1
|
Tian T, Zhu Y, Shi J, Shang K, Yin Z, Shi H, He Y, Ding J, Zhang F. The development of a human Brucella mucosal vaccine: What should be considered? Life Sci 2024; 355:122986. [PMID: 39151885 DOI: 10.1016/j.lfs.2024.122986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Brucellosis is a chronic infectious disease that is zoonotic in nature. Brucella can infect humans through interactions with livestock, primarily via the digestive tract, respiratory tract, and oral cavity. This bacterium has the potential to be utilized as a biological weapon and is classified as a Category B pathogen by the Centers for Disease Control and Prevention. Currently, there is no approved vaccine for humans against Brucella, highlighting an urgent need for the development of a vaccine to mitigate the risks posed by this pathogen. Brucella primarily infects its host by adhering to and penetrating mucosal surfaces. Mucosal immunity plays a vital role in preventing local infections, clearing microorganisms from mucosal surfaces, and inhibiting the spread of pathogens. As mucosal vaccine strategies continue to evolve, the development of a safe and effective mucosal vaccine against Brucella appears promising.This paper reviews the immune mechanism of mucosal vaccines, the infection mechanism of Brucella, successful Brucella mucosal vaccines in animals, and mucosal adjuvants. Additionally, it elucidates targeting and optimization strategies for mucosal vaccines to facilitate the development of human vaccines against Brucella.
Collapse
Affiliation(s)
- Tingting Tian
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Yuejie Zhu
- Reproductive Fertility Assistance Center, First Afffliated Hospital of Xinjiang Medical University, China
| | - Juan Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Kaiyu Shang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Zhengwei Yin
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Huidong Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Yueyue He
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Jianbing Ding
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Fengbo Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China; Department of Clinical laboratory, The First Affiliated hospital of Xinjiang Medical University, China.
| |
Collapse
|
2
|
Panickar A, Manoharan A, Anbarasu A, Ramaiah S. Respiratory tract infections: an update on the complexity of bacterial diversity, therapeutic interventions and breakthroughs. Arch Microbiol 2024; 206:382. [PMID: 39153075 DOI: 10.1007/s00203-024-04107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Respiratory tract infections (RTIs) have a significant impact on global health, especially among children and the elderly. The key bacterial pathogens Streptococcus pneumoniae, Haemophilus influenzae, Klebsiella pneumoniae, Staphylococcus aureus and non-fermenting Gram Negative bacteria such as Acinetobacter baumannii and Pseudomonas aeruginosa are most commonly associated with RTIs. These bacterial pathogens have evolved a diverse array of resistance mechanisms through horizontal gene transfer, often mediated by mobile genetic elements and environmental acquisition. Treatment failures are primarily due to antimicrobial resistance and inadequate bacterial engagement, which necessitates the development of alternative treatment strategies. To overcome this, our review mainly focuses on different virulence mechanisms and their resulting pathogenicity, highlighting different therapeutic interventions to combat resistance. To prevent the antimicrobial resistance crisis, we also focused on leveraging the application of artificial intelligence and machine learning to manage RTIs. Integrative approaches combining mechanistic insights are crucial for addressing the global challenge of antimicrobial resistance in respiratory infections.
Collapse
Affiliation(s)
- Avani Panickar
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Anand Manoharan
- Infectious Diseases Medical and Scientific Affairs, GlaxoSmithKline (GSK), Worli, Maharashtra, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
3
|
Zahid A, Wilson JC, Grice ID, Peak IR. Otitis media: recent advances in otitis media vaccine development and model systems. Front Microbiol 2024; 15:1345027. [PMID: 38328427 PMCID: PMC10847372 DOI: 10.3389/fmicb.2024.1345027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Otitis media is an inflammatory disorder of the middle ear caused by airways-associated bacterial or viral infections. It is one of the most common childhood infections as globally more than 80% of children are diagnosed with acute otitis media by 3 years of age and it is a common reason for doctor's visits, antibiotics prescriptions, and surgery among children. Otitis media is a multifactorial disease with various genetic, immunologic, infectious, and environmental factors predisposing children to develop ear infections. Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis are the most common culprits responsible for acute otitis media. Despite the massive global disease burden, the pathogenesis of otitis media is still unclear and requires extensive future research. Antibiotics are the preferred treatment to cure middle ear infections, however, the antimicrobial resistance rate of common middle ear pathogens has increased considerably over the years. At present, pneumococcal and influenza vaccines are administered as a preventive measure against otitis media, nevertheless, these vaccines are only beneficial in preventing carriage and/or disease caused by vaccine serotypes. Otitis media caused by non-vaccine serotype pneumococci, non-typeable H. influenza, and M. catarrhalis remain an important healthcare burden. The development of multi-species vaccines is an arduous process but is required to reduce the global burden of this disease. Many novel vaccines against S. pneumoniae, non-typeable H. influenza, and M. catarrhalis are in preclinical trials. It is anticipated that these vaccines will lower the disease burden and provide better protection against otitis media. To study disease pathology the rat, mouse, and chinchilla are commonly used to induce experimental acute otitis media to test new therapeutics, including antibiotics and vaccines. Each of these models has its advantages and disadvantages, yet there is still a need to develop an improved animal model providing a better correlated mechanistic understanding of human middle ear infections, thereby underpinning the development of more effective otitis media therapeutics. This review provides an updated summary of current vaccines against otitis media, various animal models of otitis media, their limitations, and some future insights in this field providing a springboard in the development of new animal models and novel vaccines for otitis media.
Collapse
Affiliation(s)
- Ayesha Zahid
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Jennifer C. Wilson
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - I. Darren Grice
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Ian R. Peak
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
4
|
Nokso-Koivisto J, Ehrlich GD, Enoksson F, Komatsu K, Mason K, Melhus Å, Patel JA, Vijayasekaran S, Ryan A. Otitis media: Interactions between host and environment, immune and inflammatory responses. Int J Pediatr Otorhinolaryngol 2024; 176:111798. [PMID: 38041988 DOI: 10.1016/j.ijporl.2023.111798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 12/04/2023]
Abstract
OBJECTIVE To review and highlight progress in otitis media (OM) research in the areas of immunology, inflammation, environmental influences and host-pathogen responses from 2019 to 2023. Opportunities for innovative future research were also identified. DATA SOURCES PubMed database of the National Library of Medicine. REVIEW METHODS Key topics were assigned to each panel member for detailed review. Search of the literature was from June 2019 until February 2023. Draft reviews were collated, circulated, and discussed among panel members at the 22nd International Symposium on Recent Advances in Otitis Media in June 2023. The final manuscript was prepared and approved by all the panel members. CONCLUSIONS Important advances were identified in: environmental influences that enhance OM susceptibility; polymicrobial middle ear (ME) infections; the role of adaptive immunity defects in otitis-proneness; additional genes linked to OM; leukocyte contributions to OM pathogenesis and recovery; and novel interventions in OM based on host responses to infection. Innovative areas of research included: identification of novel bacterial genes and pathways important for OM persistence, bacterial adaptations and evolution that enhance chronicity; animal and human ME gene expression, including at the single-cell level; and Sars-CoV-2 infection of the ME and Eustachian tube.
Collapse
Affiliation(s)
- Johanna Nokso-Koivisto
- Department of Otorhinolaryngology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| | - Garth D Ehrlich
- Department of Microbiology and Immunology and Department of Otolaryngology - Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | - Kensei Komatsu
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Kevin Mason
- The Research Institute at Nationwide Children's Hospital, Infectious Diseases Institute, The Ohio State University School of Medicine, Columbus, OH, USA
| | - Åsa Melhus
- Department of Medical Sciences, Section of Clinical Bacteriology, Uppsala University, Uppsala, Sweden
| | - Janak A Patel
- Department of Infection Control & Healthcare Epidemiology and Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Shiyan Vijayasekaran
- Perth ENT Centre, Perth Children's Hospital, University of Western Australia, Perth, Australia
| | - Allen Ryan
- Department of Surgery, Division of Otolaryngology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
5
|
Kubeil M, Suzuki Y, Casulli MA, Kamal R, Hashimoto T, Bachmann M, Hayashita T, Stephan H. Exploring the Potential of Nanogels: From Drug Carriers to Radiopharmaceutical Agents. Adv Healthc Mater 2024; 13:e2301404. [PMID: 37717209 PMCID: PMC11468994 DOI: 10.1002/adhm.202301404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/21/2023] [Indexed: 09/18/2023]
Abstract
Nanogels open up access to a wide range of applications and offer among others hopeful approaches for use in the field of biomedicine. This review provides a brief overview of current developments of nanogels in general, particularly in the fields of drug delivery, therapeutic applications, tissue engineering, and sensor systems. Specifically, cyclodextrin (CD)-based nanogels are important because they have exceptional complexation properties and are highly biocompatible. Nanogels as a whole and CD-based nanogels in particular can be customized in a wide range of sizes and equipped with a desired surface charge as well as containing additional molecules inside and outside, such as dyes, solubility-mediating groups or even biological vector molecules for pharmaceutical targeting. Currently, biological investigations are mainly carried out in vitro, but more and more in vivo applications are gaining importance. Modern molecular imaging methods are increasingly being used for the latter. Due to an extremely high sensitivity and the possibility of obtaining quantitative data on pharmacokinetic and pharmacodynamic properties, nuclear methods such as single photon emission computed tomography (SPECT) and positron emission tomography (PET) using radiolabeled compounds are particularly suitable here. The use of radiolabeled nanogels for imaging, but also for therapy, is being discussed.
Collapse
Affiliation(s)
- Manja Kubeil
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer Research Bautzner Landstraße 40001328DresdenGermany
| | - Yota Suzuki
- Graduate School of Science and EngineeringSaitama University255 Shimo‐OkuboSakura‐KuSaitama338‐8570Japan
- Faculty of Science & TechnologySophia University7‐1 Kioi‐cho, Chiyoda‐kuTokyo102‐8554Japan
| | | | - Rozy Kamal
- Department of Nuclear MedicineManipal College of Health ProfessionsManipal Academy of Higher EducationManipalKarnataka576104India
| | - Takeshi Hashimoto
- Faculty of Science & TechnologySophia University7‐1 Kioi‐cho, Chiyoda‐kuTokyo102‐8554Japan
| | - Michael Bachmann
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer Research Bautzner Landstraße 40001328DresdenGermany
| | - Takashi Hayashita
- Faculty of Science & TechnologySophia University7‐1 Kioi‐cho, Chiyoda‐kuTokyo102‐8554Japan
| | - Holger Stephan
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer Research Bautzner Landstraße 40001328DresdenGermany
| |
Collapse
|
6
|
Tamir SO, Bialasiewicz S, Brennan-Jones CG, Der C, Kariv L, Macharia I, Marsh RL, Seguya A, Thornton R. ISOM 2023 research Panel 4 - Diagnostics and microbiology of otitis media. Int J Pediatr Otorhinolaryngol 2023; 174:111741. [PMID: 37788516 DOI: 10.1016/j.ijporl.2023.111741] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
OBJECTIVES To identify and review key research advances from the literature published between 2019 and 2023 on the diagnosis and microbiology of otitis media (OM) including acute otitis media (AOM), recurrent AOM (rAOM), otitis media with effusion (OME), chronic suppurative otitis media (CSOM) and AOM complications (mastoiditis). DATA SOURCES PubMed database of the National Library of Medicine. REVIEW METHODS All relevant original articles published in Medline in English between July 2019 and February 2023 were identified. Studies that were reviews, case studies, relating to OM complications (other than mastoiditis), and studies focusing on guideline adherence, and consensus statements were excluded. Members of the panel drafted the report based on these search results. MAIN FINDINGS For the diagnosis section, 2294 unique records screened, 55 were eligible for inclusion. For the microbiology section 705 unique records were screened and 137 articles were eligible for inclusion. The main themes that arose in OM diagnosis were the need to incorporate multiple modalities including video-otoscopy, tympanometry, telemedicine and artificial intelligence for accurate diagnoses in all diagnostic settings. Further to this, was the use of new, cheap, readily available tools which may improve access in rural and lowmiddle income (LMIC) settings. For OM aetiology, PCR remains the most sensitive method for detecting middle ear pathogens with microbiome analysis still largely restricted to research use. The global pandemic response reduced rates of OM in children, but post-pandemic shifts should be monitored. IMPLICATION FOR PRACTICE AND FUTURE RESEARCH Cheap, easy to use multi-technique assessments combined with artificial intelligence and/or telemedicine should be integrated into future practice to improve diagnosis and treatment pathways in OM diagnosis. Longitudinal studies investigating the in-vivo process of OM development, timings and in-depth interactions between the triad of bacteria, viruses and the host immune response are still required. Standardized methods of collection and analysis for microbiome studies to enable inter-study comparisons are required. There is a need to target underlying biofilms if going to effectively prevent rAOM and OME and possibly enhance ventilation tube retention.
Collapse
Affiliation(s)
- Sharon Ovnat Tamir
- Department of Otolaryngology-Head and Neck Surgery, Sasmon Assuta Ashdod University Hospital, Faculty of Health Sciences, Ben Gurion University of the Negev, Israel.
| | - Seweryn Bialasiewicz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Christopher G Brennan-Jones
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia; Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| | - Carolina Der
- Facultad de Medicina, Universidad Del Desarrollo, Dr Luis Calvo Mackenna Hospital, Santiago, Chile
| | - Liron Kariv
- Hearing, Speech and Language Institute, Sasmon Assuta Ashdod University Hospital, Israel
| | - Ian Macharia
- Kenyatta University Teaching, Referral & Research Hospital, Kenya
| | - Robyn L Marsh
- Menzies School of Health Research, Darwin, Australia; School of Health Sciences, University of Tasmania, Launceston, Australia
| | - Amina Seguya
- Department of Otolaryngology - Head and Neck Surgery, Mulago National Referral Hospital, Kampala, Uganda
| | - Ruth Thornton
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia; Centre for Child Health Research, University of Western Australia, Perth, Australia
| |
Collapse
|
7
|
Xiao J, Su L, Huang S, Liu L, Ali K, Chen Z. Epidemic Trends and Biofilm Formation Mechanisms of Haemophilus influenzae: Insights into Clinical Implications and Prevention Strategies. Infect Drug Resist 2023; 16:5359-5373. [PMID: 37605758 PMCID: PMC10440118 DOI: 10.2147/idr.s424468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
Haemophilus influenzae (H. influenzae) is a significant pathogen responsible for causing respiratory tract infections and invasive diseases, leading to a considerable disease burden. The Haemophilus influenzae type b (Hib) conjugate vaccine has notably decreased the incidence of severe infections caused by Hib strains, and other non-typable H. influenzae (NTHi) serotypes have emerged as epidemic strains worldwide. As a result, the global epidemic trends and antibiotic resistance characteristics of H. influenzae have been altered. Researches on the virulence factors of H. influenzae, particularly the mechanisms underlying biofilm formation, and the development of anti-biofilm strategies hold significant clinical value. This article provides a summary of the epidemic trends, typing methods, virulence factors, biofilm formation mechanisms, and prevention strategies of H. influenzae. The increasing prevalence of NTHi strains and antibiotic resistance among H. influenzae, especially the high β-lactamase positivity and the emergence of BLNAR strains have increased clinical difficulties. Understanding its virulence factors, especially the formation mechanism of biofilm, and formulating effective anti-biofilm strategies may help to reduce the clinical impact. Therefore, future research efforts should focus on developing new approaches to prevent and control H. influenzae infections.
Collapse
Affiliation(s)
- Jiying Xiao
- Department of Pulmonology, Hangzhou Children’s Hospital, Hangzhou, Zhejiang, 310015, People’s Republic of China
| | - Lin Su
- Department of Pulmonology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310052, People’s Republic of China
- National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, Zhejiang, 310052, People’s Republic of China
| | - Shumin Huang
- Department of Pulmonology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310052, People’s Republic of China
- National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, Zhejiang, 310052, People’s Republic of China
| | - Lingyue Liu
- Department of Pulmonology, Hangzhou Children’s Hospital, Hangzhou, Zhejiang, 310015, People’s Republic of China
| | - Kamran Ali
- Department of Oncology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, People’s Republic of China
| | - Zhimin Chen
- Department of Pulmonology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310052, People’s Republic of China
- National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, Zhejiang, 310052, People’s Republic of China
| |
Collapse
|
8
|
Umemoto S, Nakahashi-Ouchida R, Yuki Y, Kurokawa S, Machita T, Uchida Y, Mori H, Yamanoue T, Shibata T, Sawada SI, Ishige K, Hirano T, Fujihashi K, Akiyoshi K, Kurashima Y, Tokuhara D, Ernst PB, Suzuki M, Kiyono H. Cationic-nanogel nasal vaccine containing the ectodomain of RSV-small hydrophobic protein induces protective immunity in rodents. NPJ Vaccines 2023; 8:106. [PMID: 37488116 PMCID: PMC10366164 DOI: 10.1038/s41541-023-00700-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/22/2023] [Indexed: 07/26/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of upper and lower respiratory tract infection, especially in children and the elderly. Various vaccines containing the major transmembrane surface proteins of RSV (proteins F and G) have been tested; however, they have either afforded inadequate protection or are associated with the risk of vaccine-enhanced disease (VED). Recently, F protein-based maternal immunization and vaccines for elderly patients have shown promising results in phase III clinical trials, however, these vaccines have been administered by injection. Here, we examined the potential of using the ectodomain of small hydrophobic protein (SHe), also an RSV transmembrane surface protein, as a nasal vaccine antigen. A vaccine was formulated using our previously developed cationic cholesteryl-group-bearing pullulan nanogel as the delivery system, and SHe was linked in triplicate to pneumococcal surface protein A as a carrier protein. Nasal immunization of mice and cotton rats induced both SHe-specific serum IgG and mucosal IgA antibodies, preventing viral invasion in both the upper and lower respiratory tracts without inducing VED. Moreover, nasal immunization induced greater protective immunity against RSV in the upper respiratory tract than did systemic immunization, suggesting a critical role for mucosal RSV-specific IgA responses in viral elimination at the airway epithelium. Thus, our nasal vaccine induced effective protection against RSV infection in the airway mucosa and is therefore a promising vaccine candidate for further development.
Collapse
Affiliation(s)
- Shingo Umemoto
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Otorhinolaryngology & Head and Neck Surgery, Faculty of Medicine, Oita University, Oita, Japan
- Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD cMAV), Department of Medicine, School of Medicine, San Diego, CA, USA
| | - Rika Nakahashi-Ouchida
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba, Japan
| | - Yoshikazu Yuki
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- HanaVax Inc, Tokyo, Japan
| | - Shiho Kurokawa
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Tomonori Machita
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Yohei Uchida
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Hiromi Mori
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Tomoyuki Yamanoue
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Takehiko Shibata
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kazuya Ishige
- Biochemicals Division, Yamasa Corporation, Chiba, Japan
| | - Takashi Hirano
- Department of Otorhinolaryngology & Head and Neck Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Kohtaro Fujihashi
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba, Japan
- Division of Mucosal Vaccines, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yosuke Kurashima
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD cMAV), Department of Medicine, School of Medicine, San Diego, CA, USA
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba, Japan
- Division of Mucosal Vaccines, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Daisuke Tokuhara
- Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD cMAV), Department of Medicine, School of Medicine, San Diego, CA, USA
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | - Peter B Ernst
- Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD cMAV), Department of Medicine, School of Medicine, San Diego, CA, USA
- Division of Comparative Pathology and Medicine, Department of Pathology, University of California, San Diego, CA, USA
- Center for Veterinary Sciences and Comparative Medicine, University of California, San Diego, CA, USA
- Future Medicine Education and Research Organization, Chiba University, Chiba, Japan
| | - Masashi Suzuki
- Department of Otorhinolaryngology & Head and Neck Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD cMAV), Department of Medicine, School of Medicine, San Diego, CA, USA.
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan.
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba, Japan.
- HanaVax Inc, Tokyo, Japan.
- Future Medicine Education and Research Organization, Chiba University, Chiba, Japan.
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba, Japan.
| |
Collapse
|
9
|
Nakahashi-Ouchida R, Fujihashi K, Kurashima Y, Yuki Y, Kiyono H. Nasal vaccines: solutions for respiratory infectious diseases. Trends Mol Med 2023; 29:124-140. [PMID: 36435633 DOI: 10.1016/j.molmed.2022.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/07/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022]
Abstract
Nasal vaccines induce pathogen-specific dual protective immunity at mucosal surfaces and systemically throughout the body. Consequently, nasal vaccines both prevent pathogen invasion and reduce disease severity. Because of these features, nasal vaccines are considered to be a next-generation tool for preventing respiratory infectious diseases, including COVID-19. However, nasal vaccines must overcome key safety concerns given the anatomic proximity of the central nervous system (CNS) via the olfactory bulbs which lie next to the nasal cavity. This review summarizes current efforts to develop safe and effective nasal vaccines and delivery systems, as well as their clinical applications for the prevention of respiratory infections. We also discuss various concerns regarding the safety of nasal vaccines and introduce a system for evaluating them.
Collapse
Affiliation(s)
- Rika Nakahashi-Ouchida
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan; Research Institute of Disaster Medicine, Chiba University, Chiba, Japan; Future Mucosal Vaccine Research and Development Synergy Institute, Chiba University, Chiba, Japan
| | - Kohtaro Fujihashi
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan; Research Institute of Disaster Medicine, Chiba University, Chiba, Japan; Future Mucosal Vaccine Research and Development Synergy Institute, Chiba University, Chiba, Japan; Division of Mucosal Vaccines, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yosuke Kurashima
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan; Future Mucosal Vaccine Research and Development Synergy Institute, Chiba University, Chiba, Japan; Division of Mucosal Vaccines, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan; Institute for Advanced Academic Research, Chiba University, Chiba, Japan; Chiba University-University of California San Diego (CU-UCSD) Center for Mucosal Immunology, Allergy, and Vaccines (cMAV), Division of Gastroenterology, Department of Medicine, University of California, San Diego, CA, USA
| | - Yoshikazu Yuki
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan; HanaVax Inc., Tokyo, Japan
| | - Hiroshi Kiyono
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan; Research Institute of Disaster Medicine, Chiba University, Chiba, Japan; Future Mucosal Vaccine Research and Development Synergy Institute, Chiba University, Chiba, Japan; Institute for Advanced Academic Research, Chiba University, Chiba, Japan; Chiba University-University of California San Diego (CU-UCSD) Center for Mucosal Immunology, Allergy, and Vaccines (cMAV), Division of Gastroenterology, Department of Medicine, University of California, San Diego, CA, USA; Future Medicine Education and Research Organization, Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba, Japan.
| |
Collapse
|