1
|
Céspedes N, Tsolis RM, Piliponsky AM, Luckhart S. The type 2 immune response in gut homeostasis and parasite transmission in malaria. Trends Parasitol 2025; 41:38-51. [PMID: 39658487 DOI: 10.1016/j.pt.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
Malaria predisposes to concomitant bacteremia, resulting in increased mortality risk. Previous studies indicated that malaria causes structural changes in the intestine, induces tolerogenic immune responses, inhibits neutrophil recruitment, suppresses innate synthesis of IFN-γ, dysregulates mast cells (MCs) and basophils, and induces Th2-type immune responses. These can reduce parasite control while increasing enteropathogenic dissemination. Moreover, there is growing evidence that Th2 immunity, while protecting the host from overwhelming inflammation, may also contribute to increased parasite transmission. This review explores the roles of the regulatory immune response in bacterial coinfections and parasite transmission in malaria.
Collapse
Affiliation(s)
- Nora Céspedes
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA.
| | - Renée M Tsolis
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, CA, USA
| | - Adrian M Piliponsky
- Department of Pediatrics and Department of Pathology, Seattle Children's Research Institute, Seattle, WA, USA
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA; Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| |
Collapse
|
2
|
Zhong Q, Hao H, Li S, Ning Y, Li H, Hu X, McMasters KM, Yan J, Ding C. B cell c-Maf signaling promotes tumor progression in animal models of pancreatic cancer and melanoma. J Immunother Cancer 2024; 12:e009861. [PMID: 39608978 PMCID: PMC11603694 DOI: 10.1136/jitc-2024-009861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND The role of B cells in antitumor immunity remains controversial, with studies suggesting the protumor and antitumor activity. This controversy may be due to the heterogeneity in B cell populations, as the balance among the subtypes may impact tumor progression. The immunosuppressive regulatory B cells (Breg) release interleukin 10 (IL-10) but only represent a minor population. Additionally, tumor-specific antibodies (Abs) also exhibit antitumor and protumor functions dependent on the Ab isotype. Transcription factor c-Maf has been suggested to contribute to the regulation of IL-10 in Breg, but the role of B cell c-Maf signaling in antitumor immunity and regulating Ab responses remains unknown. METHODS Conditional B cell c-Maf knockout (KO) and control mice were used to establish a KPC pancreatic cancer model and B16.F10 melanoma model. Tumor progression was evaluated. B cell and T cell phenotypes were determined by flow cytometry, mass cytometry, and cytokine/chemokine profiling. Differentially expressed genes in B cells were examined by using RNA sequencing (RNA-seq). Peripheral blood samples were collected from healthy donors and patients with melanoma for B cell phenotyping. RESULTS Compared with B cells from the spleen and lymph nodes (LN), B cells in the pancreas exhibited significantly less follicular phenotype and higher IL-10 production in naïve mice. c-Maf deficiency resulted in a significant reduction of CD9+ IL-10-producing Breg in the pancreas. Pancreatic ductal adenocarcinoma (PDAC) progression resulted in the accumulation of circulating B cells with the follicular phenotype and less IL-10 production in the pancreas. Notably, B cell c-Maf deficiency delayed PDAC tumor progression and resulted in proinflammatory B cells. Further, tumor volume reduction and increased effective T cells in the tumor-draining LN were observed in B cell c-Maf KO mice in the B16.F10 melanoma model. RNA-seq analysis of isolated B cells revealed that B cell c-Maf signaling modulates immunoglobulin-associated genes and tumor-specific Ab production. We furthermore demonstrated c-Maf-positive B cell subsets and an increase of IL-10-producing B cells after incubation with IL-4 and CD40L in the peripheral blood of patients with melanoma. CONCLUSION Our study highlights that B cell c-Maf signaling drives tumor progression through the modulation of Breg, inflammatory responses, and tumor-specific Ab responses.
Collapse
Affiliation(s)
- Qian Zhong
- UofL Health Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Hongying Hao
- The Hiram C. Polk, Jr., MD Department of Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Shu Li
- UofL Health Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Yongling Ning
- UofL Health Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Hong Li
- UofL Health Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Xiaoling Hu
- UofL Health Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Kelly M McMasters
- The Hiram C. Polk, Jr., MD Department of Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Jun Yan
- UofL Health Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- The Hiram C. Polk, Jr., MD Department of Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Chuanlin Ding
- UofL Health Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- The Hiram C. Polk, Jr., MD Department of Surgery, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
3
|
Hillion S, Miranda A, Le Dantec C, Boudigou M, Le Pottier L, Cornec D, Torres RM, Pelanda R. Maf expression in B cells restricts reactive plasmablast and germinal center B cell expansion. Nat Commun 2024; 15:7982. [PMID: 39266537 PMCID: PMC11393457 DOI: 10.1038/s41467-024-52224-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 08/29/2024] [Indexed: 09/14/2024] Open
Abstract
Precise regulation of B cell differentiation is essential for an effective adaptive immune response. Here, we show that B cell development in mice with B cell-specific Maf deletion is unaffected, but marginal zone B cells, germinal centre B cells, and plasmablasts are significantly more frequent in the spleen of naive Maf-deficient mice compared to wild type controls. In the context of a T cell-dependent immunization, Maf deletion causes increased proliferation of germinal centre B cells and extrafollicular plasmablasts. This is accompanied by higher production of antigen-specific IgG1 antibodies with minimal modification of early memory B cells, but a reduction in plasma cell numbers. Single-cell RNA sequencing shows upregulation of genes associated with DNA replication and cell cycle progression, confirming the role of Maf in cell proliferation. Subsequent pathway analysis reveals that Maf influences cellular metabolism, transporter activity, and mitochondrial proteins, which have been implicated in controlling the germinal centre reaction. In summary, our findings demonstrate that Maf acts intrinsically in B cells as a negative regulator of late B cell differentiation, plasmablast proliferation and germinal centre B cell formation.
Collapse
Affiliation(s)
- Sophie Hillion
- LBAI, UMR1227, Univ Brest, Inserm, and CHU de Brest, Brest, France.
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Anjelica Miranda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | | | | | | | - Divi Cornec
- LBAI, UMR1227, Univ Brest, Inserm, and CHU de Brest, Brest, France
| | - Raul M Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
4
|
Park SJ, Nakai K. A computational approach for deciphering the interactions between proximal and distal gene regulators in GC B-cell response. NAR Genom Bioinform 2024; 6:lqae050. [PMID: 38711859 PMCID: PMC11071120 DOI: 10.1093/nargab/lqae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/15/2024] [Accepted: 04/27/2024] [Indexed: 05/08/2024] Open
Abstract
Delineating the intricate interplay between promoter-proximal and -distal regulators is crucial for understanding the function of transcriptional mediator complexes implicated in the regulation of gene expression. The present study aimed to develop a computational method for accurately modeling the spatial proximal and distal regulatory interactions. Our method combined regression-based models to identify key regulators through gene expression prediction and a graph-embedding approach to detect coregulated genes. This approach enabled a detailed investigation of the gene regulatory mechanisms for germinal center B cells, accompanied by dramatic rearrangements of the genome structure. We found that while the promoter-proximal regulatory elements were the principal regulators of gene expression, the distal regulators fine-tuned transcription. Moreover, our approach unveiled the presence of modular regulators, such as cofactors and proximal/distal transcription factors, which were co-expressed with their target genes. Some of these modules exhibited abnormal expression patterns in lymphoma. These findings suggest that the dysregulation of interactions between transcriptional and architectural factors is associated with chromatin reorganization failure, which may increase the risk of malignancy. Therefore, our computational approach helps decipher the transcriptional cis-regulatory code spatially interacting.
Collapse
Affiliation(s)
- Sung-Joon Park
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kenta Nakai
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
5
|
Mehta P, Chattopadhyay P, Mohite R, D'Rozario R, Bandopadhyay P, Sarif J, Ray Y, Ganguly D, Pandey R. Suppressed transcript diversity and immune response in COVID-19 ICU patients: a longitudinal study. Life Sci Alliance 2024; 7:e202302305. [PMID: 37918965 PMCID: PMC10622646 DOI: 10.26508/lsa.202302305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
Understanding the dynamic changes in gene expression during Acute Respiratory Distress Syndrome (ARDS) progression in post-acute infection patients is crucial for unraveling the underlying mechanisms. Study investigates the longitudinal changes in gene/transcript expression patterns in hospital-admitted severe COVID-19 patients with ARDS post-acute SARS-CoV-2 infection. Blood samples were collected at three time points and patients were stratified into severe and mild ARDS, based on their oxygenation saturation (SpO2/FiO2) kinetics over 7 d. Decline in transcript diversity was observed over time, particularly in patients with higher severity, indicating dysregulated transcriptional landscape. Comparing gene/transcript-level analyses highlighted a rather limited overlap. With disease progression, a transition towards an inflammatory state was evident. Strong association was found between antibody response and disease severity, characterized by decreased antibody response and activated B cell population in severe cases. Bayesian network analysis identified various factors associated with disease progression and severity, viz. humoral response, TLR signaling, inflammatory response, interferon response, and effector T cell abundance. The findings highlight dynamic gene/transcript expression changes during ARDS progression, impact on tissue oxygenation and elucidate disease pathogenesis.
Collapse
Affiliation(s)
- Priyanka Mehta
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Partha Chattopadhyay
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ramakant Mohite
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Ranit D'Rozario
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Purbita Bandopadhyay
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Jafar Sarif
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Yogiraj Ray
- Infectious Disease and Beleghata General Hospital, Kolkata, India
- Department of Infectious Diseases, Shambhunath Pandit Hospital, Institute of Postgraduate Medical Education and Research, Kolkata, India
| | - Dipyaman Ganguly
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Zhou Y, Yuan S, Xiao F, Li H, Ye Z, Cheng T, Luo C, Tang K, Cai J, Situ J, Sridhar S, Chu WM, Tam AR, Chu H, Che CM, Jin L, Hung IFN, Lu L, Chan JFW, Sun H. Metal-coding assisted serological multi-omics profiling deciphers the role of selenium in COVID-19 immunity. Chem Sci 2023; 14:10570-10579. [PMID: 37799995 PMCID: PMC10548515 DOI: 10.1039/d3sc03345g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/02/2023] [Indexed: 10/07/2023] Open
Abstract
Uncovering how host metal(loid)s mediate the immune response against invading pathogens is critical for better understanding the pathogenesis mechanism of infectious disease. Clinical data show that imbalance of host metal(loid)s is closely associated with the severity and mortality of COVID-19. However, it remains elusive how metal(loid)s, which are essential elements for all forms of life and closely associated with multiple diseases if dysregulated, are involved in COVID-19 pathophysiology and immunopathology. Herein, we built up a metal-coding assisted multiplexed serological metallome and immunoproteome profiling system to characterize the links of metallome with COVID-19 pathogenesis and immunity. We found distinct metallome features in COVID-19 patients compared with non-infected control subjects, which may serve as a biomarker for disease diagnosis. Moreover, we generated the first correlation network between the host metallome and immunity mediators, and unbiasedly uncovered a strong association of selenium with interleukin-10 (IL-10). Supplementation of selenium to immune cells resulted in enhanced IL-10 expression in B cells and reduced induction of proinflammatory cytokines in B and CD4+ T cells. The selenium-enhanced IL-10 production in B cells was confirmed to be attributable to the activation of ERK and Akt pathways. We further validated our cellular data in SARS-CoV-2-infected K18-hACE2 mice, and found that selenium supplementation alleviated SARS-CoV-2-induced lung damage characterized by decreased alveolar inflammatory infiltrates through restoration of virus-repressed selenoproteins to alleviate oxidative stress. Our approach can be readily extended to other diseases to understand how the host defends against invading pathogens through regulation of metallome.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital Shenzhen Guangdong China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park Hong Kong SAR China
| | - Fan Xiao
- Department of Pathology, Shenzhen Institute of Research and Innovation, The University of Hong Kong Hong Kong SAR China
| | - Hongyan Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Ziwei Ye
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Tianfan Cheng
- Faculty of Dentistry, The University of Hong Kong Pokfulam Hong Kong SAR Hong Kong China
| | - Cuiting Luo
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Kaiming Tang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Jianpiao Cai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Jianwen Situ
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Siddharth Sridhar
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital Shenzhen Guangdong China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park Hong Kong SAR China
- Department of Microbiology, Queen Mary Hospital Pokfulam Hong Kong SAR China
| | - Wing-Ming Chu
- Division of Infectious Diseases, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Anthony Raymond Tam
- Division of Infectious Diseases, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Chi-Ming Che
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong Pokfulam Hong Kong SAR Hong Kong China
| | - Ivan Fan-Ngai Hung
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital Shenzhen Guangdong China
- Division of Infectious Diseases, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Liwei Lu
- Department of Pathology, Shenzhen Institute of Research and Innovation, The University of Hong Kong Hong Kong SAR China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital Shenzhen Guangdong China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park Hong Kong SAR China
- Department of Microbiology, Queen Mary Hospital Pokfulam Hong Kong SAR China
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The University of Hong Kong Pokfulam Hong Kong SAR China
- Guangzhou Laboratory Guangdong Province China
| | - Hongzhe Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Pokfulam Hong Kong SAR China
| |
Collapse
|
7
|
Matsuzaka Y, Yashiro R. Unraveling the Immunopathogenesis of Multiple Sclerosis: The Dynamic Dance of Plasmablasts and Pathogenic T Cells. BIOLOGICS 2023; 3:232-252. [DOI: 10.3390/biologics3030013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system, characterized by multiple lesions occurring temporally and spatially. Additionally, MS is a disease that predominates in the white population. In recent years, there has been a rapid increase in the number of patients, and it often occurs in young people, with an average age of onset of around 30 years old, but it can also occur in children and the elderly. It is more common in women than men, with a male-to-female ratio of approximately 1:3. As the immunopathogenesis of MS, a group of B cells called plasmablasts controls encephalomyelitis via IL-10 production. These IL-10-producing B cells, called regulatory B cells, suppress inflammatory responses in experimental mouse models of autoimmune diseases including MS. Since it has been clarified that these regulatory B cells are plasmablasts, it is expected that the artificial control of plasmablast differentiation will lead to the development of new treatments for MS. Among CD8-positive T cells in the peripheral blood, the proportion of PD-1-positive cells is decreased in MS patients compared with healthy controls. The dysfunction of inhibitory receptors expressed on T cells is known to be the core of MS immunopathology and may be the cause of chronic persistent inflammation. The PD-1+ CD8+ T cells may also serve as indicators that reflect the condition of each patient in other immunological neurological diseases such as MS. Th17 cells also regulate the development of various autoimmune diseases, including MS. Thus, the restoration of weakened immune regulatory functions may be a true disease-modifying treatment. So far, steroids and immunosuppressants have been the mainstream for autoimmune diseases, but the problem is that this kills not only pathogenic T cells, but also lymphocytes, which are necessary for the body. From this understanding of the immune regulation of MS, we can expect the development of therapeutic strategies that target only pathogenic immune cells.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Ryu Yashiro
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
8
|
Zheremyan EA, Ustiugova AS, Uvarova AN, Karamushka NM, Stasevich EM, Gogoleva VS, Bogolyubova AV, Mitkin NA, Kuprash DV, Korneev KV. Differentially activated B cells develop regulatory phenotype and show varying immunosuppressive features: a comparative study. Front Immunol 2023; 14:1178445. [PMID: 37731503 PMCID: PMC10509016 DOI: 10.3389/fimmu.2023.1178445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023] Open
Abstract
Regulatory B lymphocytes (Bregs) are B cells with well-pronounced immunosuppressive properties, allowing them to suppress the activity of effector cells. A broad repertoire of immunosuppressive mechanisms makes Bregs an attractive tool for adoptive cell therapy for diseases associated with excessive activation of immune reactions. Such therapy implies Breg extraction from the patient's peripheral blood, ex vivo activation and expansion, and further infusion into the patient. At the same time, the utility of Bregs for therapeutic approaches is limited by their small numbers and extremely low survival rate, which is typical for all primary B cell cultures. Therefore, extracting CD19+ cells from the patient's peripheral blood and specifically activating them ex vivo to make B cells acquire a suppressive phenotype seems to be far more productive. It will allow a much larger number of B cells to be obtained initially, which may significantly increase the likelihood of successful immunosuppression after adoptive Breg transfer. This comparative study focuses on finding ways to efficiently manipulate B cells in vitro to differentiate them into Bregs. We used CD40L, CpG, IL4, IL21, PMA, and ionomycin in various combinations to generate immunosuppressive phenotype in B cells and performed functional assays to test their regulatory capacity. This work shows that treatment of primary B cells using CD40L + CpG + IL21 mix was most effective in terms of induction of functionally active regulatory B lymphocytes with high immunosuppressive capacity ex vivo.
Collapse
Affiliation(s)
- Elina A Zheremyan
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alina S Ustiugova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Aksinya N Uvarova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nina M Karamushka
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina M Stasevich
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Violetta S Gogoleva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Apollinariya V Bogolyubova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Nikita A Mitkin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V Kuprash
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Kirill V Korneev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| |
Collapse
|
9
|
Laux J, Martorelli M, Späth N, Maier F, Burnet M, Laufer SA. Selective Inhibitors of Janus Kinase 3 Modify Responses to Lipopolysaccharides by Increasing the Interleukin-10-to-Tumor Necrosis Factor α Ratio. ACS Pharmacol Transl Sci 2023; 6:892-906. [PMID: 37325444 PMCID: PMC10262334 DOI: 10.1021/acsptsci.3c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 06/17/2023]
Abstract
Janus kinase (JAK) inhibitors act at low doses (e.g., tofacitinib, 0.2-0.4 μmol/kg bid) in clinical use, suggesting an efficient underlying mode of action. We hypothesized that their effectiveness is due to their ability to raise the ratio of IL-10 to TNFα. Unlike other JAK isoforms, JAK3 is expressed mainly in hematopoietic cells and is essential for immune function. We used JAK3 selective inhibitors with preferential distribution to immune cells. Inhibition of JAK3 in human leukocytes reduced TNFα and IL-6 but maintained levels of IL-10, while pan-JAK inhibitors increased TNFα, IL-6, and IL-10. JAK1 is required for IL-10 receptor signaling, which suggests that, at exposure above the IC50 (55 nM for tofacitinib on JAK1), there is less feedback control of TNFα levels. This leads to self-limiting effects of JAK1 inhibitors and could place an upper limit on appropriate doses. In vivo, treating mice with JAK3 inhibitors before LPS administration decreased plasma TNFα and increased IL-10 above vehicle levels, suggesting that JAK3 inhibition may limit TNFα release by increasing IL-10 while leaving the IL-10 receptor functional. This mechanism should have general utility in controlling autoimmune diseases and can be conveniently observed by measuring the ratio of IL-10 to TNFα. In summary, our targeted, "leukotropic" inhibitors more effectively increased IL-10/TNFα ratios than unselective control compounds and could, therefore, be ideal for autoimmune therapy.
Collapse
Affiliation(s)
- Julian Laux
- Synovo
GmbH, Paul-Ehrlich-Straße
15, 72076 Tübingen, DE, Germany
- Department
of Pharmaceutical/Medicinal Chemistry, Eberhard
Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, DE, Germany
| | - Mariella Martorelli
- Synovo
GmbH, Paul-Ehrlich-Straße
15, 72076 Tübingen, DE, Germany
- Department
of Pharmaceutical/Medicinal Chemistry, Eberhard
Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, DE, Germany
| | - Nadja Späth
- Synovo
GmbH, Paul-Ehrlich-Straße
15, 72076 Tübingen, DE, Germany
| | - Florian Maier
- Synovo
GmbH, Paul-Ehrlich-Straße
15, 72076 Tübingen, DE, Germany
| | - Michael Burnet
- Synovo
GmbH, Paul-Ehrlich-Straße
15, 72076 Tübingen, DE, Germany
| | - Stefan A. Laufer
- Department
of Pharmaceutical/Medicinal Chemistry, Eberhard
Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, DE, Germany
- Cluster
of Excellence iFIT (EXC 2180) “Image-Guided and Functionally
Instructed Tumor Therapies”, University
of Tübingen, 72076 Tübingen, Germany
- Tübingen
Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| |
Collapse
|
10
|
Zhang Z, Li M, Lin P, Ren Y, He Y, Wang S, Xu Y, Cao B, Wang G, Moran MF, Mao X. The ubiquitin ligase HERC4 suppresses MafA transcriptional activity triggered by GSK3β in myeloma by atypical K63-linked polyubiquitination. J Biol Chem 2023; 299:104675. [PMID: 37028761 DOI: 10.1016/j.jbc.2023.104675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
MafA and c-Maf are close members of the Maf transcription factor family and indicators of poor prognosis of multiple myeloma (MM). Our previous study finds that the ubiquitin ligase HERC4 induces c-Maf degradation but stabilizes MafA, and the mechanism is elusive. In the present study we find that HERC4 interacts with MafA and mediates its K63-linked polyubiquitination at K33. Moreover, HERC4 inhibits MafA phosphorylation and its transcriptional activity triggered by glycogen synthase kinase 3β (GSK3β). The K33R MafA variant prevents HERC4 from inhibiting MafA phosphorylation and increases MafA transcriptional activity. Further analyses reveal that MafA can also activate the STAT3 signaling but it is suppressed by HERC4. Lastly, we demonstrate that lithium chloride, a GSK3β inhibitor, can upregulate HERC4 and synergizes dexamethasone, a typical anti-MM drug, in inhibiting MM cell proliferation and xenograft growth in nude mice. These findings thus highlight a novel regulation of MafA oncogenic activity in MM and provide the rationale by targeting HERC4/GSK3β/MafA for the treatment of MM.
Collapse
Affiliation(s)
- Zubin Zhang
- Jiangsu Key Laboratory for Translational Research and Therapeutics of NeuroPsychoDiseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Mei Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215025, China
| | - Peng Lin
- Jiangsu Key Laboratory for Translational Research and Therapeutics of NeuroPsychoDiseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ying Ren
- Jiangsu Key Laboratory for Translational Research and Therapeutics of NeuroPsychoDiseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yuanming He
- Jiangsu Key Laboratory for Translational Research and Therapeutics of NeuroPsychoDiseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Siyu Wang
- Jiangsu Key Laboratory for Translational Research and Therapeutics of NeuroPsychoDiseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yujia Xu
- Jiangsu Key Laboratory for Translational Research and Therapeutics of NeuroPsychoDiseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Biyin Cao
- Jiangsu Key Laboratory for Translational Research and Therapeutics of NeuroPsychoDiseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Guanghui Wang
- Jiangsu Key Laboratory for Translational Research and Therapeutics of NeuroPsychoDiseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Michael F Moran
- The Department of Molecular Genetics, The University of Toronto, Toronto, ON, M5G 0A4, Canada
| | - Xinliang Mao
- Jiangsu Key Laboratory for Translational Research and Therapeutics of NeuroPsychoDiseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| |
Collapse
|
11
|
Liu M, Zhou J, Yin R, Yin H, Ding Y, Ma F, Qian L. The HMGB1 (C106A) mutation inhibits IL-10-producing CD19hiFcγRIIbhi B cell expansion by suppressing STAT3 activation in mice. Front Immunol 2022; 13:975551. [PMID: 35983056 PMCID: PMC9378787 DOI: 10.3389/fimmu.2022.975551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 12/05/2022] Open
Abstract
Regulatory B cells have important roles in inflammation and autoimmune diseases. A newly discovered subpopulation of B cells with a CD19hiFcγRIIbhi phenotype inhibits the proliferation of CD4+ T cells by secreting interleukin (IL)-10. The expansion of CD19hiFcγRIIbhi B cells in mouse spleen can be induced by lipopolysaccharide (LPS) or CpG oligodeoxynucleotide stimulation. However, the mechanism of CD19hiFcγRIIbhi B cell expansion and its role in inflammatory diseases are unclear. Here, we report that, under inflammatory conditions, the proliferation and immunosuppressive function of CD19hiFcγRIIbhi B cells were decreased in high mobility group box1 (HMGB1) C106A mutant mice, compared with wild-type mice. The HMGB1 (C106A) mutation in B cells reduced STAT3 phosphorylation, restricting the expansion and suppressive function of CD19hiFcγRIIbhi B cells. Compared with CD19hiFcγRIIbhi B cells from wild-type mice, CD19hiFcγRIIbhi B cells from Hmgb1(C106A) mice significantly reduced the survival of mice with sepsis. Recombinant HMGB1 promoted the expansion of IL-10-producing CD19hiFcγRIIbhi B cells among LPS-activated B cells in vitro. Furthermore, the percentage of CD19hiFcγRIIbhi regulatory B cells in the peripheral blood was increased in patients with sepsis, compared with healthy controls. These findings implicate the role of HMGB1 in the expansion and immunosuppressive function of CD19hiFcγRIIbhi B cells.
Collapse
Affiliation(s)
- Mengru Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Jingwen Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Rui Yin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Hui Yin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yue Ding
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Feng Ma
- CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
- *Correspondence: Li Qian, ; Feng Ma,
| | - Li Qian
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China
- *Correspondence: Li Qian, ; Feng Ma,
| |
Collapse
|