 1990 when Wolff et al. reported successful expression of proteins in target organs by direct injection of either plasmid DNA or mRNA. It took decades to bring the transfection efficiency of mRNA closer to that of DNA. The next few decades were dedicated to turning in vitro-transcribed (IVT) mRNA from a promising delivery tool for gene therapy into a full-blown therapeutic modality, which changed the biotech market rapidly. Hundreds of clinical trials are currently underway using mRNA for prophylaxis and therapy of infectious diseases and cancers, in regenerative medicine, and genome editing. The potential of IVT mRNA to induce an innate immune response favors its use for vaccination and immunotherapy. Nonetheless, in non-immunotherapy applications, the intrinsic immunostimulatory activity of mRNA directly hinders the desired therapeutic effect since it can seriously impair the target protein expression. Targeting the same innate immune factors can increase the effectiveness of mRNA therapeutics for some indications and decrease it for others, and vice versa. The review aims to present the innate immunity-related 'barriers' or 'springboards' that may affect the development of immunotherapies and non-immunotherapy applications of mRNA medicines.
Collapse
Affiliation(s)
- Albert Muslimov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
- Laboratory of Nano- and Microencapsulation of Biologically Active Substances, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia;
- RM Gorbacheva Research Institute, Pavlov University, L’va Tolstogo 6-8, 197022 St. Petersburg, Russia;
| | - Valeriy Tereshchenko
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| | - Daniil Shevyrev
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| | - Anna Rogova
- Laboratory of Nano- and Microencapsulation of Biologically Active Substances, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia;
- Saint-Petersburg Chemical-Pharmaceutical University, Professora Popova 14, 197376 St. Petersburg, Russia
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002 St. Petersburg, Russia
| | - Kirill Lepik
- RM Gorbacheva Research Institute, Pavlov University, L’va Tolstogo 6-8, 197022 St. Petersburg, Russia;
| | - Vasiliy Reshetnikov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Roman Ivanov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| |
Collapse
|
7
|
Tian H, Cao J, Li B, Nice EC, Mao H, Zhang Y, Huang C. Managing the immune microenvironment of osteosarcoma: the outlook for osteosarcoma treatment. Bone Res 2023; 11:11. [PMID: 36849442 PMCID: PMC9971189 DOI: 10.1038/s41413-023-00246-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/17/2022] [Accepted: 12/29/2022] [Indexed: 03/01/2023] Open
Abstract
Osteosarcoma, with poor survival after metastasis, is considered the most common primary bone cancer in adolescents. Notwithstanding the efforts of researchers, its five-year survival rate has only shown limited improvement, suggesting that existing therapeutic strategies are insufficient to meet clinical needs. Notably, immunotherapy has shown certain advantages over traditional tumor treatments in inhibiting metastasis. Therefore, managing the immune microenvironment in osteosarcoma can provide novel and valuable insight into the multifaceted mechanisms underlying the heterogeneity and progression of the disease. Additionally, given the advances in nanomedicine, there exist many advanced nanoplatforms for enhanced osteosarcoma immunotherapy with satisfactory physiochemical characteristics. Here, we review the classification, characteristics, and functions of the key components of the immune microenvironment in osteosarcoma. This review also emphasizes the application, progress, and prospects of osteosarcoma immunotherapy and discusses several nanomedicine-based options to enhance the efficiency of osteosarcoma treatment. Furthermore, we examine the disadvantages of standard treatments and present future perspectives for osteosarcoma immunotherapy.
Collapse
Affiliation(s)
- Hailong Tian
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Jiangjun Cao
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Bowen Li
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Edouard C. Nice
- grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800 Australia
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315020, People's Republic of China.
| | - Yi Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
8
|
Provine NM, Klenerman P. Adenovirus vector and mRNA vaccines: Mechanisms regulating their immunogenicity. Eur J Immunol 2022:10.1002/eji.202250022. [PMID: 36330560 PMCID: PMC9877955 DOI: 10.1002/eji.202250022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/05/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Replication-incompetent adenovirus (Ad) vector and mRNA-lipid nanoparticle (LNP) constructs represent two modular vaccine platforms that have attracted substantial interest over the past two decades. Due to the COVID-19 pandemic and the rapid development of multiple successful vaccines based on these technologies, there is now clear real-world evidence of the utility and efficacy of these platforms. Considerable optimization and refinement efforts underpin the successful application of these technologies. Despite this, our understanding of the specific pathways and processes engaged by these vaccines to stimulate the immune response remains incomplete. This review will synthesize our current knowledge of the specific mechanisms by which CD8+ T cell and antibody responses are induced by each of these vaccine platforms, and how this can be impacted by specific vaccine construction techniques. Key gaps in our knowledge are also highlighted, which can hopefully focus future studies.
Collapse
Affiliation(s)
- Nicholas M. Provine
- Translational Gastroenterology UnitNuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Paul Klenerman
- Translational Gastroenterology UnitNuffield Department of MedicineUniversity of OxfordOxfordUK,Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| |
Collapse
|
9
|
Host Protective Immunity against Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2) and the COVID-19 Vaccine-Induced Immunity against SARS-CoV-2 and Its Variants. Viruses 2022; 14:v14112541. [PMID: 36423150 PMCID: PMC9697230 DOI: 10.3390/v14112541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The world is now apparently at the last/recovery stage of the COVID-19 pandemic, starting from 29 December 2019, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). With the progression of time, several mutations have taken place in the original SARS-CoV-2 Wuhan strain, which have generated variants of concern (VOC). Therefore, combatting COVID-19 has required the development of COVID-19 vaccines using several platforms. The immunity induced by those vaccines is vital to study in order to assure total protection against SARS-CoV-2 and its emerging variants. Indeed, understanding and identifying COVID-19 protection mechanisms or the host immune responses are of significance in terms of designing both new and repurposed drugs as well as the development of novel vaccines with few to no side effects. Detecting the immune mechanisms for host protection against SARS-CoV-2 and its variants is crucial for the development of novel COVID-19 vaccines as well as to monitor the effectiveness of the currently used vaccines worldwide. Immune memory in terms of the production of neutralizing antibodies (NAbs) during reinfection is also very crucial to formulate the vaccine administration schedule/vaccine doses. The response of antigen-specific antibodies and NAbs as well as T cell responses, along with the protective cytokine production and the innate immunity generated upon COVID-19 vaccination, are discussed in the current review in comparison to the features of naturally induced protective immunity.
Collapse
|
10
|
Using MicroRNA Arrays as a Tool to Evaluate COVID-19 Vaccine Efficacy. Vaccines (Basel) 2022; 10:vaccines10101681. [PMID: 36298546 PMCID: PMC9607069 DOI: 10.3390/vaccines10101681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022] Open
Abstract
In order to solve COVID-19 pandemic, the entire world has invested considerable manpower to develop various new vaccines to temporarily alleviate the disaster caused by the epidemic. In addition to the development of vaccines, we need to also develop effective assessment methods to confirm vaccines’ efficacy and maximize the benefits that vaccines can bring. In addition to common evaluation methods, vaccine-specific and temporal expression of microRNAs have been shown to be related to vaccine efficacy or vaccine-associated diseases. In this article, we have introduced a microRNA-array-based approach, which could be potentially used for evaluating COVID-19 vaccine efficacy, specifically for pregnant women. As the mRNA in mRNA vaccines is decomposed by host cells within a few days, it is considered more suitable for pregnant women to utilize the method of vaccination during pregnancy. Moreover, pregnant women belong to a high-risk group for COVID-19, and there is currently no appropriate vaccine to newborns. Therefore, it’s important to find improved tools for evaluation of vaccine efficacy in response to the current situation caused by COVID-19.
Collapse
|
11
|
Chen WC, Lin YP, Cheng CM, Shen CF, Ching A, Chang TC, Shen CJ. Antibodies against SARS-CoV-2 Alpha, Beta, and Gamma Variants in Pregnant Women and Their Neonates under Antenatal Vaccination with Moderna (mRNA-1273) Vaccine. Vaccines (Basel) 2022; 10:vaccines10091415. [PMID: 36146492 PMCID: PMC9505142 DOI: 10.3390/vaccines10091415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/02/2022] Open
Abstract
The aim of the study was to examine the impact of COVID-19 vaccination on the anti-SARS-CoV-2 spike receptor binding domain IgG antibody (SRBD IgG) binding ratio (SBR) from Alpha, Beta, and Gamma variants of SARS-CoV-2 in pregnant women and neonates. The impact of antenatal influenza (flu) and pertussis (Tdap) vaccines was also studied. We enrolled pregnant women vaccinated with the Moderna (mRNA-1273) vaccine during pregnancy and collected maternal plasma (MP) and neonatal cord blood (CB) during delivery to determine the SBR via enzyme-linked immunosorbent assays (ELISA). A total of 78 samples were collected from 39 pregnant women. The SBR was higher for Alpha variants compared to Beta/Gamma variants (MP: 63.95% vs. 47.91% vs. 43.48%, p = 0.0001; CB: 72.14% vs. 56.78% vs. 53.66%, p = 0.006). Pregnant women receiving two doses of the COVID-19 vaccine demonstrated a better SBR against SARS-CoV-2 Alpha, Beta, and Gamma variants than women receiving just a single dose. Women who received the Tdap/flu vaccines demonstrated a better SBR when two COVID-19 vaccine doses were < 6 weeks apart. A better SBR was detected among women who had more recently received their second COVID-19 vaccine dose. Two doses of the COVID-19 vaccine provided recipients with a better SBR for Alpha/Beta/Gamma variants. Although Tdap/flu vaccines may affect the efficacy of the COVID-19 vaccine, different vaccination timings can improve the SBR.
Collapse
Affiliation(s)
- Wei-Chun Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Obstetrics and Gynecology, New Taipei City Municipal Tucheng Hospital, New Taipei City 236, Taiwan
| | - Yen-Pin Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Ching-Fen Shen
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Alex Ching
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15123, USA
| | - Ting-Chang Chang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ching-Ju Shen
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence:
| |
Collapse
|
12
|
“The Good, the Bad and the Ugly”: Interplay of Innate Immunity and Inflammation. Cell Microbiol 2022. [DOI: 10.1155/2022/2759513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Innate immunity recognizes microorganisms through certain invariant receptors named pattern recognition receptors (PRRs) by sensing conserved pathogen-associated molecular patterns (PAMPs). Their recognition activates several signaling pathways that lead the transcription of inflammatory mediators, contributing to trigger a very rapid inflammatory cascade aiming to contain the local infection as well as activating and instructing the adaptive immunity in a specific and synchronized immune response according to the microorganism. Inflammation is a coordinated process involving the secretion of cytokines and chemokines by macrophages and neutrophils leading to the migration of other leukocytes along the endothelium into the injured tissue. Sustained inflammatory responses can cause deleterious effects by promoting the development of autoimmune disorders, allergies, cancer, and other immune pathologies, while weak signals could exacerbate the severity of the disease. Therefore, PRR-mediated signal transduction must be tightly regulated to maintain host immune homeostasis. Innate immunity deficiencies and strategies deployed by microbes to avoid inflammatory responses lead to an altered immune response that allows the pathogen to proliferate causing death or uncontrolled inflammation. This review analyzes the complexity of the immune response at the beginning of the disease focusing on COVID-19 disease and the importance of unraveling its mechanisms to be considered when treating diseases and designing vaccines.
Collapse
|
13
|
Cha HG, Kim DG, Choi JH. Manifestation of Subclinical Extrapulmonary Tuberculosis after COVID-19 Vaccination as Supraclavicular Lymphadenopathy. Vaccines (Basel) 2022; 10:964. [PMID: 35746572 PMCID: PMC9230702 DOI: 10.3390/vaccines10060964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/14/2022] Open
Abstract
Lymphadenopathy after coronavirus disease 2019 (COVID-19) vaccination is a common side effect that usually resolves within several days to weeks, and only observation is recommended. However, for prolonged lymphadenopathy, other possibilities, including malignancy or other lymphoproliferative diseases, may be considered. Herein, we report the case of a 66-year-old woman who experienced prolonged ipsilateral supraclavicular lymph node enlargement after the second dose of the ChAdOx1 (Oxford-AstraZeneca) COVID-19 vaccine, which was eventually diagnosed as extrapulmonary tuberculosis.
Collapse
Affiliation(s)
- Han Gyu Cha
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon 14584, Korea;
| | - Dong Gyu Kim
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon 14584, Korea;
| | - Joon Ho Choi
- Department of Nuclear Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon 14584, Korea;
| |
Collapse
|