1
|
Hu S, Lin Y, Tang Y, Zhang J, He Y, Li G, Li L, Cai X. Targeting dysregulated intracellular immunometabolism within synovial microenvironment in rheumatoid arthritis with natural products. Front Pharmacol 2024; 15:1403823. [PMID: 39104392 PMCID: PMC11298361 DOI: 10.3389/fphar.2024.1403823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Immunometabolism has been an emerging hotspot in the fields of tumors, obesity, and atherosclerosis in recent decades, yet few studies have investigated its connection with rheumatoid arthritis (RA). In principle, intracellular metabolic pathways upstream regulated by nutrients and growth factors control the effector functions of immune cells. Dynamic communication and hypermetabolic lesions of immune cells within the inflammatory synovial microenvironment contributes to the development and progression of RA. Hence, targeting metabolic pathways within immune subpopulations and pathological cells may represent novel therapeutic strategies for RA. Natural products constitute a great potential treasury for the research and development of novel drugs targeting RA. Here, we aimed to delineate an atlas of glycolysis, lipid metabolism, amino acid biosynthesis, and nucleotide metabolism in the synovial microenvironment of RA that affect the pathological processes of synovial cells. Meanwhile, therapeutic potentials and pharmacological mechanisms of natural products that are demonstrated to inhibit related key enzymes in the metabolic pathways or reverse the metabolic microenvironment and communication signals were discussed and highlighted.
Collapse
Affiliation(s)
- Shengtao Hu
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ye Lin
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yuanyuan Tang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junlan Zhang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yini He
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Gejing Li
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liqing Li
- The Central Research Laboratory, Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- The Central Research Laboratory, Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
| |
Collapse
|
2
|
Song C, Valeri A, Song F, Ji X, Liao X, Marmo T, Seeley R, Rutter J, Long F. Sexual dimorphism of osteoclast reliance on mitochondrial oxidation of energy substrates in the mouse. JCI Insight 2023; 8:e174293. [PMID: 37917194 PMCID: PMC10807709 DOI: 10.1172/jci.insight.174293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
Osteoclasts specialize in bone resorption and are critical for bone remodeling. Previous studies have shown that osteoclasts possess abundant mitochondria and derive most energy through oxidative phosphorylation (OXPHOS). However, the energy substrates fueling OXPHOS in osteoclasts remain to be fully defined. Here, we showed that osteoclast differentiation was coupled with increased oxidation of glucose, glutamine, and oleate. Transcriptomic analyses with RNA sequencing revealed marked upregulation of genes participating in OXPHOS and mitochondrial fatty acid oxidation, during osteoclast differentiation. Increased mitochondrial oxidation of long-chain fatty acids was required for osteoclast differentiation in vitro. However, blocking fatty acid oxidation in vivo, by deletion of carnitine palmitoyltransferase 1a (Cpt1a) in osteoclast progenitors, impaired osteoclast formation only in the female mice. The Cpt1a-deficient females were further protected from osteoclast activation by a high-fat diet. The males, on the contrary, exhibited normal bone resorption despite Cpt1a deletion, regardless of the dietary fat content. Moreover, concurrent deletion of mitochondrial pyruvate carrier 1 and Cpt1a, blocking mitochondrial oxidation of both glucose and fatty acids in the osteoclast lineage, failed to impede bone resorption in the males. The study therefore uncovers a female-specific dependence on mitochondrial oxidation of fatty acids and glucose in osteoclasts in vivo.
Collapse
Affiliation(s)
- Chao Song
- Translational Research Program in Pediatric Orthopaedics, Department of Surgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Orthopedic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Arianna Valeri
- Translational Research Program in Pediatric Orthopaedics, Department of Surgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Fangfang Song
- Translational Research Program in Pediatric Orthopaedics, Department of Surgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Xing Ji
- Translational Research Program in Pediatric Orthopaedics, Department of Surgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Xueyang Liao
- Translational Research Program in Pediatric Orthopaedics, Department of Surgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Tyler Marmo
- Translational Research Program in Pediatric Orthopaedics, Department of Surgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Rebecca Seeley
- Translational Research Program in Pediatric Orthopaedics, Department of Surgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jared Rutter
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, Utah, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Fanxin Long
- Translational Research Program in Pediatric Orthopaedics, Department of Surgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Ledesma-Colunga MG, Passin V, Lademann F, Hofbauer LC, Rauner M. Novel Insights into Osteoclast Energy Metabolism. Curr Osteoporos Rep 2023; 21:660-669. [PMID: 37816910 PMCID: PMC10724336 DOI: 10.1007/s11914-023-00825-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/12/2023]
Abstract
PURPOSE OF REVIEW Osteoclasts are crucial for the dynamic remodeling of bone as they resorb old and damaged bone, making space for new bone. Metabolic reprogramming in these cells not only supports phenotypic changes, but also provides the necessary energy for their highly energy-consuming activity, bone resorption. In this review, we highlight recent developments in our understanding of the metabolic adaptations that influence osteoclast behavior and the overall remodeling of bone tissue. RECENT FINDINGS Osteoclasts undergo metabolic reprogramming to meet the energy demands during their transition from precursor cells to fully mature bone-resorbing osteoclasts. Recent research has made considerable progress in pinpointing crucial metabolic adaptations and checkpoint proteins in this process. Notably, glucose metabolism, mitochondrial biogenesis, and oxidative respiration were identified as essential pathways involved in osteoclast differentiation, cytoskeletal organization, and resorptive activity. Furthermore, the interaction between these pathways and amino acid and lipid metabolism adds to the complexity of the process. These interconnected processes can function as diverse fuel sources or have independent regulatory effects, significantly influencing osteoclast function. Energy metabolism in osteoclasts involves various substrates and pathways to meet the energetic requirements of osteoclasts throughout their maturation stages. This understanding of osteoclast biology may provide valuable insights for modulating osteoclast activity during the pathogenesis of bone-related disorders and may pave the way for the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Maria G Ledesma-Colunga
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, 01307, Dresden, Germany
| | - Vanessa Passin
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, 01307, Dresden, Germany
| | - Franziska Lademann
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, 01307, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, 01307, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, 01307, Dresden, Germany.
| |
Collapse
|
4
|
Fan W, Meng Y, Zhang J, Li M, Zhang Y, Qu X, Xiu X. To investigate the mechanism of Yiwei Decoction in the treatment of premature ovarian insufficiency-related osteoporosis using transcriptomics, network pharmacology and molecular docking techniques. Sci Rep 2023; 13:19016. [PMID: 37923747 PMCID: PMC10624676 DOI: 10.1038/s41598-023-45699-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
To investigate the molecular mechanism of Yiwei Decoction (YWD) in preventing Premature ovarian insufficiency (POI)-related osteoporosis from the hypothalamic perspective , and to screen for the key active and acting molecules in YWD. Cyclophosphamide was used to create the POI rat model. Groups A, B, and C were established. The Model + YWD group was group A, the model control group was group B, and the normal control group was group C. ELISA was used to determine serum GnRH and FSH levels after gavage. The transcription levels of mRNAs in each group's hypothalamus tissues were examined using RNA-seq sequencing technology. The GSEA method was used to enrich pathways based on the gene expression levels of each group. The TCM-active ingredient-target-disease network map was created using differentially expressed mRNAs (DEmRNAs) and network pharmacology. The molecular docking method was employed to investigate the affinity of the active ingredient with key targets. GnRH and FSH levels in POI rats' serum were reduced by YWD. Between groups A and B, there were 638 DEmRNAs (P < 0.05) and 55 high-significance DEmRNAs (P-adjust < 0.01). The MAPK, Hedgehog, Calcium, and B cell receptor pathways are primarily enriched in DEmRNAs from Group A and Group B. The GSEA pathway enrichment analysis indicates that YWD may regulate Long-term potentiation, Amphetamine addiction, and the Renin-angiotensin system and play a role in preventing osteoporosis. The Chinese herbal medicine (CHM)-Active ingredient-Target-disease network map includes 137 targets, 4 CHMs, and 22 active ingredients. The result of docking indicated that Stigmasterol, interacts well with the core proteins ALB, VCL and KAT5. Following the screening, we identified the targets, active components, and key pathways associated with YWD osteoporosis prevention. Most of these key targets and pathways are associated with osteoporosis, but further experimental validation is required.
Collapse
Affiliation(s)
- Weisen Fan
- First Clinical College of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250013, China
| | - Yan Meng
- School of Health, Shandong University of Traditional Chinese Medicine, Jinan, 250013, China
| | - Jing Zhang
- School of Health, Shandong University of Traditional Chinese Medicine, Jinan, 250013, China
| | - Muzhen Li
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, 250013, China
| | - Yingjie Zhang
- First Clinical College of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250013, China.
| | - Xintian Qu
- First Clinical College of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250013, China
| | - Xin Xiu
- First Clinical College of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250013, China
| |
Collapse
|
5
|
Xu Y, Yao Y, Yu L, Zhang X, Mao X, Tey SK, Wong SWK, Yeung CLS, Ng TH, Wong MYM, Che C, Lee TKW, Gao Y, Cui Y, Yam JWP. Clathrin light chain A-enriched small extracellular vesicles remodel microvascular niche to induce hepatocellular carcinoma metastasis. J Extracell Vesicles 2023; 12:e12359. [PMID: 37606345 PMCID: PMC10443339 DOI: 10.1002/jev2.12359] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/22/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023] Open
Abstract
Small extracellular vesicles (sEVs) play a key role in exchanging cargoes between cells in tumour microenvironment. This study aimed to elucidate the functions and mechanisms of hepatocellular carcinoma (HCC) derived sEV-clathrin light chain A (CLTA) in remodelling microvascular niche. CLTA level in the circulating sEVs of HCC patients was analysed by enzyme-linked immunosorbent assay (ELISA). The functions of sEV-CLTA in affecting HCC cancerous properties were examined by multiple functional assays. Mass spectrometry was used to identify downstream effectors of sEV-CLTA in human umbilical vein endothelial cells (HUVECs). Tube formation, sprouting, trans-endothelial invasion and vascular leakiness assays were performed to determine the functions of sEV-CLTA and its effector, basigin (BSG) in HUVECs. BSG inhibitor, SP-8356, was tested in a mouse model of patient-derived xenografts (PDXs). Circulating sEVs of HCC patients had markedly enhanced CLTA levels than control individuals and were reduced in patients after surgery. HCC derived sEV-CLTA enhanced HCC cancerous properties, disrupted endothelial integrity and induced angiogenesis. Mechanistically, CLTA remodels microvascular niche by stabilizing and upregulating BSG. Last, SP-8356 alone or in combination with sorafenib attenuated PDXs growth. The study reveals the role of HCC derived sEV-CLTA in microvascular niche formation. Inhibition of CLTA and its mediated pathway may illuminate a new therapeutic strategy for HCC patients.
Collapse
Affiliation(s)
- Yi Xu
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- Department of Hepatopancreatobiliary SurgerySecond Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangP. R. China
| | - Yue Yao
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- Department of Endocrinology and MetabolismSecond Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangP. R. China
| | - Liang Yu
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- Department of Hepatopancreatobiliary SurgerySecond Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangP. R. China
| | - Xiaoxin Zhang
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of MedicineJiangsu UniversityZhenjiangJiangsuP. R. China
| | - Xiaowen Mao
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- State Key Laboratory of Liver Research (The University of Hong Kong)Hong Kong
| | - Sze Keong Tey
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Samuel Wan Ki Wong
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Cherlie Lot Sum Yeung
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Tung Him Ng
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Melody YM Wong
- Laboratory for Synthetic Chemistry and Chemical Biology LimitedHong Kong
| | - Chi‐Ming Che
- Laboratory for Synthetic Chemistry and Chemical Biology LimitedHong Kong
- State Key Laboratory of Synthetic Chemistry, and Department of ChemistryThe University of Hong KongHong Kong
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHong Kong
| | - Yi Gao
- Department of Hepatobiliary Surgery IIZhuJiang Hospital, Southern Medical UniversityGuangzhouGuangdongP. R. China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary SurgerySecond Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangP. R. China
| | - Judy Wai Ping Yam
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- State Key Laboratory of Liver Research (The University of Hong Kong)Hong Kong
| |
Collapse
|
6
|
Lei Q, Yang J, Li L, Zhao N, Lu C, Lu A, He X. Lipid metabolism and rheumatoid arthritis. Front Immunol 2023; 14:1190607. [PMID: 37325667 PMCID: PMC10264672 DOI: 10.3389/fimmu.2023.1190607] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
As a chronic progressive autoimmune disease, rheumatoid arthritis (RA) is characterized by mainly damaging the synovium of peripheral joints and causing joint destruction and early disability. RA is also associated with a high incidence rate and mortality of cardiovascular disease. Recently, the relationship between lipid metabolism and RA has gradually attracted attention. Plasma lipid changes in RA patients are often detected in clinical tests, the systemic inflammatory status and drug treatment of RA patients can interact with the metabolic level of the body. With the development of lipid metabolomics, the changes of lipid small molecules and potential metabolic pathways have been gradually discovered, which makes the lipid metabolism of RA patients or the systemic changes of lipid metabolism after treatment more and more comprehensive. This article reviews the lipid level of RA patients, as well as the relationship between inflammation, joint destruction, cardiovascular disease, and lipid level. In addition, this review describes the effect of anti-rheumatic drugs or dietary intervention on the lipid profile of RA patients to better understand RA.
Collapse
Affiliation(s)
- Qian Lei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Jie Yang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Shanghai GuangHua Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Liu X, Wang Z, Qian H, Tao W, Zhang Y, Hu C, Mao W, Guo Q. Natural medicines of targeted rheumatoid arthritis and its action mechanism. Front Immunol 2022; 13:945129. [PMID: 35979373 PMCID: PMC9376257 DOI: 10.3389/fimmu.2022.945129] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease involving joints, with clinical manifestations of joint inflammation, bone damage and cartilage destruction, joint dysfunction and deformity, and extra-articular organ damage. As an important source of new drug molecules, natural medicines have many advantages, such as a wide range of biological effects and small toxic and side effects. They have become a hot spot for the vast number of researchers to study various diseases and develop therapeutic drugs. In recent years, the research of natural medicines in the treatment of RA has made remarkable achievements. These natural medicines mainly include flavonoids, polyphenols, alkaloids, glycosides and terpenes. Among them, resveratrol, icariin, epigallocatechin-3-gallate, ginsenoside, sinomenine, paeoniflorin, triptolide and paeoniflorin are star natural medicines for the treatment of RA. Its mechanism of treating RA mainly involves these aspects: anti-inflammation, anti-oxidation, immune regulation, pro-apoptosis, inhibition of angiogenesis, inhibition of osteoclastogenesis, inhibition of fibroblast-like synovial cell proliferation, migration and invasion. This review summarizes natural medicines with potential therapeutic effects on RA and briefly discusses their mechanisms of action against RA.
Collapse
Affiliation(s)
- Xueling Liu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhiguo Wang
- Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Hua Qian
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang City, China
| | - Wenhua Tao
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang City, China
| | - Ying Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chunyan Hu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Weiwei Mao
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qi Guo
- School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Qi Guo,
| |
Collapse
|