1
|
Prida E, Pérez-Lois R, Jácome-Ferrer P, Muñoz-Moreno D, Brea-García B, Villalón M, Pena-Leon V, Vázquez-Cobela R, Aguilera CM, Conde-Aranda J, Costas J, Estany-Gestal A, Quiñones M, Leis R, Seoane LM, Al-Massadi O. The PTK2B gene is associated with obesity, adiposity, and leptin levels in children and adolescents. iScience 2024; 27:111120. [PMID: 39498303 PMCID: PMC11533559 DOI: 10.1016/j.isci.2024.111120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/06/2024] [Accepted: 10/03/2024] [Indexed: 11/07/2024] Open
Abstract
Previous studies determined that Pyk2 is involved in several diseases in which the symptomatology presents alterations in energy balance. However, its role in obesity is poorly understood. To evaluate the metabolic role of the Pyk2 gene (PTK2B) in children and adolescents with obesity we measured its mRNA expression levels in peripheral blood mononuclear cells. For that we performed a cross-sectional study involving 130 Caucasian subjects that was divided into two groups according to BMI. Data showed increased PTK2B mRNA expression in children and adolescents with obesity. Interestingly, a positive correlation has been found between the levels of PTK2B with weight, BMI, BMI Z score, fat mass, waist circumference, waist to height ratio, diastolic blood pressure, and leptin. In addition, it is indicated that high levels of PTK2B gene expression might be a predictor of obesity development. This work provides important insights into the previously undescribed role of Pyk2 in obesity.
Collapse
Affiliation(s)
- Eva Prida
- Translational Endocrinology Group, Endocrinology Section, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS)/Complexo Hospitalario Universitario de Santiago (SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Galicia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Av Monforte de Lemos3-5, 28029 Madrid, Spain
| | - Raquel Pérez-Lois
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Av Monforte de Lemos3-5, 28029 Madrid, Spain
- Grupo Fisiopatología Endocrina, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago (SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Galicia, Spain
| | - Pablo Jácome-Ferrer
- Psychiatric Genetics group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Galicia, Spain
- Universidade de Santiago de Compostela (USC), Rua san francisco s/n, 15782 Santiago de Compostela, Galicia, Spain
| | - Diego Muñoz-Moreno
- Translational Endocrinology Group, Endocrinology Section, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS)/Complexo Hospitalario Universitario de Santiago (SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Galicia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Av Monforte de Lemos3-5, 28029 Madrid, Spain
| | - Beatriz Brea-García
- Translational Endocrinology Group, Endocrinology Section, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS)/Complexo Hospitalario Universitario de Santiago (SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Galicia, Spain
| | - María Villalón
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Av Monforte de Lemos3-5, 28029 Madrid, Spain
- Grupo Fisiopatología Endocrina, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago (SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Galicia, Spain
| | - Verónica Pena-Leon
- Grupo Fisiopatología Endocrina, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago (SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Galicia, Spain
| | - Rocío Vázquez-Cobela
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Av Monforte de Lemos3-5, 28029 Madrid, Spain
- Pediatric Nutrition Research Group. Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS). Santiago de Compostela Spain Unit of Investigation in Human Nutrition, Growth and Development of Galicia (GALINUT), University of Santiago de Compostela (USC), Santiago de Compostela, Galicia, Spain
- Unit of Pediatric Gastroenterology, Hepatology and Nutrition. Pediatric Service. University Clinical Hospital of Santiago (CHUS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Galicia, Spain
| | - Concepción M. Aguilera
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Av Monforte de Lemos3-5, 28029 Madrid, Spain
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Armilla, Granada, Spain
- Biosanitary Research Institute (IBS), University of Granada, Av de Madrid 15, 18012 Granada, Andalusia, Spain
| | - Javier Conde-Aranda
- Molecular and Cellular Gastroenterology Group, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706 Galicia, Spain
| | - Javier Costas
- Psychiatric Genetics group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Galicia, Spain
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Galicia, Spain
| | - Ana Estany-Gestal
- Plataforma de Metodología de la Investigación, Instituto de Investigación de Santiago (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Galicia, Spain
| | - Mar Quiñones
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Av Monforte de Lemos3-5, 28029 Madrid, Spain
- Grupo Fisiopatología Endocrina, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago (SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Galicia, Spain
| | - Rosaura Leis
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Av Monforte de Lemos3-5, 28029 Madrid, Spain
- Pediatric Nutrition Research Group. Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS). Santiago de Compostela Spain Unit of Investigation in Human Nutrition, Growth and Development of Galicia (GALINUT), University of Santiago de Compostela (USC), Santiago de Compostela, Galicia, Spain
- Unit of Pediatric Gastroenterology, Hepatology and Nutrition. Pediatric Service. University Clinical Hospital of Santiago (CHUS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Galicia, Spain
| | - Luisa María Seoane
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Av Monforte de Lemos3-5, 28029 Madrid, Spain
- Grupo Fisiopatología Endocrina, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago (SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Galicia, Spain
| | - Omar Al-Massadi
- Translational Endocrinology Group, Endocrinology Section, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS)/Complexo Hospitalario Universitario de Santiago (SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Galicia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Av Monforte de Lemos3-5, 28029 Madrid, Spain
| |
Collapse
|
2
|
Chen L, Kong X, Zhou R, Hu J, Zhou R, Song Z, Tang Z, Wang M. Proteomics reveals the pharmacological mechanism of flavonoids from Astragali Complanati Semen in preventing chronic liver injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155910. [PMID: 39059265 DOI: 10.1016/j.phymed.2024.155910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Total flavonoids from Astragali Complanati Semen (TFACS), the main active ingredients in Astragali Complanati Semen (ACS), have been shown to have a protective effect on chronic liver injury (CLI), but the hepatoprotective targets and signalling pathways involved are unclear. PURPOSE The aim of our study was to identify the anti-CLI targets and signalling pathways of TFACS and to comprehensively elucidate its mechanism of action via proteomics analysis combined with in vivo and in vitro experiments. METHODS A CLI mouse model was generated via intraperitoneal injection of carbon tetrachloride (CCl4) (CCl4: olive oil = 1:4, 2 ml/kg, twice a week for 6 weeks). The hepatoprotective effect of TFACS was assessed by observing the pathological structure of the liver and analysing indicators of liver function. The key pathways and targets related to the hepatoprotective effect of TFACS were identified via 4D-label-free quantitative proteomics technology and further verified via in vivo indicator validation and in vitro cell experiments. RESULTS TFACS administration significantly normalized the histopathological structure and function of the liver, decreased the levels of inflammatory factors and oxidative stress indicators, and reduced the iron staining area and the levels of hepcidin and iron in the liver compared with those in the CLI model. A total of 424 differentially expressed proteins (DEPs) were identified between the TFACS and model groups, and these DEPs were enriched in the focal adhesion, PI3K-Akt, and ferroptosis pathways. Akt1, Pik3ca, NF-κB p65, Itga5, Itgb5, Itga6, Prkca, Fn1, Tfrc, and Vdac3 were identified as key targets of TFACS. TFACS administration significantly reversed the changes in the gene and protein expression of the key targets compared with those in the model group. In addition, TFACS treatment significantly reduced the levels of inflammatory cytokines and inhibited Akt1, NF-κB p65 and FAK activation in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. In an erastin-induced l-O2 ferroptosis cell model, treatment with TFACS normalized the mitochondrial structure, reduced the protein levels of Tfrc and Vdac3, inhibited lipid peroxidation, and reduced the amount of Fe2+ in the mitochondria. CONCLUSION TFACS protected against CLI, and its mechanism of action may be related to inhibition of the focal adhesion, PI3K/Akt and ferroptosis signalling pathways.
Collapse
Affiliation(s)
- Lin Chen
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research, & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712083, PR China
| | - Xin Kong
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712046, PR China
| | - Ruina Zhou
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712046, PR China
| | - Jinhang Hu
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research, & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712083, PR China
| | - Rui Zhou
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research, & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712083, PR China
| | - Zhongxing Song
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research, & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712083, PR China
| | - Zhishu Tang
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research, & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712083, PR China; Beijing University of Chinese Medicine, Beijing 100700, PR China.
| | - Mei Wang
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research, & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712083, PR China; Academic Development Office, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| |
Collapse
|
3
|
Ferreira Alves G, Aimaretti E, da Silveira Hahmeyer ML, Einaudi G, Porchietto E, Rubeo C, Marzani E, Aragno M, da Silva-Santos JE, Cifani C, Fernandes D, Collino M. Pharmacological inhibition of CK2 by silmitasertib mitigates sepsis-induced circulatory collapse, thus improving septic outcomes in mice. Biomed Pharmacother 2024; 178:117191. [PMID: 39079263 DOI: 10.1016/j.biopha.2024.117191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/25/2024] Open
Abstract
Casein kinase II (CK2) has recently emerged as a pivotal mediator in the propagation of inflammation across various diseases. Nevertheless, its role in the pathogenesis of sepsis remains unexplored. Here, we investigated the involvement of CK2 in sepsis progression and the potential beneficial effects of silmitasertib, a selective and potent CK2α inhibitor, currently under clinical trials for COVID-19 and cancer. Sepsis was induced by caecal ligation and puncture (CLP) in four-month-old C57BL/6OlaHsd mice. One hour after the CLP/Sham procedure, animals were assigned to receive silmitasertib (50 mg/kg/i.v.) or vehicle. Plasma/organs were collected at 24 h for analysis. A second set of experiments was performed for survival rate over 120 h. Septic mice developed multiorgan failure, including renal dysfunction due to hypoperfusion (reduced renal blood flow) and increased plasma levels of creatinine. Renal derangements were associated with local overactivation of CK2, and downstream activation of the NF-ĸB-iNOS-NO axis, paralleled by a systemic cytokine storm. Interestingly, all markers of injury/inflammation were mitigated following silmitasertib administration. Additionally, when compared to sham-operated mice, sepsis led to vascular hyporesponsiveness due to an aberrant systemic and local release of NO. Silmitasertib restored sepsis-induced vascular abnormalities. Overall, these pharmacological effects of silmitasertib significantly reduced sepsis mortality. Our findings reveal, for the first time, the potential benefits of a selective and potent CK2 inhibitor to counteract sepsis-induced hyperinflammatory storm, vasoplegia, and ultimately prolonging the survival of septic mice, thus suggesting a pivotal role of CK2 in sepsis and silmitasertib as a novel powerful pharmacological tool for drug repurposing in sepsis.
Collapse
Affiliation(s)
- Gustavo Ferreira Alves
- Department of Neurosciences (Rita Levi Montalcini), University of Turin, Turin, Italy; Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil; Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Eleonora Aimaretti
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | - Giacomo Einaudi
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Elisa Porchietto
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Chiara Rubeo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Enrica Marzani
- Department of Neurosciences (Rita Levi Montalcini), University of Turin, Turin, Italy
| | - Manuela Aragno
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | - Carlo Cifani
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Daniel Fernandes
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Massimo Collino
- Department of Neurosciences (Rita Levi Montalcini), University of Turin, Turin, Italy.
| |
Collapse
|
4
|
Souza CF, Borges LB, Oliveira FRMB, Silva PCDS, Patricio DO, Rosales TO, Souza NF, Spiller F, Mansur DS, Assreuy J, Sordi R. Cannabinoid CB 2 receptor agonist reduces local and systemic inflammation associated with pneumonia-induced sepsis in mice. Eur J Pharmacol 2023; 959:176092. [PMID: 37797676 DOI: 10.1016/j.ejphar.2023.176092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
Sepsis is a severe condition secondary to dysregulated host response to infection leading to tissue damage and organ dysfunction. Cannabinoid CB2 receptor has modulatory effects on the immune response. Therefore, this study investigated the effects of a cannabinoid CB2 receptor agonist on the local and systemic inflammatory process associated with pneumonia-induced sepsis. Pneumonia-induced sepsis was induced in mice by intratracheal inoculation of Klebsiella pneumoniae. Tissue and bronchoalveolar lavage (BAL) were collected 6, 24, or 48 h after surgery. Mice were treated with CB2 agonist (AM1241, 0.3 and 3 mg/kg, i.p.) and several parameters of inflammation were evaluated 24 h after sepsis induction. Polymorphonuclear cell migration to the infectious focus peaked 24 h after pneumonia-induced sepsis induction in male and female animals. Septic male mice presented a significant reduction of cannabinoid CB2 receptor density in the lung tissue after 24 h, which was not observed in females. CB2 expression in BAL macrophages was also reduced in septic animals. Treatment of septic mice with AM1241 reduced cell migration, local infection, myeloperoxidase activity, protein extravasation, and NOS-2 expression in the lungs. In addition, the treatment reduced plasma IL-1β, increased IL-10 and reduced the severity and mortality of septic animals. These results suggest that AM1241 promotes an interesting balance in the inflammatory response, maintaining lung function and preventing organ injury. Therefore, cannabinoid CB2 receptors are potential targets to control the excessive inflammatory process that occurs in severe conditions, and agonists of these receptors can be considered promising adjuvants in pneumonia-induced sepsis treatment.
Collapse
Affiliation(s)
| | | | | | | | - Daniel Oliveira Patricio
- Department of Microbiology, Immunology anda Parasitology, Federal University of Santa Catarina, SC, Brazil
| | | | | | - Fernando Spiller
- Department of Pharmacology, Federal University of Santa Catarina, SC, Brazil
| | - Daniel Santos Mansur
- Department of Microbiology, Immunology anda Parasitology, Federal University of Santa Catarina, SC, Brazil
| | - Jamil Assreuy
- Department of Pharmacology, Federal University of Santa Catarina, SC, Brazil
| | - Regina Sordi
- Department of Pharmacology, Federal University of Santa Catarina, SC, Brazil.
| |
Collapse
|
5
|
Jiang R, Zhou Y, Gao Q, Han L, Hong Z. ZC3H4 governs epithelial cell migration through ROCK/p-PYK2/p-MLC2 pathway in silica-induced pulmonary fibrosis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104301. [PMID: 37866415 DOI: 10.1016/j.etap.2023.104301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Increased epithelial migration capacity is a key step accompanying epithelial-mesenchymal transition (EMT). Our lab has described that ZC3H4 mediated EMT in silicosis. Here, we aimed to explore the mechanisms of ZC3H4 by which to stimulate epithelial cell migration. METHODS Silicon dioxide (SiO2)-induced pulmonary fibrosis (PF) animal models were administered by intratracheal instillation in C57BL/6 J mice. Pathological analysis and 2D migration assay were established to uncover the pulmonary fibrotic lesions and epithelial cell migration, respectively. Inhibitors targeting ROCK/p-PYK2/p-MLC2 and CRISPR/Cas9 plasmids targeting ZC3H4 were administrated to explore the signaling pathways. RESULTS 1) SiO2 upregulated epithelial migration in pulmonary fibrotic lesions. 2) ZC3H4 modulated SiO2-induced epithelial migration. 3) ZC3H4 governed epithelial migration through ROCK/p-PYK2/p-MLC2 signaling pathway. CONCLUSIONS ZC3H4 regulates epithelial migration through the ROCK/p-PYK2/p-MLC2 signaling pathway, providing the possibility that molecular drugs targeting ZC3H4-overexpression may exert effects on pulmonary fibrosis induced by silica.
Collapse
Affiliation(s)
- Rong Jiang
- Jiangsu Health Vocational College, Nanjing, Jiangsu Province, China
| | - Yichao Zhou
- Department of Occupation Disease Prevention and Cure, Changzhou Wujin District Center for Disease Control and Prevention, Changzhou, Jiangsu Province, China
| | - Qianqian Gao
- Department of Occupation Disease Prevention and Cure, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China; Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lei Han
- Department of Occupation Disease Prevention and Cure, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China.
| | - Zhen Hong
- Jiangsu Health Vocational College, Nanjing, Jiangsu Province, China.
| |
Collapse
|
6
|
Yan C, Kuang W, Jin L, Wang R, Niu L, Xie C, Ding J, Liao Y, Wang L, Wan H, Ma G. Carvacrol protects mice against LPS-induced sepsis and attenuates inflammatory response in macrophages by modulating the ERK1/2 pathway. Sci Rep 2023; 13:12809. [PMID: 37550359 PMCID: PMC10406886 DOI: 10.1038/s41598-023-39665-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023] Open
Abstract
Macrophages play an important role in the development of life-threatening sepsis, which is characterized by multiorgan dysfunction, through their ability to produce inflammatory cytokines. Carvacrol is a phenolic compound that has been confirmed to possess strong anti‑inflammatory activity. In this study, we mainly investigated the effect of carvacrol on lipopolysaccharide (LPS)-induced macrophage proinflammatory responses and endotoxic shock. The results showed that carvacrol significantly reduced mouse body weight loss and ameliorated pathological damage to the liver, lung, and heart under LPS-induced sepsis. Carvacrol attenuated inflammatory responses by inhibiting the LPS-induced production of inflammatory cytokine interleukin-6 (IL-6) in vivo and in vitro. Mechanistically, carvacrol inhibited IL-6 production mainly through the ERK1/2 signalling pathway in macrophages. Furthermore, carvacrol improved the survival of septic mice. This study sheds light on the role of carvacrol in the pathogenesis of LPS-induced sepsis, and thus, its potential in treating sepsis patients may be considered.
Collapse
Affiliation(s)
- Chenghua Yan
- College of Traditional Chinese Medicine/College of Life Sciences, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Wendong Kuang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330029, China
- State Key Laboratory of Virology, Wuhan, 430071, China
| | - Liang Jin
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330029, China
| | - Rongliang Wang
- College of Traditional Chinese Medicine/College of Life Sciences, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Ling Niu
- College of Traditional Chinese Medicine/College of Life Sciences, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Chuanqi Xie
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330029, China
| | - Jian Ding
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yongcui Liao
- College of Traditional Chinese Medicine/College of Life Sciences, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Liyuan Wang
- College of Traditional Chinese Medicine/College of Life Sciences, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Hongjiao Wan
- College of Traditional Chinese Medicine/College of Life Sciences, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Guangqiang Ma
- College of Traditional Chinese Medicine/College of Life Sciences, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
7
|
Li X, Ormsby MJ, Fallata G, Meikle LM, Walker D, Xu D, Wall DM. PF-431396 hydrate inhibition of kinase phosphorylation during adherent-invasive Escherichia coli infection inhibits intra-macrophage replication and inflammatory cytokine release. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 37311220 DOI: 10.1099/mic.0.001337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Adherent-invasive Escherichia coli (AIEC) have been implicated in the aetiology of Crohn's disease (CD). They are characterized by an ability to adhere to and invade intestinal epithelial cells, and to replicate intracellularly in macrophages resulting in inflammation. Proline-rich tyrosine kinase 2 (PYK2) has previously been identified as a risk locus for inflammatory bowel disease and a regulator of intestinal inflammation. It is overexpressed in patients with colorectal cancer, a major long-term complication of CD. Here we show that Pyk2 levels are significantly increased during AIEC infection of murine macrophages while the inhibitor PF-431396 hydrate, which blocks Pyk2 activation, significantly decreased intramacrophage AIEC numbers. Imaging flow cytometry indicated that Pyk2 inhibition blocked intramacrophage replication of AIEC with no change in the overall number of infected cells, but a significant reduction in bacterial burden per cell. This reduction in intracellular bacteria resulted in a 20-fold decrease in tumour necrosis factor α secretion by cells post-AIEC infection. These data demonstrate a key role for Pyk2 in modulating AIEC intracellular replication and associated inflammation and may provide a new avenue for future therapeutic intervention in CD.
Collapse
Affiliation(s)
- Xiang Li
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Michael J Ormsby
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
- Present address: Biological and Environmental Sciences, Faculty of Natural Science, University of Stirling, Stirling, FK49 4LA, UK
| | - Ghaith Fallata
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
- Department of Basic Science, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah 22384, Saudi Arabia
| | - Lynsey M Meikle
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Daniel Walker
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Damo Xu
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, PR China
| | - Daniel M Wall
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
8
|
He W, Dong H, Wu C, Zhong Y, Li J. The role of NLRP3 inflammasome in sepsis: A potential therapeutic target. Int Immunopharmacol 2023; 115:109697. [PMID: 37724951 DOI: 10.1016/j.intimp.2023.109697] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023]
Abstract
Sepsis is the host immune imbalance following infection and leads to organ dysfunction, with highly complicated pathophysiology. To date, sepsis still lacks effective therapies with high mortality rates. Recently, numerous studies have highlighted the potential of NLRP3 inflammasome as a therapeutic target during sepsis. NLRP3 inflammasome is a protein complex that could induce the activation of caspase-1 and the following release of pro-inflammatory cytokines such as IL-1β and IL-18. It was demonstrated that NLRP3 inflammasome was involved in the development and progression of sepsis. In contrast, inhibition of NLRP3 inflammasome activation could mitigate the inflammatory response, protect organ function, and improve outcomes and mortality. This paper illustrated the activation pathways of the NLRP3 inflammasome and its possible molecular mechanisms in the pathophysiology of sepsis. Meanwhile, the beneficial effects of inhibiting NLRP3 activation in sepsis-related organ damage were also presented. In addition, the diverse role of NLRP3 inflammasome in bacterial clearance was addressed. Of note, several herbal extracts targeting NLRP3 inflammasome in the treatment of sepsis were emphasized. We hope that this paper could provide a basis for further drug research targeting NLRP3 inflammasome.
Collapse
Affiliation(s)
- Wenfang He
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haiyun Dong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chenfang Wu
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanjun Zhong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinxiu Li
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
9
|
Wang J, Bao P, Liu Y. Pyk2 regulates sepsis-induced lung injury via ferroptosis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:1283-1290. [PMID: 37886006 PMCID: PMC10598808 DOI: 10.22038/ijbms.2023.69578.15153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/29/2023] [Indexed: 10/28/2023]
Abstract
Objectives The onset of sepsis represents a hyper-inflammatory condition that can lead to organ failure and mortality. Recent findings suggest a potential beneficial effect of protein tyrosine kinase Pyk2 inhibitor on sepsis in a mouse model. In this study, we investigated the regulatory role of Pyk2 inhibitor in ferroptosis and sepsis-associated acute lung injury (ALI). Materials and Methods A Pyk2 inhibitor or a ferroptosis regulator were injected into mice sustaining sepsis-induced ALI and the effects on lung injury and pro-inflammatory response were evaluated. Clinically, Pyk2 expression was determined in serum samples of patients with sepsis. Further, the association between serum Pyk2 levels and clinical features was determined. Results Experimental mouse models revealed that treatment with Pyk2 inhibitor TAE226 can significantly alleviate lung injury, downregulate pro-inflammatory responses and decrease markers of ferroptosis, which were induced by LPS. Both upregulation and downregulation of ferroptosis can lead to the loss of TAE226 function, indicating that Pyk2 promotes inflammation via ferroptosis induction. Analysis of clinical samples revealed that the serum Pyk2 levels were significantly increased in patients with sepsis. The serum Pyk2 levels were associated with APACHE2 scores and 30-day mortality. Further, we found a negative correlation between serum Pyk2 and Fe3+ levels, which was consistent with the mechanism identified in the mouse model. Conclusion Pyk2 inhibitor of ferroptosis is a promising therapeutic candidate against sepsis-related ALI.
Collapse
Affiliation(s)
- Jia Wang
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Capital Medical University, Beijing, People’s Republic of China
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
- Clinical Center for Medicine in Acute Infection,Capital Medical University, Beijing, People’s Republic of China
- These authors contributed equally to this work
| | - Pengtao Bao
- The Eighth Medical Center, PLA General Hospital, Beijing, People’s Republic of China
- These authors contributed equally to this work
| | - Yugeng Liu
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Capital Medical University, Beijing, People’s Republic of China
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
- Clinical Center for Medicine in Acute Infection,Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
10
|
Alves GF, Stoppa I, Aimaretti E, Monge C, Mastrocola R, Porchietto E, Einaudi G, Collotta D, Bertocchi I, Boggio E, Gigliotti CL, Clemente N, Aragno M, Fernandes D, Cifani C, Thiemermann C, Dianzani C, Dianzani U, Collino M. ICOS-Fc as innovative immunomodulatory approach to counteract inflammation and organ injury in sepsis. Front Immunol 2022; 13:992614. [PMID: 36119089 PMCID: PMC9479331 DOI: 10.3389/fimmu.2022.992614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Inducible T cell co-stimulator (ICOS), an immune checkpoint protein expressed on activated T cells and its unique ligand, ICOSL, which is expressed on antigen-presenting cells and non-hematopoietic cells, have been extensively investigated in the immune response. Recent findings showed that a soluble recombinant form of ICOS (ICOS-Fc) can act as an innovative immunomodulatory drug as both antagonist of ICOS and agonist of ICOSL, modulating cytokine release and cell migration to inflamed tissues. Although the ICOS-ICOSL pathway has been poorly investigated in the septic context, a few studies have reported that septic patients have reduced ICOS expression in whole blood and increased serum levels of osteopontin (OPN), that is another ligand of ICOSL. Thus, we investigated the pathological role of the ICOS-ICOSL axis in the context of sepsis and the potential protective effects of its immunomodulation by administering ICOS-Fc in a murine model of sepsis. Polymicrobial sepsis was induced by cecal ligation and puncture (CLP) in five-month-old male wild-type (WT) C57BL/6, ICOS-/-, ICOSL-/- and OPN-/- mice. One hour after the surgical procedure, either CLP or Sham (control) mice were randomly assigned to receive once ICOS-Fc, F119SICOS-Fc, a mutated form uncapable to bind ICOSL, or vehicle intravenously. Organs and plasma were collected 24 h after surgery for analyses. When compared to Sham mice, WT mice that underwent CLP developed within 24 h a higher clinical severity score, a reduced body temperature, an increase in plasma cytokines (TNF-α, IL-1β, IL-6, IFN-γ and IL-10), liver injury (AST and ALT) and kidney (creatinine and urea) dysfunction. Administration of ICOS-Fc to WT CLP mice reduced all of these abnormalities caused by sepsis. Similar beneficial effects were not seen in CLP-mice treated with F119SICOS-Fc. Treatment of CLP-mice with ICOS-Fc also attenuated the sepsis-induced local activation of FAK, P38 MAPK and NLRP3 inflammasome. ICOS-Fc seemed to act at both sides of the ICOS-ICOSL interaction, as the protective effect was lost in septic knockout mice for the ICOS or ICOSL genes, whereas it was maintained in OPN knockout mice. Collectively, our data show the beneficial effects of pharmacological modulation of the ICOS-ICOSL pathway in counteracting the sepsis-induced inflammation and organ dysfunction.
Collapse
Affiliation(s)
| | - Ian Stoppa
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Eleonora Aimaretti
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Chiara Monge
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Raffaella Mastrocola
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Elisa Porchietto
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Giacomo Einaudi
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Debora Collotta
- Department of Neurosciences (Rita Levi Montalcini), University of Turin, Turin, Italy
| | - Ilaria Bertocchi
- Department of Neurosciences (Rita Levi Montalcini), University of Turin, Turin, Italy
| | - Elena Boggio
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | | | - Nausicaa Clemente
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Manuela Aragno
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Daniel Fernandes
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Carlo Cifani
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Christoph Thiemermann
- William Harvey Research Institute, Bart’s and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Chiara Dianzani
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Umberto Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Massimo Collino
- Department of Neurosciences (Rita Levi Montalcini), University of Turin, Turin, Italy
- *Correspondence: Massimo Collino,
| |
Collapse
|
11
|
The role of nitric oxide in sepsis-associated kidney injury. Biosci Rep 2022; 42:231441. [PMID: 35722824 PMCID: PMC9274646 DOI: 10.1042/bsr20220093] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 01/09/2023] Open
Abstract
Sepsis is one of the leading causes of acute kidney injury (AKI), and several mechanisms including microcirculatory alterations, oxidative stress, and endothelial cell dysfunction are involved. Nitric oxide (NO) is one of the common elements to all these mechanisms. Although all three nitric oxide synthase (NOS) isoforms are constitutively expressed within the kidneys, they contribute in different ways to nitrergic signaling. While the endothelial (eNOS) and neuronal (nNOS) isoforms are likely to be the main sources of NO under basal conditions and participate in the regulation of renal hemodynamics, the inducible isoform (iNOS) is dramatically increased in conditions such as sepsis. The overexpression of iNOS in the renal cortex causes a shunting of blood to this region, with consequent medullary ischemia in sepsis. Differences in the vascular reactivity among different vascular beds may also help to explain renal failure in this condition. While most of the vessels present vasoplegia and do not respond to vasoconstrictors, renal microcirculation behaves differently from nonrenal vascular beds, displaying similar constrictor responses in control and septic conditions. The selective inhibition of iNOS, without affecting other isoforms, has been described as the ideal scenario. However, iNOS is also constitutively expressed in the kidneys and the NO produced by this isoform is important for immune defense. In this sense, instead of a direct iNOS inhibition, targeting the NO effectors such as guanylate cyclase, potassium channels, peroxynitrite, and S-nitrosothiols, may be a more interesting approach in sepsis-AKI and further investigation is warranted.
Collapse
|