1
|
Nie T, Nepovimova E, Wu Q. Circadian rhythm, hypoxia, and cellular senescence: From molecular mechanisms to targeted strategies. Eur J Pharmacol 2025; 990:177290. [PMID: 39863143 DOI: 10.1016/j.ejphar.2025.177290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/03/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Cellular senescence precipitates a decline in physiological activities and metabolic functions, often accompanied by heightened inflammatory responses, diminished immune function, and impaired tissue and organ performance. Despite extensive research, the mechanisms underpinning cellular senescence remain incompletely elucidated. Emerging evidence implicates circadian rhythm and hypoxia as pivotal factors in cellular senescence. Circadian proteins are central to the molecular mechanism governing circadian rhythm, which regulates homeostasis throughout the body. These proteins mediate responses to hypoxic stress and influence the progression of cellular senescence, with protein Brain and muscle arnt-like 1 (BMAL1 or Arntl) playing a prominent role. Hypoxia-inducible factor-1α (HIF-1α), a key regulator of oxygen homeostasis within the cellular microenvironment, orchestrates the transcription of genes involved in various physiological processes. HIF-1α not only impacts normal circadian rhythm functions but also can induce or inhibit cellular senescence. Notably, HIF-1α may aberrantly interact with BMAL1, forming the HIF-1α-BMAL1 heterodimer, which can instigate multiple physiological dysfunctions. This heterodimer is hypothesized to modulate cellular senescence by affecting the molecular mechanism of circadian rhythm and hypoxia signaling pathways. In this review, we elucidate the intricate relationships among circadian rhythm, hypoxia, and cellular senescence. We synthesize diverse evidence to discuss their underlying mechanisms and identify novel therapeutic targets to address cellular senescence. Additionally, we discuss current challenges and suggest potential directions for future research. This work aims to deepen our understanding of the interplay between circadian rhythm, hypoxia, and cellular senescence, ultimately facilitating the development of therapeutic strategies for aging and related diseases.
Collapse
Affiliation(s)
- Tong Nie
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
2
|
Luo D, Zhou J, Ruan S, Zhang B, Zhu H, Que Y, Ying S, Li X, Hu Y, Song Z. Overcoming immunotherapy resistance in gastric cancer: insights into mechanisms and emerging strategies. Cell Death Dis 2025; 16:75. [PMID: 39915459 PMCID: PMC11803115 DOI: 10.1038/s41419-025-07385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/07/2025] [Accepted: 01/22/2025] [Indexed: 02/09/2025]
Abstract
Gastric cancer (GC) remains a leading cause of cancer-related mortality worldwide, with limited treatment options in advanced stages. Immunotherapy, particularly immune checkpoint inhibitors (ICIs) targeting PD1/PD-L1, has emerged as a promising therapeutic approach. However, a significant proportion of patients exhibit primary or acquired resistance, limiting the overall efficacy of immunotherapy. This review provides a comprehensive analysis of the mechanisms underlying immunotherapy resistance in GC, including the role of the tumor immune microenvironment, dynamic PD-L1 expression, compensatory activation of other immune checkpoints, and tumor genomic instability. Furthermore, the review explores GC-specific factors such as molecular subtypes, unique immune evasion mechanisms, and the impact of Helicobacter pylori infection. We also discuss emerging strategies to overcome resistance, including combination therapies, novel immunotherapeutic approaches, and personalized treatment strategies based on tumor genomics and the immune microenvironment. By highlighting these key areas, this review aims to inform future research directions and clinical practice, ultimately improving outcomes for GC patients undergoing immunotherapy.
Collapse
Affiliation(s)
- Dingtian Luo
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jing Zhou
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Shuiliang Ruan
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Binzhong Zhang
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Huali Zhu
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yangming Que
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Shijie Ying
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiaowen Li
- Pathology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yuanmin Hu
- Intensive Care Unit, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Zhengwei Song
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| |
Collapse
|
3
|
Lei J, Fu J, Wang T, Guo Y, Gong M, Xia T, Shang S, Xu Y, Cheng L, Lin B. Molecular subtype identification and prognosis stratification by a immunogenic cell death-related gene expression signature in colorectal cancer. Expert Rev Anticancer Ther 2024; 24:635-647. [PMID: 38407877 DOI: 10.1080/14737140.2024.2320187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/28/2023] [Indexed: 02/27/2024]
Abstract
OBJECTIVES This study intended to develop a new immunogenic cell death (ICD)-related prognostic signature for colorectal cancer (CRC) patients. RESEARCH DESIGN AND METHODS The Non-Negative Matrix Factorization (NMF) algorithm was adopted to cluster tumor samples based on ICD gene expression to obtain ICD-related subtypes. Survival analysis and immune microenvironment analysis were conducted among different subtypes. Regression analysis was used to construct the model. Based on riskscore median, cancer patients were classified into high and low risk groups, and independent prognostic ability of the model was analyzed. The CIBERSORT algorithm was adopted to determine the immune infiltration level of both groups. RESULTS We analyzed the differential genes between cluster 4 and cluster 1-3 and obtained 12 genes with the best prognostic features finally (NLGN1, SLC30A3, C3orf20, ADAD2, ATOH1, ATP6V1B1, KCNQ2, MUCL3, RGCC, CLEC17A, COL6A5, and INSL4). In addition, patients with lower risk had higher levels of infiltration of most immune cells, lower Tumor Immune Dysfunction and Exclusion (TIDE) level and higher immunophenscore (IPS) level than those with higher risk. CONCLUSIONS This study constructed and validated the ICD feature signature predicting CRC prognosis and provide a reference criteria for guiding the prognosis and immunotherapy of CRC cancer patients.
Collapse
Affiliation(s)
- Junping Lei
- Department of Colorectal and Anal Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, P.R, China
| | - Jia Fu
- Department of Pulmonary and Critical Care Medicine, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, P.R, China
| | - Tianyang Wang
- Department of Colorectal and Anal Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, P.R, China
| | - Yu Guo
- Department of Colorectal and Anal Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, P.R, China
| | - Mingmin Gong
- Department of Colorectal and Anal Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, P.R, China
| | - Tian Xia
- Department of Colorectal and Anal Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, P.R, China
| | - Song Shang
- Department of Colorectal and Anal Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, P.R, China
| | - Yan Xu
- Department of Colorectal and Anal Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, P.R, China
| | - Ling Cheng
- Zhejiang Luoxi Medical Technology Co. Ltd, Hangzhou, P.R, China
| | - Binghu Lin
- Department of Colorectal and Anal Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, P.R, China
| |
Collapse
|
4
|
Kong C, Zheng L, Fang S, Chen M, Lin G, Qiu R, Zhao Z, Chen W, Song J, Yang Y, Ji J. Predictive Models for Colon Adenocarcinoma Diagnosis, Prognosis, and Immune Microenvironment Based on 2 Hypoxia-Related Genes: KDM3A and ENO3. Technol Cancer Res Treat 2023; 22:15330338231195494. [PMID: 37650153 PMCID: PMC10475241 DOI: 10.1177/15330338231195494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 06/30/2023] [Indexed: 09/01/2023] Open
Abstract
Background: Hypoxia is known to play a critical role in tumor occurrence, progression, prognosis, and therapy resistance. However, few studies have investigated hypoxia markers for diagnosing and predicting prognosis in colon adenocarcinoma (COAD). This study aims to identify a hypoxia genes-based biomarker for predicting COAD patients' prognosis and response to immunotherapy on an individual basis. Methods: Hypoxia-related genes were extracted from the Molecular Signatures Database. Gene expression, clinical data, and mutation data of COAD were collected retrospectively from the Cancer Genome Atlas, the Gene Expression Omnibus, and the International Cancer Genome Consortium databases. Univariate and multivariate cox regression, and the least absolute shrinkage and selection operator method were used to select the genes most associated with the prognosis of COAD patients. Kaplan-Meier survival analysis, receiver operating characteristic curves, calibration curves, and decision curve analyses were performed to validate the efficacy of the signature in predicting the prognosis of COAD patients. EdU incorporation assays, cell survival assays, western blot assays, and trans-well invasion assays were performed to further confirm the function of the screened genes in tumorigenesis. Results: ENO3 and KDM3A were identified as key genes for constructing prognostic and diagnostic signatures, which were found to be independent risk factors for predicting the prognosis and diagnosis of COAD patients. Using these signatures, COAD patients could be stratified into high-risk and low-risk groups, with the latter exhibiting better overall survival outcomes. Moreover, the high-risk group displayed elevated levels of immune checkpoint genes and tumor mutation burden, indicating that these patients may benefit from immune checkpoint inhibitor therapy. Conclusion: The signature developed in this study demonstrates excellent efficacy in prognosticating the outcomes of COAD patients. Moreover, it can serve as a valuable tool for clinicians to identify COAD patients who are suitable for ICI therapy.
Collapse
Affiliation(s)
- Chunli Kong
- Department of Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, China
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, China
| | - Liyun Zheng
- Department of Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, China
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, China
| | - Shiji Fang
- Department of Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, China
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, China
| | - Minjiang Chen
- Department of Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, China
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, China
| | - Guihan Lin
- Department of Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, China
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, China
| | - Rongfang Qiu
- Department of Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, China
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, China
| | - Zhongwei Zhao
- Department of Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, China
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, China
| | - Weiqian Chen
- Department of Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, China
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, China
| | - Jingjing Song
- Department of Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, China
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, China
| | - Yang Yang
- Department of Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, China
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, China
| | - Jiansong Ji
- Department of Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, China
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, China
| |
Collapse
|