1
|
Chen W, Ge L, Zhang C. The molecular mechanism of berberine affecting psoriasis skin inflammation by regulating keratinocyte pyroptosis via the p38 MAPK/NF-κB pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03461-5. [PMID: 39365309 DOI: 10.1007/s00210-024-03461-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024]
Abstract
Berberine (BBR), a Rhizoma Coptis-sourced isoquinoline alkaloid, is an effective drug for psoriasis treatment with its therapeutic mechanism remaining unclear. We delved into the mechanism of BBR affecting psoriatic skin inflammation by regulating keratinocyte pyroptosis. A psoriasis-like skin inflammation mouse model was induced by imiquimod (IMQ) and treated with BBR and a p38 activator anisomycin. Human epidermal keratinocytes (HEKs) were stimulated with five chemokines (M5) [interleukin (IL)-17A, IL-22A, oncostatin M, tumor necrosis factor-α, IL-1α] to simulate psoriasis immune microenvironment, then treated with BBR and anisomycin. Psoriasis skin lesions, skin tissue damage, cell viability and death, and gasdermin D-N (GSDMD-N) and NOD-like receptor protein 3 (NLRP3) positive cell numbers were assessed. The p38 mitogen-activated protein kinase (MAPK)/nuclear factor-kappa B (NF-κB) pathway and levels of the NLRP3/GSDMD pathway-related proteins and inflammatory factors were determined. BBR alleviated M5-induced HEK pyroptosis by inactivating NLRP3 inflammasomes. BBR inhibited the p38 MAPK/NF-κB pathway, and its effects on HEKs were partly averted by activating the p38 MAPK/NF-κB pathway. BBR repressed NLRP3 inflammasome activation and pyroptosis by inhibiting the p38 MAPK/NF-κB pathway. Collectively, BBR suppressed keratinocyte NLRP3/GSDMD pathway pyroptosis by suppressing the p38 MAPK/NF-κB pathway, thereby affecting psoriasis skin inflammation.
Collapse
Affiliation(s)
- Wenfang Chen
- Department of Dermatovenereology, The Second Affiliated Hospital of Shandong First Medical University, No.366 Taishan Street, Taian, 271000, China
| | - Lingzhi Ge
- Department of Dermatovenereology, The Second Affiliated Hospital of Shandong First Medical University, No.366 Taishan Street, Taian, 271000, China
| | - Chao Zhang
- Department of Dermatovenereology, The Second Affiliated Hospital of Shandong First Medical University, No.366 Taishan Street, Taian, 271000, China.
| |
Collapse
|
2
|
Kennicott K, Liang Y. The immunometabolic function of VGLL3 and female-biased autoimmunity. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00041. [PMID: 38726338 PMCID: PMC11078290 DOI: 10.1097/in9.0000000000000041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024]
Abstract
Autoimmune diseases exhibit a pronounced yet unexplained prevalence among women. Vestigial-like family member 3 (VGLL3), a female-biased factor that promotes autoimmunity, has recently been discovered to assist cells in sensing and adapting to nutritional stress. This role of VGLL3 may confer a selective advantage during the evolution of placental mammals. However, the excessive activation of the VGLL3-mediated energy-sensing pathway can trigger inflammatory cell death and the exposure of self-antigens, leading to the onset of autoimmunity. These observations have raised the intriguing perspective that nutrient sensing serves as a double-edged sword in immune regulation. Mechanistically, VGLL3 intersects with Hippo signaling and activates multiple downstream, immune-associated genes that play roles in metabolic regulation. Understanding the multifaceted roles of VGLL3 in nutrient sensing and immune modulation provides insight into the fundamental question of sexual dimorphism in immunometabolism and sheds light on potential therapeutic targets for autoimmune diseases.
Collapse
Affiliation(s)
- Kameron Kennicott
- Department of Physiology, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Yun Liang
- Department of Physiology, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
3
|
Garcia JPT, Tayo LL. Theoretical Studies of DNA Microarray Present Potential Molecular and Cellular Interconnectivity of Signaling Pathways in Immune System Dysregulation. Genes (Basel) 2024; 15:393. [PMID: 38674328 PMCID: PMC11049615 DOI: 10.3390/genes15040393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
Autoimmunity is defined as the inability to regulate immunological activities in the body, especially in response to external triggers, leading to the attack of the tissues and organs of the host. Outcomes include the onset of autoimmune diseases whose effects are primarily due to dysregulated immune responses. In past years, there have been cases that show an increased susceptibility to other autoimmune disorders in patients who are already experiencing the same type of disease. Research in this field has started analyzing the potential molecular and cellular causes of this interconnectedness, bearing in mind the possibility of advancing drugs and therapies for the treatment of autoimmunity. With that, this study aimed to determine the correlation of four autoimmune diseases, which are type 1 diabetes (T1D), psoriasis (PSR), systemic sclerosis (SSc), and systemic lupus erythematosus (SLE), by identifying highly preserved co-expressed genes among datasets using WGCNA. Functional annotation was then employed to characterize these sets of genes based on their systemic relationship as a whole to elucidate the biological processes, cellular components, and molecular functions of the pathways they are involved in. Lastly, drug repurposing analysis was performed to screen candidate drugs for repositioning that could regulate the abnormal expression of genes among the diseases. A total of thirteen modules were obtained from the analysis, the majority of which were associated with transcriptional, post-transcriptional, and post-translational modification processes. Also, the evaluation based on KEGG suggested the possible role of TH17 differentiation in the simultaneous onset of the four diseases. Furthermore, clomiphene was the top drug candidate for regulating overexpressed hub genes; meanwhile, prilocaine was the top drug for regulating under-expressed hub genes. This study was geared towards utilizing transcriptomics approaches for the assessment of microarray data, which is different from the use of traditional genomic analyses. Such a research design for investigating correlations among autoimmune diseases may be the first of its kind.
Collapse
Affiliation(s)
- Jon Patrick T. Garcia
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines;
- School of Graduate Studies, Mapúa University, Manila 1002, Philippines
| | - Lemmuel L. Tayo
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines;
- Department of Biology, School of Medicine and Health Sciences, Mapúa University, Makati 1200, Philippines
| |
Collapse
|
4
|
Wu H, Jmel MA, Chai J, Tian M, Xu X, Hui Y, Nandakumar KS, Kotsyfakis M. Tick cysteine protease inhibitors suppress immune responses in mannan-induced psoriasis-like inflammation. Front Immunol 2024; 15:1344878. [PMID: 38444844 PMCID: PMC10912570 DOI: 10.3389/fimmu.2024.1344878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Protease inhibitors regulate various biological processes and prevent host tissue/organ damage. Specific inhibition/regulation of proteases is clinically valuable for treating several diseases. Psoriasis affects the skin in the limbs and scalp of the body, and the contribution of cysteine and serine proteases to the development of skin inflammation is well documented. Cysteine protease inhibitors from ticks have high specificity, selectivity, and affinity to their target proteases and are efficient immunomodulators. However, their potential therapeutic effect on psoriasis pathogenesis remains to be determined. Therefore, we tested four tick cystatins (Sialostatin L, Sialostatin L2, Iristatin, and Mialostatin) in the recently developed, innate immunity-dependent mannan-induced psoriasis model. We explored the effects of protease inhibitors on clinical symptoms and histological features. In addition, the number and percentage of immune cells (dendritic cells, neutrophils, macrophages, and γδT cells) by flow cytometry, immunofluorescence/immunohistochemistry and, the expression of pro-inflammatory cytokines (TNF-a, IL-6, IL-22, IL-23, and IL-17 family) by qPCR were analyzed using skin, spleen, and lymph node samples. Tick protease inhibitors have significantly decreased psoriasis symptoms and disease manifestations but had differential effects on inflammatory responses and immune cell populations, suggesting different modes of action of these inhibitors on psoriasis-like inflammation. Thus, our study demonstrates, for the first time, the usefulness of tick-derived protease inhibitors for treating skin inflammation in patients.
Collapse
Affiliation(s)
- Huimei Wu
- Department of Pharmacy, The Eighth Affiliated City Hospital of Guangzhou Medical University, The Eighth People’s Hospital of Guangzhou, Guangzhou, China
- Karolinska Institute United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Mohamed Amine Jmel
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Maolin Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Hui
- Department of Endocrinology, Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Kutty Selva Nandakumar
- Karolinska Institute United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Department of Environmental and Biosciences, School of Business, Innovation and Sustainability, Halmstad University, Halmstad, Sweden
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| |
Collapse
|
5
|
Wu H, Nandakumar KS. Epicutaneous Application of Mannan Induces Psoriasis-like Inflammation in an Inbred Mouse Strain. Bio Protoc 2023; 13:e4845. [PMID: 37900099 PMCID: PMC10603198 DOI: 10.21769/bioprotoc.4845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 10/31/2023] Open
Abstract
Mannan from yeast induces psoriasis-like inflammation in the skin of inbred mouse strains. Limitations of available models led us to develop a new psoriasis model with a rapid disease onset, severe disease course, short duration, and a simple and easy-to-induce protocol with much more practically convenient features and cost-benefits. Mannan-induced skin inflammation (MISI) is more severe than the classical imiquimod (IMQ)-induced skin inflammation (IISI), with characteristic features resembling human plaque psoriasis but with relatively fewer toxicity issues. Epicutaneous application of mannan (5 mg) in incomplete Freund's adjuvant or Vaseline induces severe psoriasis in BALB/c female mice. Psoriasis area and severity index (PASI) and histological evaluation of the skin could help assess the disease development. MISI mimics natural environmental factors affecting the skin relatively more closely than IISI. This disease model can be used to dissect inflammatory pathways in the skin, identify genetic and environmental factors affecting psoriasis, and test potential pharmacological agents or new combinations of available drugs for treatment before designing clinical trials. Key features • S. cerevisiae mannan induces psoriasis-like skin inflammation (MISI) when applied on the skin of inbred mice. • The MISI model has a rapid onset, severe disease, short duration, and simple and easy-to-induce protocol. • MISI is more severe than imiquimod-induced skin inflammation (IISI). • Female mice had a more severe disease than males in the MISI model, thereby allowing the study of sex-dependent disease mechanisms. • The MISI model identifies skin inflammatory pathways and genetic/environmental factors affecting psoriasis. • The MISI model can be used as a drug testing platform for potential pharmaceuticals to develop new therapeutics for psoriasis patients. • The MISI model can be used to explore the relative contribution of different pattern recognition receptors in the development and severity of psoriasis.
Collapse
Affiliation(s)
- Huimei Wu
- Department of Pharmacy, the Eighth Affiliated City Hospital of Guangzhou Medical University, The Eighth People’s Hospital of Guangzhou, Guangzhou, China
- Southern Medical University – Karolinska Institute United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Kutty Selva Nandakumar
- Southern Medical University – Karolinska Institute United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Department of Environmental and Biosciences, School of Business, Innovation, and Sustainability, Halmstad University, Halmstad, Sweden
| |
Collapse
|
6
|
Wu H, Ou J, Li K, Wang T, Nandakumar KS. Comparative studies on mannan and imiquimod induced experimental plaque psoriasis inflammation in inbred mice. Clin Exp Immunol 2023; 211:288-300. [PMID: 36645209 PMCID: PMC10038325 DOI: 10.1093/cei/uxad004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/22/2022] [Accepted: 01/14/2023] [Indexed: 01/17/2023] Open
Abstract
Psoriasis is a genetically determined, environmentally triggered, immune system-mediated autoimmune disease. Different animal models are needed to investigate the complex pathological mechanisms underlying this disease. Therefore, we established mannan-induced psoriasis model and compared with the most commonly used imiquimod-induced psoriasis in terms of disease, induction of innate immune cells, expression of cytokines, and the effect of dexamethasone treatment. Mannan significantly induced more severe psoriasis with better disease relapsing feature than imiquimod (IMQ). As determined by immunohistochemistry, IMQ induced significantly more infiltration of CD11c+ and F4/80+ cells than mannan in the skin. However, cytometric analysis showed a significant increase in the percentage of Gr-1+ neutrophils in the spleen and lymph nodes as well as F4/80+ macrophages in the spleen after mannan exposure. Variation in the percentage of significantly increased Vγ4 T cells was also found to be dependent on the lymphoid organs tested. However, there is a clear difference between these models in terms of expression of certain cytokine genes: IL-22, IL-23, IL-17E, and IL-17F were expressed more predominantly in mannan-induced inflammation, while IL-6 and IL-17A expressions were significantly higher in IMQ model. Interestingly, dexamethasone treatment strongly reduced epidermal thickness and histological scores induced by mannan than IMQ. Despite inducing psoriasis-like inflammation, certain differences and similarities were observed in the immune responses induced by mannan and IMQ. However, mannan-induced psoriasis model is relatively more simple, economical and less harmful to mice with an increased possibility to develop a chronic psoriasis model by exposing mice to mannan.
Collapse
Affiliation(s)
- Huimei Wu
- Southern Medical University-Karolinska Institute United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- School of medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jiaxin Ou
- Southern Medical University-Karolinska Institute United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Kangxin Li
- Southern Medical University-Karolinska Institute United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Department of Endocrinology, Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Wang
- Southern Medical University-Karolinska Institute United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Kutty Selva Nandakumar
- Southern Medical University-Karolinska Institute United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Department of Environmental and Biosciences, School of Business, Innovation and Sustainability (FIH), Halmstad University, Halmstad, Sweden
| |
Collapse
|